
1

 Suite B Implementer’s Guide to NIST SP 800-56A
July 28, 2009

1. Introduction

This document specifies the Elliptic Curve Diffie-Hellman (ECDH) key-agreement
schemes from NIST SP 800-56A: “Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography” that will be used in future and
existing cryptographic protocols for Suite B products. Also included are the elliptic
curves and domain parameters, key generation methods, the ECDH primitive, key
derivation function, and other auxiliary functions that are necessary for ECDH scheme
implementations to be in compliance with SP 800-56A and Suite B.

Several IETF protocols (e.g., IKE/IPsec, S/MIME, SSH, and TLS) were designed and
gained widespread use prior to the publication of SP 800-56A. These protocols do not
comply with all of the key-agreement requirements specified in SP 800-56A. Discussion
concerning the implementation of ECDH in these protocols for Suite B products is also
given in this document.

2. Definitions, Symbols and Abbreviations1

2.1 Definitions

Approved FIPS approved or NIST Recommended. An algorithm or
technique that is either 1) specified in a FIPS or NIST
Recommendation, or 2) adopted in a FIPS or NIST
Recommendation and specified either (a) in an appendix to the
FIPS or NIST Recommendation, or (b) in a document referenced
by the FIPS or NIST Recommendation

Assurance of
possession of a
private key

Confidence that an entity possesses a private key associated with
a public key.

Assurance of
validity

Confidence that either a key or a set of domain parameters is
arithmetically correct.

Bit length The length in bits of a bit string.

1 These definitions, symbols and abbreviations are from NIST SP-800-56A. NIST SP-800-56A definitions,
symbols and abbreviations that are not used in this Suite B Implementer’s Guide have been omitted. In a
few cases, clarifications have been added that are specific to Suite B.

2

Certification
Authority

The entity in a Public Key Infrastructure (PKI) that is responsible
for issuing public key certificates and exacting compliance to a
PKI policy.

Cofactor The order of the elliptic curve group divided by the (prime) order
of the generator point specified in the domain parameters. Note
that for the Suite B domain parameters, this cofactor is one.

Domain parameters The parameters used with a cryptographic algorithm that are
common to a domain of users.

Entity An individual (person), organization, device, or process. “Party”
is a synonym.

Ephemeral key A key that is intended for a very short period of use. The key is
ordinarily used in exactly one transaction of a cryptographic
scheme; an exception to this is when the ephemeral key is used in
multiple transactions for a key transport broadcast . Contrast with
static key.

Hash function A function that maps a bit string of arbitrary length to a fixed
length bit string. Approved hash functions satisfy the following
properties:

1. (One-way) It is computationally infeasible to find any input
that maps to any pre-specified output, and

2. (Collision resistant) It is computationally infeasible to find any
two distinct inputs that map to the same output.

Approved hash functions for Suite B are SHA-256 and SHA-384,
specified in FIPS 180-3.

Initiator The party that begins a key-agreement transaction. Contrast with
responder.

Key-agreement A key-establishment procedure where the resultant secret keying
material is a function of information contributed by two
participants, so that no party can predetermine the value of the
secret keying material independently from the contributions of the
other parties. Contrast with key transport.2

Key-agreement
transaction

The instance that results in shared secret keying material among
different parties using a key-agreement scheme.

2 Key transport algorithms are not used in Suite B; hence the term “key transport” is not included in the
definitions section. Interested readers should consult NIST SP-800-56A.

3

Key confirmation A procedure to provide assurance to one party (the key-
confirmation recipient) that another party (the key-confirmation
provider) actually possesses the correct secret keying material
and/or shared secret.

Key derivation The process by which keying material is derived from a shared
secret and other information.

Key-establishment The procedure that results in shared secret keying material among
different parties.

Key-establishment
transaction

An instance of establishing secret keying material using a key-
establishment scheme.

Keying material The data that is necessary to establish and maintain a
cryptographic keying relationship. Some keying material may be
secret, while other keying material may be public. As used in this
document, secret keying material may include keys, secret
initialization vectors or other secret information; public keying
material includes any non-secret data needed to establish a
relationship.

MacTag Data that allows an entity to verify the integrity of the
information. Other documents sometimes refer to this data as a
MAC.

Message
Authentication Code
(MAC) algorithm

Defines a family of one-way cryptographic functions that is
parameterized by a symmetric key and produces a MacTag on
arbitrary data. A MAC algorithm can be used to provide data
origin authentication as well as data integrity. In this document, a
MAC algorithm is used for key confirmation and validation
testing purposes.

Owner For a static key pair, the owner is the entity that is authorized to
use the static private key associated with a public key, whether
that entity generated the static key pair itself or a trusted party
generated the key pair for the entity. For an ephemeral key pair,
the owner is the entity that generated the key pair.

Party An individual (person), organization, device, or process. “Entity”
is a synonym for party.

Provider The party during key confirmation that provides assurance to the
other party (the recipient) that the two parties have indeed
established a shared secret.

4

Public key certificate A set of data that contains an entity’s identifier(s), the entity’s
public key (including an indication of the associated set of
domain parameters) and possibly other information, and is
digitally signed by a trusted party, thereby binding the public key
to the included identifier(s).

Recipient A party that receives (1) keying material: such as a static public
key (e.g., in a certificate) or an ephemeral public key; (2)
assurance: such as an assurance of the validity of a candidate
public key or assurance of possession of the private key
associated with a public key; or (3) key confirmation. Contrast
with provider.

Responder The party that does not begin a key-agreement transaction.
Contrast with initiator.

Scheme A (cryptographic) scheme consists of an unambiguous
specification of a set of transformations that are capable of
providing a (cryptographic) service when properly implemented
and maintained. A scheme is a higher level construct than a
primitive and a lower level construct than a protocol.

Security strength
(also “bits of
security”)

A number associated with the amount of work (that is, the number
of operations) that is required to break a cryptographic algorithm
or system.

Shared secret keying
material

The secret keying material that is either (1) derived by applying
the key derivation function to the shared secret and other shared
information during a key-agreement process, or (2) is transported
during a key transport process3.

Shared secret A secret value that has been computed using a key-agreement
scheme and is used as input to a key derivation function.

Static key A key that is intended for use for a relatively long period of time
and is typically intended for use in many instances of a
cryptographic key-establishment scheme. Contrast with an
ephemeral key.

Symmetric key
algorithm

A cryptographic algorithm that uses one secret key that is shared
between authorized parties.

3 Key transport algorithms are not used in Suite B; hence the term “key transport” is not included in the
definitions section. Interested readers should consult NIST SP-800-56A.

5

Trusted party A trusted party is a party that is trusted by an entity to faithfully
perform certain services for that entity. An entity may choose to
act as a trusted party for itself.

Trusted third party A third party, such as a CA, that is trusted by its clients to
perform certain services. (By contrast, the initiator and responder
in a scheme are considered to be the first and second parties in a
key-establishment transaction.

2.2 Symbols and Abbreviations

General:

AES Advanced Encryption Standard (as specified in FIPS 197)

ANS American National Standard

ASN.1 Abstract Syntax Notation One

CA Certification Authority

CDH The cofactor Diffie-Hellman key-agreement primitive.

EC Elliptic Curve.

ECC Elliptic Curve Cryptography, the public key cryptographic methods using
an elliptic curve. For example, see ANS X9.63.

HMAC Keyed-Hash Message Authentication Code (as specified in FIPS 198).

ID The bit string denoting the identifier associated with an entity.

H An Approved hash function.

KC Key Confirmation

KDF Key Derivation Function

MAC Message Authentication Code

Null The empty bit string

SHA Secure Hash Algorithm

TTP A Trusted Third Party

U The initiator of a key-establishment process.

6

V The responder in a key-establishment process.

{X} Indicates that the inclusion of X is optional.

X || Y Concatenation of two strings X and Y.

|x| The length of x in bits.

[a, b] The set of integers x such that a≤ x≤ b.

x The ceiling of x; the smallest integer x. For example, 5 = 5, 5.3 = 6.

ECC (ANS X9.63)

a, b An ECC domain parameter; two field elements that define the equation
of an elliptic curve.

de,U, de,V Party U’s and Party V’s ephemeral private keys. These are integers in the
range [1, n-1].

ds,U, ds,V Party U’s and Party V’s static private keys. These are integers in the
range [1, n-1].

D The set of ECC domain parameters, (q, FR, a, b{, SEED}, G, n, h).

FR Field Representation indicator. An indication of the basis used for
representing field elements. For the Suite B curves, FR is NULL.

G An ECC domain parameter, which is a distinguished point on an elliptic
curve that generates the subgroup of order n.

h An ECC domain parameter, the cofactor, which is the order of the elliptic
curve divided by the order of the point G. For the Suite B curves, h = 1.

n An ECC domain parameter; the order of the point G.

O The point at infinity; a special point in an elliptic curve group that serves
as the (additive) identity.

q An ECC domain parameter; the field size.

Qe,U , Qe,V Party U’s and Party V’s ephemeral public keys. These are points on the
elliptic curve defined by the domain parameters.

Qs,U , Qs,V Party U’s and Party V’s static public keys. These are points on the elliptic
curve defined by the domain parameters.

7

SEED An ECC domain parameter; an initialization value that is used during
domain parameter generation that can also be used to provide assurance
at a later time that the resulting domain parameters were generated
arbitrarily.

xp, yp Elements of the finite field of size q, representing the x and y coordinates
respectively, of a point P. For Suite B curves, these are integers in the
interval [0, q-1].

Z A shared secret that is used to derive secret keying material using a key
derivation function.

Zbytestring The byte-string form of Z. Note that this is not an ANS X9.63 term and
was not used in SP 800-56A. It is introduced to distinguish between the
field element Z and representation of Z in byte-string form.

3. ECDH Schemes

This section specifies the ECDH key-agreement schemes that can be used by Suite B
products. The preferred ECDH scheme is the Ephemeral Unified Model (section 3.1),
where each party generates an ephemeral key pair to be used in the computation of the
shared secret. If the Ephemeral Unified Model cannot be used (for example, in a store-
and-forward scenario where one party is not available to contribute an ephemeral public
key), then the One-Pass Diffie-Hellman scheme is to be used. One-Pass Diffie-Hellman
(section 3.2) is a key-agreement scheme in which an ephemeral key pair generated by one
party is used together with the other party’s static key pair in the computation of the
shared secret.

It is important to note that, in practice, a key-agreement scheme is just one component of
a larger (key-agreement) protocol, which may include many additional actions by both
parties. Other components of the protocol may provide security services that are not
provided by the key-agreement scheme itself. For example, when required, authentication
of the source and integrity of exchanged ephemeral public keys must be provided by
other components of a protocol incorporating either of these schemes.

Implementers should be aware that a number of protocols (e.g., IKE/IPsec, S/MIME,
SSH and TLS) that were in widespread use prior to the publication of SP 800-56A do not
comply with all of the key-agreement requirements specified below. In particular,
alternate methods of key derivation have been defined for use in certain protocols.
Section 7.1 of the “Implementation Guidance for FIPS PUB 140-2 and the Cryptographic
Module Validation Program” describes the deviations from the requirements of SP 800-
56A that are currently allowed in products submitted for FIPS 140-2 validation. Some of
the current waivers have expiration dates, so this document must be consulted for the
most up-to-date information. Section 8 of the “Suite B Implementer’s Guide to SP 800-

8

56A” contains further discussion regarding the IETF protocols IKE/IPsec, S/MIME, SSH
and TLS for Suite B.

Protocols that use X.509 public key infrastructure certificates must follow the “Suite B
Certificate and Certificate Revocation List Profile.” This profile is a refinement of RFC
5280, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” and assumes that the reader is familiar with RFC 5280.

Certificate management follows the “Suite B Profile of Certificate Management over
CMS4.”

Prior to executing a routine that performs elliptic-curve computations on either an
ephemeral or static public key, it is recommended that the party performing the
computation should have assurance of the validity of that public key. The ECC Partial
Public-Key Validation Routine (given in appendix B.3) can be employed whenever such
assurance is required by Suite B compliant protocols.

Note: In the case of a static public key, the party seeking assurance may be in a position
to trust that the CA established the subject public key’s validity before issuing its
certificate.

3.1 Ephemeral Unified Model

This section describes the Ephemeral Unified Model scheme from SP 800-56A. Using
the same domain parameters, each party generates an ephemeral key pair. The two parties
exchange ephemeral public keys and then compute the shared secret. The secret keying
material is derived using the shared secret.

Figure 1: Each Party Generates an Ephemeral Key Pair; No Static Keys are Used.

4 Cryptographic Message Syntax

1. V uses its ephemeral private
key, de,V, and U’s ephemeral
public key, Qe,U, to form a
shared secret.

2. V invokes the Key Derivation
Function using the shared secret
and other input

V’s Ephemeral Public Key

U’s Ephemeral Public Key

U V

1. U uses its ephemeral private
key, de,U, and V’s ephemeral
public key, Qe,V, to form a
shared secret.

2. U invokes the Key Derivation
Function using the shared secret
and other input.

9

Prerequisites:
1. Each party shall have an authentic copy of the same set of domain parameters, D,

where D = (q, FR, a, b{, SEED}, G, n, h). D must be selected from one of the two
sets of domain parameters specified in Appendix A.

2. Each party shall use the NIST Concatenation Key Derivation Function5 (see
section 5). SHA-256 is the hash function to use with the domain parameters for P-
256 and SHA-384 is the hash function to use with the domain parameters for P-
384 (see FIPS 180-3).

3. Prior to or during the key-agreement process, each party shall obtain the identifier
associated with the other party during the key-agreement scheme.

With the exception of key derivation, Ephemeral Unified Model is “symmetric” in the
actions of the initiator (Party U) and the responder (Party V).

Note, that U and V must use identical orderings of the bit strings that are input to the key
derivation function in order for each party to produce the same secret keying material.

Party U shall execute the following key-agreement transformation in order to a) establish
a shared secret value Z with Party V, and b) derive shared secret keying material from Z.

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as
specified in appendix B.1 or B.2. Send the public key Qe,U to V. Receive an
ephemeral public key Qe,V (purportedly) from V. If Qe,V is not received, output an
error indicator and stop.

2. Verify that Qe,V is a valid public key for the domain parameters D as specified in
appendix B.3. If assurance of public key validity cannot be obtained, output an
error indicator and stop.

3. Use the ECC CDH primitive specified in section 4 to derive a shared secret Z – an
element of the finite field of size q – from the set of domain parameters D, U’s
ephemeral private key de,U and V’s ephemeral public key Qe,V. If the call to the
ECC CDH primitive outputs an error indicator, zeroize the results of all
intermediate calculations used in the attempted computation of Z, output an error
indicator, and stop.

4. Convert Z to a byte string (which is denoted by Zbytestring
6) using the Field-Element-

to-Byte-String conversion specified in (see appendix C.3), and then zeroize the
results of all intermediate calculations used in the computation of Z. The length of
Zbytestring will be 32 bytes for P-256 and 48 bytes for P-384.

5 Exceptions have been granted by NIST for certain IETF protocols. See NIST’s “Implementation
Guidance for FIPS 140-2 and the Cryptologic Module Validation Program” for the most current
information regarding waivers for the KDFs used by particular IETF protocols.
6 This term does not exist in SP 800-56A. SP 800-56A uses Z to denote both quantities: the Z output from
the ECC CDH primitive and the byte-string form of Z.

10

5. Use the agreed upon key derivation function7 to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value
Zbytestring and OtherInput (including the identifiers IDU and IDV). If the key
derivation function outputs an error indicator, zeroize all copies of Z and Zbytestring,
output an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and Zbytestring. Output the secret derived
keying material DerivedKeyingMaterial or an error indicator.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error
indicator.

Party V shall execute the following key-agreement transformation in order to a) establish
a shared secret value Z with Party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,V, Qe,V) from the domain parameters D as
specified in appendix B.1 or B.2. Send the public key Qe,V to U. Receive an
ephemeral public key Qe,U (purportedly) from U. If Qe,U is not received, output an
error indicator and stop.

2. Verify that Qe,U is a valid public key for the domain parameters D as specified in
appendix B.3. If assurance of public key validity cannot be obtained, output an
error indicator and stop.

3. Use the ECC CDH primitive specified in section 4 to derive a shared secret Z – an
element of the finite field of size q – from the set of domain parameters D, V’s
ephemeral private key de,V and U’s ephemeral public key Qe,U. If the call to the
ECC CDH primitive outputs an error indicator, zeroize the results of all
intermediate calculations used in the attempted computation of Z, output an error
indicator, and stop.

4. Convert Z to a byte string (which is denoted by Zbytestring
8) using the Field-Element-

to-Byte-String conversion specified in (see appendix C.3), and then zeroize the
results of all intermediate calculations used in the computation of Z. The length of
Zbytestring will be 32 bytes for P-256 and 48 bytes for P-384.

5. Use the agreed upon key derivation function9 to derive shared secret keying
material DerivedKeyingMaterial of length keydatalen bits from the shared secret
value Zbytestring and OtherInput (including the identifiers IDU and IDV). If the key
derivation function outputs an error indicator, zeroize all copies of Z and Zbytestring,
output an error indicator, and stop.

7 See section 5 for the NIST Concatenation Key Derivation Function. See section 8 and the referenced
IETF RFCs for Suite B key derivation functions for the IETF protocols IKE/IPSec, S/MIME, SSH, and
TLS.
8 This term does not exist in SP 800-56A. SP 800-56A uses Z to denote both quantities: the Z output from
the ECC CDH primitive and the byte-string form of Z.
9 See section 5 for the NIST Concatenation Key Derivation Function. See section 8 and the referenced
IETF RFCs for Suite B key derivation functions for the IETF protocols IKE/IPSec, S/MIME, SSH, and
TLS.

11

6. Zeroize all copies of the shared secret Z and Zbytestring. Output the secret derived
keying material DerivedKeyingMaterial or an error indicator.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error
indicator.

Table 1: Ephemeral Unified Model Key-agreement Scheme Summary

Party U Party V

Domain
Parameters

 (q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static Data N/A N/A

Ephemeral
Data

1. Ephemeral private key, de,U

2. Ephemeral public key, Qe,U

1. Ephemeral private key, de,V

2. Ephemeral public key, Qe,V

Computation Compute Z by calling ECC CDH
using de,U and Qe,V

Compute Z by calling ECC CDH
using de,V and Qe,U

Derive Secret
Keying
Material

Compute kdf(Zbytestring, OtherInput)
Zeroize Z and Zbytestring

Compute kdf(Zbytestring, OtherInput)
Zeroize Z and Zbytestring

3.2 One-Pass Diffie-Hellman

This section describes the One-Pass Diffie-Hellman scheme from SP 800-56A. For this
scheme, Party U generates an ephemeral key pair; Party V has only a static key pair.
Party U obtains Party V’s static public key in a trusted manner (for example, from a
certificate signed by a trusted CA) and sends its ephemeral public key to Party V. Each
party computes the shared secret by using its own private key and the other party’s public
key. Then each party uses the shared secret to derive shared secret keying material.

12

Figure 2: Initiator has Only an Ephemeral Key Pair and the Responder has Only a Static Key Pair.

Prerequisites:
1. Each party shall have an authentic copy of the same set of domain parameters, D,

where D = (q, FR, a, b{, SEED}, G, n, h). D must be selected from one of the two
sets of domain parameters specified in Appendix A.

2. The responder shall have been designated as the owner of a static key pair that
was generated as specified in appendix B, using the set of domain parameters, D.

3. The parties shall use the NIST Concatenation Key Derivation Function10 in
section 5. SHA-256 is the hash function to use with the domain parameters for P-
256 and SHA-384 is the hash function to use with the domain parameters for P-
384 (see FIPS 180-3). If SP 800-56A-compliant key confirmation is used, the
parties shall have agreed upon an Approved MAC and associated parameters (see
section 6 for further guidance).

4. Prior to or during the key-agreement process, each party shall obtain the identifier
associated with the other party during the key-agreement scheme. The initiator
shall obtain the static public key that is bound to the responder’s identifier. This
static public key shall be obtained in a trusted manner (e.g., from a certificate
signed by a trusted CA). The initiator shall obtain assurance of the validity of the
responder’s static public key has been established as specified in appendix B,
using the set of domain parameters, D.

Note that U and V must use identical orderings of the bit strings that are input to the key
derivation function in order for each party to produce the same shared secret keying
material.

Party U shall execute the following key-agreement transformation in order to a) establish
a shared secret value Z with Party V, and b) derive shared secret keying material from Z.

10 Exceptions have been granted by NIST for certain IETF protocols. See NIST’s “Implementation
Guidance for FIPS 140-2 and the Cryptologic Module Validation Program” for the most current
information regarding waivers for the KDFs used by particular IETF protocols.

1. V uses its static private key, ds,V,
and U’s ephemeral public key,
Qe,U, to form a shared secret Z.

2. V invokes the Key Derivation
Function using the shared secret
and other input.

U’s Ephemeral Public Key

V’s Static Public Key

U V

1. U uses its ephemeral private
key, de,U, and V’s static public
key, Qs,V, to form a shared secret
Z.

2. U invokes the Key Derivation
Function using the shared secret
and other input.

13

Actions: U shall derive secret keying material as follows:

1. Generate an ephemeral key pair (de,U, Qe,U) from the domain parameters D as
specified in appendix B.1 or B.2. Send the public key Qe,U to V.

2. Use the ECC CDH primitive in section 4 to derive a shared secret Z – an element
of the finite field of size q – from the set of domain parameters D, U’s ephemeral
private key de,U and V’s static public key Qs,V. If this call to the ECC CDH
primitive outputs an error indicator, zeroize the results of all intermediate
calculations used in the attempted computation of Z, output an error indicator, and
stop.

3. Convert Z to a byte string (which is denoted by Zbytestring
11) using the Field-

Element-to-Byte-String Conversion specified in (see appendix C.3), and then
zeroize the results of all intermediate calculations used in the computation of Z
and Zbytestring. The length of Zbytestring will be 32 bytes for P-256 and 48 bytes for P-
384.

4. Use the agreed upon key derivation function12 to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value
Zbytestring and OtherInput (including the identifiers IDU and IDV).(See section 5). If
the key derivation function outputs an error indicator, zeroize all copies of Z and
Zbytestring, output an error indicator, and stop.

5. Zeroize all copies of the shared secret Z and Zbytestring. Output the secret derived
keying material or an error indicator.

6. If SP 800-56A-compliant key confirmation is required, see section 6.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error
indicator.

Party V shall execute the following key-agreement transformation in order to a) establish
a shared secret value Z with Party U, and b) derive shared secret keying material from Z.

Actions: V shall derive secret keying material as follows:

1. Receive an ephemeral public key Qe,U (purportedly) from U. If Qe,U is not
received, output an error indicator and stop.

2. Verify that Qe,U is a valid public key for the parameters D as specified in appendix
B.3. If assurance of public key validity cannot be obtained, output an error
indicator and stop.

3. Use the ECC CDH primitive in section 4 to derive a shared secret Z – an element
of the finite field of size q – from the set of domain parameters D, V’s static
private key ds,V and U’s ephemeral public key Qe,U. If this call to the ECC CDH

11 This term does not exist in SP 800-56A. SP 800-56A uses Z to denote both quantities: the Z output from
the ECC CDH primitive and the byte-string form of Z.
12 See section 5 for the NIST Concatenation Key Derivation Function. See section 8 and the referenced
IETF RFCs for Suite B key derivation functions for the IETF protocols IKE/IPSec, S/MIME, SSH, and
TLS.

14

primitive outputs an error indicator, zeroize the results of all intermediate
calculations used in the attempted computation of Z, output an error indicator, and
stop.

4. Convert Z to a byte string (which is denoted by Zbytestring
13) using the Field-

Element-to-Byte-String Conversion specified in (see appendix C.3), and then
zeroize the results of all intermediate calculations used in the computation of Z
and Zbytestring. The length of Zbytestring will be 32 bytes for P-256 and 48 bytes for P-
384.

5. Use the agreed upon key derivation function14 to derive secret keying material
DerivedKeyingMaterial of length keydatalen bits from the shared secret value
Zbytestring and OtherInput (including the identifiers IDU and IDV).(See section 5). If
the key derivation function outputs an error indicator, zeroize all copies of Z and
Zbytestring, output an error indicator, and stop.

6. Zeroize all copies of the shared secret Z and Zbytestring. Output the shared secret
derived keying material or an error indicator.

7. If SP 800-56A-compliant key confirmation is required, see section 6.

Output: The bit string DerivedKeyingMaterial of length keydatalen bits or an error
indicator.

Table 2: One-Pass Diffie-Hellman Key-agreement Scheme Summary

Party U Party V

Domain
Parameters

(q, FR, a, b{, SEED}, G, n, h) (q, FR, a, b{, SEED}, G, n, h)

Static Data N/A 1. Static private key, ds,V

2. Static public key, Qs,V

Ephemeral
Data

1. Ephemeral private key, de,U

2. Ephemeral public key, Qe,U

N/A

Computation Compute Z by calling ECC CDH
using de,U and Qs,V

Compute Z by calling ECC CDH
using ds,V and Qe,U

Derive
Secret
Keying
Material

Compute kdf(Zbytestring, OtherInput)
Zeroize Z and Zbytestring

Compute kdf(Zbytestring, OtherInput)
Zeroize Z and Zbytestring

13 This term does not exist in SP 800-56A. SP 800-56A uses Z to denote both quantities: the Z output from
the ECC CDH primitive and the byte-string form of Z.
14 See section 5 for the NIST Concatenation Key Derivation Function. See section 8 and the referenced
IETF RFCs for Suite B key derivation functions for the IETF protocols IKE/IPSec, S/MIME, SSH, and
TLS.

15

4. Elliptic Curve Cryptography Cofactor Diffie-Hellman (ECC CDH)
Primitive

The shared secret Z is computed using the domain parameters D (see Appendix A), the
other party’s public key and one’s own private key. Assume that the party performing the
computation is Party A and the other party is Party B. Note that Party A could be either
the initiator U or the responder V.

Input:

1. (q, FR, a, b{, SEED}, G, n, h): Domain parameters (see appendix A)

2. dA: One’s own private key, and

3. QB: The other party’s public key.

Process:

1. Compute the point P = hdAQB . Note that for the Suite B curves, the cofactor
h = 1, which reduces “cofactor ECDH” to “ordinary ECDH”.

2. If P = O, the point at infinity, output an error indicator.

3. Z = xP where xP is the x-coordinate of P.

Output: The shared secret Z or an error indicator.

5. Key Derivation Function – NIST Concatenation KDF

The NIST Concatenation KDF is the required key derivation function unless using one of
the IETF protocols for which an exemption has been granted by NIST (see section 8).

The NIST Concatenation KDF is as follows:

Function call: kdf(Zbytestring
15, OtherInput)

where OtherInput is keydatalen and OtherInfo.

Fixed Values (implementation dependent):
1. hashlen: an integer that indicates the length (in bits) of the output of the hash

function used to derive blocks of secret keying material. This will be either
256 (for SHA-256) or 384 (for SHA-384).

2. max_hash_inputlen: an integer that indicates the maximum length (in bits) of
the bit string(s) input to the hash function.

15 This term does not exist in SP 800-56A. SP 800-56A uses Z to denote both quantities: the Z output from
the ECC CDH primitive and the byte-string form of Z.

16

Function: H: a hash function, either SHA-256 or SHA-384.

Input:
1. Zbytestring: the shared secret in byte-string form.
2. keydatalen: an integer that indicates the length (in bits) of the secret keying

material to be generated; keydatalen shall be less than or equal to
hashlen x (232-1).

3. OtherInfo: A bit string equal to the following concatenation:
 AlgorithmID || PartyUInfo || PartyVInfo {||SuppPubInfo}{||SuppPrivInfo}
where the subfields are defined as follows:

1. AlgorithmID: A bit string that indicates how the derived secret keying
material will be parsed and for which algorithm(s) the derived secret
keying material will be used.

2. PartyUInfo: A bit string containing public information that is required by
the application using this KDF to be contributed by Party U to the key
derivation process. At a minimum, PartyUInfo shall include IDU, the
identifier of Party U.

3. PartyVInfo: A bit string containing public information that is required by
the application using this KDF to be contributed by Party V to the key
derivation process. At a minimum, PartyVInfo shall include IDV, the
identifier of Party V.

4. (Optional) SuppPubInfo: A bit string containing additional, mutually-
known public information.

5. (Optional) SuppPrivInfo: A bit string containing additional, mutually-
known private information (for example, a shared secret symmetric key
that has been communicated through a separate channel).

Each of the three subfields AlgorithmID, PartyUInfo and PartyVInfo shall be the
concatenation of an application-specific, fixed sequence of substrings of information.
Each substring representing a separate unit of information shall have one of these two
formats: either it is a fixed-length bit string, or it has the form Datalen||Data, where Data
is a variable-length string of zero or more bytes and Datalen is a fixed-length, big endian
counter that indicates the length (in bytes) of Data. (In this variable-length format, a null
string of data shall be represented by using Datalen to indicate that Data has length zero.)
An application using this KDF shall specify the ordering and number of separate
information substrings used in each of the subfields, PartyUInfo and PartyVInfo, and
shall also specify which of two formats (fixed-length or variable-length) is used for each
substring. The application shall specify the lengths for all fixed-length quantities,
including the Datalen counters.

The subfields SuppPubInfo and SuppPrivInfo (when allowed by the application) shall be
formed by the concatenation of an application-specific, fixed sequence of substrings of
additional information that may be used in key derivation upon mutual agreement of
parties U and V. Each substring representing a separate unit of information shall be of
the form Datalen||Data, where Data is a variable-length string of zero or more bytes and
Datalen is a fixed-length, big-endian counter that indicates the length (in bytes) of Data.

17

The information substrings that parties U and V choose not to contribute are set equal to
Null and are represented in this variable-length format by setting Datalen equal to zero. If
an application allows the use of the OtherInfo subfield SuppPrivInfo and/or the subfield
SuppPubInfo, then the application shall specify the ordering and the number of additional
information substrings that may be used in the allowed subfield(s) and shall specify the
fixed-length of the Datalen counters.

Process:

1. reps = keydatalen / hashlen

2. If reps > (232-1), then ABORT: output an error indicator and stop.

3. Initialize a 32-bit, big-endian bit string counter as 0000000116.

4. If (counter || Zbytestring || OtherInfo) is more than max_hash_inputlen bits long,
then ABORT: output an error indicator and stop.

5. For i = 1 to reps by 1, do the following:
 Compute Hashi = H(counter || Zbytestring || OtherInfo)
 Increment counter (modulo 232), treating it as an unsigned 32-bit integer.

6. Let Hhash be set to Hashreps if (keydatalen / hashlen) is an integer; otherwise,
let Hhash be set to the (keydatalen mod hashlen) leftmost bits of Hashreps.

7. Set DerivedKeyingMaterial = Hash1 || Hash2 || … || Hashreps-1 || Hhash.

Output:
The bit string DerivedKeyingMaterial of length keydatalen bits (or an error indicator).
Any scheme attempting to call this key derivation function with keydatalen greater than
or equal to hashlen × (232-1) shall output an error indicator and stop without outputting
DerivedKeyingMaterial. Any call to the key derivation function involving an attempt to
hash a bit string that is greater than max_hash_inputlen bits long shall cause the KDF to
output an error indicator and stop without outputting DerivedKeyingMaterial.

Notes:
1. IDU and IDV shall be represented in OtherInfo as separate units of information,

using either the fixed-length format or the variable-length format described above
– according to the requirements of the application using this KDF. The rationale
for including the identifiers in the KDF input is provided in Appendix B of
SP 800-56A.

2. Party U shall be the initiator and Party V shall be the responder, as assigned by the
protocol employing the key-agreement scheme used to determine the shared
secret Zbytestring.

The output from the KDF shall only be used for secret keying material, such as a
symmetric key used for data encryption or message integrity, a secret initialization
vector, or a master key that will be used to generate other keys. Non-secret keying
material shall not be generated using the shared secret.

18

Each call to the KDF requires a freshly computed shared secret and this shared secret
shall be zeroized immediately following its use. The derived secret keying material shall
be computed in it entirety before outputting any portion of it.

The derived secret keying material may be parsed into one or more keys or other secret
cryptographic keying material (for example, secret initialization vectors). If Key
Confirmation or implementation validation testing are to be performed, then the MAC
key shall be formed from the first bits of the KDF output and zeroized after its use.

6. Key Confirmation

Key Confirmation refers to methods used to provide assurance to one party (the key-
confirmation recipient) that another party (the key-confirmation provider) possesses the
correct shared secret and/or derived keying material (from the key-confirmation
recipient’s perspective). It is strongly recommended that new developments include key
confirmation due to the security benefits that key confirmation provides.

Often, key confirmation is provided implicitly (e.g., by the recipient’s ability to
successfully decrypt an encrypted message from the other party using a key derived
during the key-agreement transaction), but this assurance can also be provided as an
integral part of a key-agreement transaction by the explicit exchange of key-confirmation
information (e.g., by the exchange of appropriately-defined MAC values computed using
a key derived specifically for that purpose).

Under certain circumstances, explicit key confirmation may be incorporated directly into
the key-agreement scheme employed by a key-agreement protocol. More often, explicit
key confirmation is handled as a separate component of the protocol. The specifications
in SP 800-56A deal only with situations where key confirmation is implemented as part
of the key-agreement scheme itself, and are limited to cases where the key-confirmation
provider has an identifier that is bound to a static public key-establishment key used
during the transaction. SP 800-56A does not prohibit the inclusion of key confirmation as
a separate component of a protocol (or by any other means), but provides no statement
concerning the adequacy of methods that are not specified in SP 800-56A.

The implication of this restriction for Suite B is that SP 800-56A-compliant key
confirmation can only be directly incorporated into implementations of the One-Pass
Diffie-Hellman scheme, where the responder (as the owner of the static public key-
establishment key) serves as the key-confirmation provider and the other party (the
initiator of the key-agreement transaction, who contributes an ephemeral public key)
serves as the key-confirmation recipient. However, there is no prohibition against
providing/obtaining key confirmation by other means and SP 800-56A recommends that
each party to a key-agreement transaction should endeavor to obtain assurance that the
other party possesses the correct derived keying material.

19

The NIST SP 800-56A key-confirmation process requires the use of a Message
Authentication Code (MAC) algorithm. The Keyed-Hash Message Authentication Code
(HMAC), as specified in FIPS 198-1, is to be used with either SHA-256 or SHA-384.

A final note: When it is included in a key-agreement transaction, properly-defined key
confirmation may also permit the recipient to obtain assurance that the provider had
knowledge of the private key corresponding to the provider’s public key and was able to
use it correctly. For example, SP 800-56A-compliant key confirmation can be used to
provide/obtain assurance of static-private-key possession in conjunction with key-
agreement transactions employing the One-Pass Diffie-Hellman scheme.

NIST 800-56A Key-confirmation Steps for One-Pass ECDH:

Figure 3: One-Pass ECDH with Key Confirmation

MacDataV is formed as follows:
MacDataV = “KC_1_V” || IDV || IDU || Null || EphemPubKeyU {|| Text},

where IDV is V’s identifier, IDU is U’s identifier, Null is the empty byte string,
EphemPubKeyU is U’s ephemeral public key, and Text is an optional bit string that may
be used during key confirmation and that is known by the parties establishing the secret
keying material.

After computing the shared secret and applying the key derivation function to obtain
DerivedKeyingMaterial, Party V parses DerivedKeyingMaterial into two parts, MacKey
and KeyData:

MacKey || KeyData = DerivedKeyingMaterial

Party V computes
MacTagV = MAC (MacKey, MacLen, MacDataV),

where the mutually-agreed upon parameter MacLen determines the length (in bits) of the
MAC output.

Party V then sends MacTagV to Party U.

EphemPubKeyU

Party V’s Static Public Key

Party U
(Initiator
and KC
Recipient)

Party V
(Responder
and KC
Provider)

MacTagV

20

Party U computes its own versions of MacDataV, MacKey, KeyData and MacTagV in the
same manner as Party V, and then compares its computed MacTagV to the MacTagV
received from Party V. If the received value is equal to the value computed by Party U,
then Party U is assured that Party V has derived the same value for MacKey and that
Party V shares Party U’s value of MacDataV. The assurance of a shared value for
MacKey provides assurance to Party U that Party V also shared the secret values, Z and
Zbytestring, from which MacKey and KeyData are derived. Thus, Party U also has assurance
that Party V could compute KeyData correctly.

7. Assurance of Possession of Static Private Keys

When static key pairs are locally generated, then as part of the certificate request/issuance
process, the CA must obtain assurance that the party for whom the certificate is requested
(the eventual “owner” of the key pair) is in possession of the private key corresponding to
the public key that will be included in the certificate. Methods that can be used by the CA
to obtain this assurance of possession are specified in the “Suite B Profile of Certificate
Management over CMS.”

This requirement applies to the static key-establishment key used in the One-Pass Diffie-
Hellman scheme.

8. IETF Protocols

The IETF protocols IKE/IPsec, S/MIME, SSH and TLS (among others) were all
developed prior to NIST SP 800-56A and their key-establishment components do not
fully comply with the key-establishment requirements contained in SP 800-56A. For
example, IETF protocols often permit the use of domain parameters, hash functions,
MAC algorithms, etc., that would not be approved by SP 800-56A and are not
recommended for use in Suite B products.

In addition, there are discrepancies in the methods used to derive keying material from
the shared secret value created during what could otherwise be a NIST-compliant ECDH
exchange. NIST has, however, made exceptions for such discrepancies between SP 800-
56A and a number of these widely-used protocols. See section 7.1 of the
“Implementation guidance for FIPS 140-2 and the Cryptographic Module Validation
Program (CMVP)” for a description of the extent to which departures from the
requirements of SP 800-56A are allowed in products submitted to the CMVP for FIPS
140-2 validation.

The public key infrastructure certificates used in each protocol follow the “Suite B
Certificate and Certificate Revocation List Profile.” This profile is a refinement of RFC
5280, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile,” and assumes that the reader is familiar with RFC 5280.

21

Certificate management follows the “Suite B Profile of Certificate Management over
CMS16.”

The following sections discuss implementing specific IETF protocols in the context of
Suite B.

8.1 IKE/IPsec

Suite B compliant implementations of IPsec must use one of the four cryptographic suites
defined in RFC 486917, “Suite B Cryptographic Suites for IPsec,” by L. Law & J. Solinas,
dated May 2007. The IPsec key-agreement protocols, IKEv1 (see RFC 2409) and IKEv2
(see RFC 4306), use the Ephemeral Unified Model key-agreement scheme.
In Suite B compliant IKEv2, the key exchange must be authenticated (by both parties)
using ECDSA signatures. Therefore, each party must possess an X.509v3 certificate
containing an ECDSA public key (signed by a CA with ECDSA).
Similarly, in Suite B compliant IKEv1, the key exchange must be authenticated (by both
parties). Authentication can be accomplished using ECDSA signatures, in which case,
each party must possess an X.509v3 certificate containing a cryptographic-suite-
dependent ECDSA public key (signed by a CA with ECDSA). For interoperability
purposes, Suite B compliant IKEv1 implementations must also support authentication via
the use of a pre-shared key.

IKEv1 and IKEv2 do not use the NIST Concatenation KDF. Section 5 of RFC 2409 and
section 2.13 of RFC 4306 describe the PRF used to derive session keys for encryption
and integrity protection. The PRF used for key derivation by Suite B IPsec
implementations employs HMAC based on either SHA-256 or SHA-384, and has the
structure of the NIST Concatenation KDF in feedback mode (with an iteration variable
described in section 5.2 of SP 800-108).

The NIST key-confirmation routine is only intended for protocols that use static key
pairs. Suite B implementations of IKE will not use static key pairs, hence NIST key
confirmation cannot be included in Suite B implementations of IKE. However, the
authentication processes used in IKE include implicit confirmation that the keying
material has been correctly computed.

8.2 S/MIME

Suite B compliant implementations of S/MIME must follow RFC 5008 “Suite B in
Secure/Multipurpose Internet Mail Extensions (S/MIME)”, by R. Housley & J. Solinas,
dated September 2007.
Suite B compliant S/MIME utilizes the One-Pass ECDH key-agreement scheme (using
either the P-256 or P-384 elliptic curve) to facilitate e-mail encryption. The initiator’s

16 Cryptographic Message Syntax
17 RFC 4869 is in the process of being updated. The update will appear as an Internet-Draft on the IETF
website (www.ietf.org) and once approved will become a new RFC .

22

contribution is an ephemeral key, while the recipient’s contribution is static. Therefore, in
order to receive encrypted e-mail, the recipient must possess an X.509v3 certificate
containing the static public ECDH key-establishment key (signed by a CA using
ECDSA) and that certificate must be provided to the initiator. The initiator generates an
ephemeral ECDH key on the same curve as the recipient’s static public ECDH key.
The initiator must have an ECDSA signing key in order to send a signed message to the
recipient. The recipient must be provided an X.509v3 certificate containing the public
ECDSA key that will be used to verify the initiator’s signature. (That certificate must be
signed by a CA that also used ECDSA.)
Suite B compliant implementations of S/MIME are not permitted to use certificates
asserting both key agreement/encipherment and digital signature in the key usage
extension.
S/MIME does not use the NIST Concatenation KDF. The KDF used in S/MIME for
elliptic curve cryptography is taken from “SEC1: Elliptic Curve Cryptography”, section
3.6.1 and is the ANSI X9.63 KDF. This KDF is similar to the NIST Concatenation KDF
except that the order of the counter and the shared secret are reversed and some of the
requirements on the other input values are relaxed. For Suite B, the only hash algorithms
that may be used are SHA-256 and SHA-384 (see RFC 5008).

8.3 SSH

Suite B compliant implementations of SSH must follow the Internet-Draft “Suite B
Cryptographic Suites for Secure Shell” (draft-igoe-secsh-suiteb-00.txt), by K. Igoe, dated
September 2008. Note that the September 2008 draft is a work-in-progress. Subsequent
drafts and eventually the final RFC will supersede earlier drafts.
In Suite B compliant SSH, the key-agreement protocol employs the Ephemeral Unified
Model ECDH key-agreement scheme (using either the P-256 or P-384 elliptic curve), in
which the server authenticates its contribution via an ECDSA signature. The server must
supply to the client an X.509v3 certificate containing the public ECDSA key that will be
used to verify its signature. (That certificate must be signed by a CA that also used
ECDSA.)
While the client does not directly authenticate its contribution to the key-agreement
process, the client does authenticate itself to the server by sending an ECDSA-signed
message via a secure tunnel that is protected by keying material established during the
key-agreement protocol. The SSH authentication protocol refers to this as the “public
key” method of client authentication. The “public key blob” of the client’s ECDSA-
signed SSH_MSG_USERAUTH_REQUEST message must include an X.509v3
certificate (signed by a CA with ECDSA) that contains the public ECDSA signature key
that will be used to verify the client’s signature.
Note that neither the server nor the client in a Suite B compliant SSH implementation
requires a static key-establishment key pair.

23

SSH does not use the NIST Concatenation KDF. Section 7.2 of RFC 4253 describes the
KDF used to compute IVs, encryption keys and integrity keys. The SSH KDF differs
from the NIST Concatenation KDF in that SSH uses feedback instead of a counter and
the SSH KDF lacks some of the parameters used by the NIST Concatenation KDF. For
Suite B, the hash function used for the SSH KDF will be either SHA-256 or SHA-384.

Section 4 of “Elliptic-Curve Algorithm Integration in the Secure Shell Transport Layer”
(draft-green-secsh-ecc-08.txt, work-in-progress) requires that all elliptic-curve public
keys must be validated after they are received. See appendix B.3 of the Suite B
Implementer’s Guide to SP 800-56A for the public-key validation routine.

The NIST key-confirmation routine is only intended for parties that make use of a static
key-establishment key pair. Suite B implementations of SSH will not use static key pairs,
hence NIST key confirmation cannot be included in Suite B implementations of SSH.
Implicit key confirmation is provided by the client by sending
SSH_MSG_USERAUTH_REQEST protected using established keys.

8.4 TLS

Suite B implementations of TLS follow: RFC 5246 “The Transport Layer Security
(TLS) Protocol Version 1.2” and RFC 5430 “Suite B Profile for Transport Layer
Security (TLS)”.

During the TLS handshake protocol, Suite B compliant implementations supporting a
common level of security (as defined in RFC 5430) will utilize the form of key-
agreement that TLS calls ECDHE_ECDSA (using either the P-256 or P-384 elliptic
curve, as appropriate to the security level). This is the Ephemeral Unified Model key-
agreement scheme, in which the server authenticates its contribution via an ECDSA
signature. The server must supply to the client an X.509v3 certificate containing an
acceptable (to the client) ECDSA key that will be used to verify its signature. That
certificate must be signed by a CA using ECDSA.

If the client is also to be authenticated during the TLS handshake, it must possess an
X.509v3 certificate containing an acceptable (to the server) ECDSA key, signed by a CA
using an acceptable version of ECDSA. To indicate its desire for client authentication,
the server sends a certificate request message of the type “ECDSA_sign,” asking the
client for an appropriate ECDSA certificate.

RFC 5430 defines which types of ECDSA keys and certificate signatures are acceptable
for Suite B compliance with the defined security levels. Note that neither the server nor
the client in a TLS handshake requires a static key-establishment key pair to establish a
Suite B compliant connection.

TLS does not use the NIST Concatenation KDF. Section 5 of RFC 5246 defines one PRF
used for key derivation based upon HMAC which is acceptable for Suite B use, provided

24

that the hash function used by HMAC is SHA-256 or SHA-384. The hash function used
will depend on the target security level.

The NIST key-confirmation routine is only intended for parties that make use of a static
key-establishment key pair. Suite B implementations of TLS (supporting a common level
of security) will use only ephemeral key-establishment keys; hence, there is no
requirement for the NIST key-confirmation routine. Note that a form of explicit key
confirmation is provided by the exchange of “FINISHED” messages at the conclusion of
the handshake protocol.

25

References

ANS X9.63, “Public Key Cryptography for the Financial Services Industry: Key-
Agreement and Key Transport Using Elliptic Curve Cryptography”, dated December
2001.

FIPS 180-3, Secure Hash Standard, Issued October 2008.

FIPS 186-3, Digital Signature Standard, Issued June 2009.

FIPS 198-1, The Keyed-Hash Message Authentication Code, Issued July 2008.

“Implementation Guidance for FIPS 140-2 and the Cryptographic Module Validation
Program”, published by NIST, initial release March 2003/update April 2009.

Internet-Draft “Elliptic-Curve Algorithm Integration in the Secure Shell Transport
Layer”, by D. Stebila and J. Green, dated June 2009 (draft-green-secsh-ecc-08.txt), work-
in-progress.

Internet-Draft “Suite B Cryptographic Suites for Secure Shell”, by K. Igoe, dated
September 2008 (draft-igoe-secsh-suiteb-00.txt), work-in-progress.

Internet-Draft “Suite B Certificate and Certificate Revocation List (CRL) Profile”, by J.
Solinas and L. Zieglar, dated July 2009 (draft-solinas-suiteb-cert-profile-04.txt), work-in-
progress.

Internet-Draft “Suite B Profile of Certificate Management over CMS”, by S. Turner and
M. Peck, dated April 2009 (draft-turner-suiteb-cmc-00.txt), work-in-progress.

“Mathematical Routines for NIST Prime Elliptic Curves,” dated March 2008, available
on the Information Assurance Suite B Cryptography webpage at www.nsa.gov.

RFC 4253 “The Secure Shell (SSH) Transport Layer Protocol”, by T. Ylonen and C.
Lonvick, dated January 2006.

RFC 4306 “Internet Key Exchange (IKEv2) Protocol, by C. Kaufman, dated December
2005.

RFC 4869 “Suite B Cryptographic Suites for IPsec”, by L. Law & J. Solinas, dated May
2007. (Note: This RFC is being updated. Check the IETF website: www.ietf.org)

RFC 5008 “Suite B in Secure/Multipurpose Internet Mail Extensions (S/MIME)”, by R.
Housley & J. Solinas, dated September 2007.

RFC 5246 “The Transport Layer Security (TLS) Protocol Version 1.2”, by T. Dierles and
E. Rescorla, dated August 2008.

26

RFC 5430 “Suite B Profile for Transport Layer Security (TLS)”, by R. Housley, E.
Rescorla and M. Salter, dated March 2009.

Standards for Efficient Cryptography, “SEC1: Elliptic Curve Cryptography”, dated
September 2000.

SP 800-56A “NIST SP 800-56A: Recommendation for Pair-Wise Key-establishment
Schemes Using Discrete Logarithm Cryptography”, by E. Barker, D. Johnson and M.
Smid, dated March 2007.

SP 800-57 “NIST SP 800-57: Recommendation for Key Management – Part 1: General”,
by E. Barker, W. Barker, W. Burr, W. Polk and M. Smid, dated March 2007.

SP 800-108 “NIST SP 800-108: Recommendation for Key Derivation Using
Pseudorandom Functions, by Lily Chen, dated November 2008.

27

Appendix

A. Suite B Curves and Domain Parameters

Domain parameters for ECC schemes are of the form: (q, FR, a, b{, SEED}, G, n, h),
where q is the field size; FR is an indication of the basis used; a and b are two field
elements that define the equation of the curve; SEED is an optional bit string that is
included if the elliptic curve was randomly generated in a verifiable fashion; G is a
generating point consisting of (xG,y G) of prime order on the curve; n is the order of the
point G ; and h is the cofactor (which is equal to the order of the curve divided by n).

Suite B requires the use of one of the following two sets of domain parameters:

A.1. Domain Parameters for Curve P-256

The values for the domain parameters for P-256 follow:

Field size:
q = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF

FFFFFFFF FFFFFFFF

Field Representation indicator
FR = NULL

Curve parameter:
a = FFFFFFFF 00000001 00000000 00000000 00000000 FFFFFFFF

FFFFFFFF FFFFFFFC

Curve parameter:
b = 5AC635D8 AA3A93E7 B3EBBD55 769886BC 651D06B0 CC53B0F6

3BCE3C3E 27D2604B

Seed used to generate parameter b:
SEED = C49D3608 86E70493 6A6678E1 139D26B7 819F7E90

x-coordinate of base point G:
xG = 6B17D1F2 E12C4247 F8BCE6E5 63A440F2 77037D81 2DEB33A0

F4A13945 D898C296

y-coordinate of base point G:
yG = 4FE342E2 FE1A7F9B 8EE7EB4A 7C0F9E16 2BCE3357 6B315ECE

CBB64068 37BF51F5

Order of the point G:
n = FFFFFFFF 00000000 FFFFFFFF FFFFFFFF BCE6FAAD A7179E84

F3B9CAC2 FC632551

28

Cofactor (order of the elliptic curve divided by the order of the point G)
h = 1

A.2 Domain Parameters for Curve P-384

The values for the domain parameters for P-384 follow:

Field size:
q = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFF

Field Representation indicator
FR = NULL

Curve parameter:
a = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

FFFFFFFF FFFFFFFE FFFFFFFF 00000000 00000000 FFFFFFFC

Curve parameter:
b = B3312FA7 E23EE7E4 988E056B E3F82D19 181D9C6E FE814112

0314088F 5013875A C656398D 8A2ED19D 2A85C8ED D3EC2AEF

Seed used to generate parameter b:
SEED = A335926A A319A27A 1D00896A 6773A482 7ACDAC73

x-coordinate of base point G:
xG = AA87CA22 BE8B0537 8EB1C71E F320AD74 6E1D3B62 8BA79B98

59F741E0 82542A38 5502F25D BF55296C 3A545E38 72760AB7

y-coordinate of base point G:
yG = 3617DE4A 96262C6F 5D9E98BF 9292DC29 F8F41DBD 289A147C

E9DA3113 B5F0B8C0 0A60B1CE 1D7E819D 7A431D7C 90EA0E5F

Order of the point G:
n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

C7634D81 F4372DDF 581A0DB2 48B0A77A ECEC196A CCC52973

Cofactor (order of the elliptic curve divided by the order of the point G)
h = 1

B. Key Pair Generation and Assurance of Public Key Validity

Each static and ephemeral private key d and public key Q shall be generated using the
appropriate domain parameters and either “Key Pair Generation Using Extra Random
Bits” or “Key Pair Generation by Testing Candidates.” Both generation methods are

29

contained in FIPS 186-3, Appendix B.4 on ECC Key Pair Generation and detailed in
appendices B.1 and B.2 of this document for convenience.

Both methods require use of an approved random bit generator, referred to as an RBG in
the description of each method.

The process from NIST SP 800-56A to provide assurance of public key validity is given
in section B.3. Note that both ECDH schemes use this process. Assurance of public key
validity is inherent in both key generation methods; hence, additional steps to provide
assurance of public-key validation immediately after generation are not required.

B.1 Key Pair Generation Using Extra Random Bits

In this method, 64 more bits are requested from the RBG than needed for d so that bias
produced by the mod function in step 6 is negligible.

The steps are as follows:

Input: Domain Parameters (q, FR, a, b{, SEED}, G, n, h)

Output:
1. status: The status returned from the key pair generation procedure. The status will

 indicate SUCCESS or an ERROR.
2. (d, Q): The generated private and public keys. If an error is encountered during

the generation process, invalid values for d and Q should be returned, as
represented by Invalid_d and Invalid_Q. d is an integer and Q is an
elliptic curve point. The generated private key d is in the range
[1, n-1].

Process:

1. N = len(n). Check that N is valid, that is, N = 256 or N = 384 (the only valid
lengths for Suite B)

2. If N is invalid, then return an ERROR indication, Invalid_d and Invalid_Q.

3. requested_security_strength = the security strength associated with N(either
128 when using P-256 or 192 when using P-384).

4. Obtain a string of N+64 returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return the ERROR indication, Invalid_d and Invalid_Q.

5. Convert returned_bits to the (non-negative) integer c (see appendix C.1).

6. d = (c mod (n-1)) + 1

7. Q = dG.

8. Return SUCCESS, d, and Q.

30

B.2 Key Pair Generation by Testing Candidates

In this method, a random number is obtained and tested to determine that it will produce
a value of d in the correct range. If d is out-of-range, the process is iterated until an
acceptable value of d is obtained.

The steps are as follows:

Input: Domain Parameters (q, FR, a, b{, SEED}, G, n, h)

Output:
1. status: The status returned from the key pair generation procedure. The status will

 indicate SUCCESS or an ERROR.
2. (d, Q): The generated private and public keys. If an error is encountered during

the generation process, invalid values for d and Q should be returned, as
represented by Invalid_d and Invalid_Q. d is an integer and Q is an
elliptic curve point. The generated private key d is in the range
[1, n-1].

Process:

1. N = len(n). Check that N is valid, that is, N = 256 or N = 384 (the only valid
lengths for Suite B)

2. If N is invalid, then return an ERROR indication, Invalid_d and Invalid_Q.

3. requested_security_strength = the security strength associated with N (either
128 when using P-256 or 192 when using P-384).

4. Obtain a string of N returned_bits from an RBG with a security strength of
requested_security_strength or more. If an ERROR indication is returned, then
return the ERROR indication, Invalid_d and Invalid_Q.

5. Convert returned_bits to the (non-negative) integer c (see appendix C.1).

6. If (c > n-2), then go to step 4.

7. d = c + 1

8. Q = dG.

9. Return SUCCESS, d, and Q.

B.3 Assurance of Public Key Validity

Prior to executing a routine that performs elliptic curve computations on either ephemeral
or static public keys, the ECC Partial Public-Key Validation Routine should be executed
on the public keys.

SP 800-56A specifies two routines to perform public-key validation: ECC Full Public
Key Validation and ECC Partial Public Key Validation. The difference between the two

31

routines is a check to ensure that the point has the correct order. This check is
unnecessary for prime-order curves, such as the curves used in Suite B. As long as the
implementation under testing only claims to support the Suite B subset of NIST curves,
the partial validation routine will be sufficient to satisfy FIPS 140 CAVP testing of both
full and partial public-key validation capabilities.

ECC Partial Public-Key Validation Routine

Input: The appropriate domain parameters and Q = (xQ,yQ), a candidate ECC public key.

Process
1. Verify that Q is not the point at infinity O. This can be done by inspection if the

point is entered in the standard affine representation. If the point can be
represented in standard affine representation, then the point is not the point at
infinity.

2. Verify that xQ and yQ are integers in the interval [0,q-1]. This ensures that each
coordinate of the public key has the unique correct representation of an element in
the underlying field.

3. Verify that (yQ)2 ≡ (xQ)3 + axQ + b (mod q), where a, b, q are the values indicated
in the domain parameters used (see appendix A). This ensures that the public key
is on the correct elliptic curve.

Note that in SP 800-56A, the interval in step 2 is specified as [0,p-1] and the modulus in
step 3 is specified as p. For the Suite B curves, q = p.

Output: If any of the above checks fail, then output an error indicator. Otherwise, output
an indication of validation success.

C. Data Conversions

C.1 Conversion of a Bit String to an Integer

An m-long sequence of bits {x1, …, xm} is converted to an integer by the rule

{x1, …, xm} → (x1 ∗ 2 m-1) + (x2 ∗ 2 m-2) + … + (xm-1 ∗ 2) + xm.

Note that the first bit of a sequence corresponds to the most significant bit of the
corresponding integer and the last bit corresponds to the least significant bit.

Input: The bit string b1, b2, …, bm to be converted.

Output: The requested integer representation C of the bit string.

Process:
1. Let (b1, b2, …, bm) be the bits of b from leftmost to rightmost.

32

2. C = ∑ 2(m-i) bi for i = 1 to m.

3. Return C

C.2 Conversion of an Integer to a Bit String

An integer x in the range 0 ≤ x < 2m may be converted to an m-long sequence of bits by
using its binary expansion as shown below:

 (x1 ∗ 2 m-1) + (x2 ∗ 2 m-2) + … + (xm-1 ∗ 2) + xm → {x1, …, xm}.

Note that the first bit of a sequence corresponds to the most significant bit of the
corresponding integer and the last bit corresponds to the least significant bit.

Input: A non-negative integer C to be converted and the intended length m of the bit
string satisfying C < 2m.

Output: The representation b1, b2, …, bm of the integer C.

Process:

1. Input C and m.

2. For a given integer m that satisfies C < 2m, the bits bi shall satisfy:

C = ∑ 2(m-i) bi for i = 1 to m.

3. Return (b1, b2, …, bm).

C.3 Field-Element-to-Byte String/Integer-to-Byte String Conversion

This section combines the Field-Element-to-Byte String and Integer-to-Byte String
conversions from SP 800-56A because for the Suite B curves, the field elements are
integers in the interval [0,p-1].

Input: A non-negative integer C and the intended length m of the byte string satisfying

28m > C

Output: A byte string S of length m bytes.

Process:

1. Let S1, S2,…, Sm be the bytes of S from leftmost to rightmost.

2. The bytes of S shall satisfy:

C = ∑ 28(m-i)Si for i = 1 to m,

 where Si is interpreted as the big-endian binary representation
 of an unsigned integer.

33

