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1 Introduction

This document specifies the Elliptic Curve Digital Signature Algorithm (ECDSA)
from the “Digital Signature Standard” [FIPS186-3] that will be used in future
and existing cryptographic protocols for Suite B products. It also includes the
Suite B elliptic curve domain parameters, (NIST curves P-256 and P-384),
along with example data for the ECDSA signature algorithm on these curves
and auxiliary functions that are necessary for ECDSA implementations to
be in compliance with [FIPS186-3] and Suite B.

[FIPS186-3] defines methods for digital signature generation that can be
used for the authentication of binary data (commonly called a message),
and for the verification and validation of those digital signatures. One of
the approved techniques is the Elliptic Curve Digital Signature Algorithm
(ECDSA) but additional requirements are specified.

This document includes requirements for obtaining the assurances necessary
for valid digital signatures. Methods for obtaining these assurances are pro-
vided in the NIST Special Publication [SP800-89].
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2 Glossary of Terms, Acronymns and Math-

ematical Symbols

These definitions, acronyms and symbols are from [FIPS186-3]. Definitions,
acronyms and symbols from [FIPS186-3] that are not used in this guide have
been omitted. In some cases, modifications have been made that are specific
to Suite B.

2.1 Terms and definitions

Approved FIPS-approved and/or NIST-recommended.
An algorithm or technique that is either

1. specified in a FIPS or NIST Recom-
mendation, or

2. adopted in a FIPS or NIST Recommen-
dation, or

3. specified in a list of NIST approved se-
curity functions.

Assurance of public key validity Confidence that the public key is arithmeti-
cally correct.

Bit string An ordered sequence of 0’s and 1’s. The left-
most bit is the most significant bit of the
string. The rightmost bit is the least sig-
nificant bit of the string.

Certificate A set of data that uniquely identifies a key
pair and an owner that is authorized to use
the key pair. The certificate contains the
owner’s public key and possibly other infor-
mation, and is digitally signed by a Certifica-
tion Authority (i.e., a trusted party), thereby
binding the public key to the owner.
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Certification Authority (CA) The entity in a Public Key Infrastructure
(PKI) that is responsible for issuing certifi-
cates and exacting compliance with a PKI
policy.

Digital signature The result of a cryptographic transformation
of data that, when properly implemented,
provides a mechanism for verifying origin
authentication, data integrity and signatory
non-repudiation.

Domain parameters Parameters used with cryptographic algo-
rithms that are usually common to a domain
of users. An ECDSA cryptographic key pair
is associated with a specifc set of domain pa-
rameters.

Entity An individual (person), organization, de-
vice or process. Used interchangeably with
“party”.

Hash function A function that maps a bit string of arbitrary
length to a fixed length bit string. Approved
hash functions satisfy the following proper-
ties:

1. (one-way) it is computationally infeasi-
ble to find any input that maps to any
new pre-specified output, and

2. (collision resistant) it is computation-
ally infeasible to find any two distinct
inputs that map to the same output.

Approved hash functions for Suite B are
SHA-256 and SHA-384, which are specified
in [FIPS180-3].

Hash value See “message digest”.
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Key A parameter used in conjunction with a cryp-
tographic algorithm that determines its oper-
ation. Examples applicable to this document
include:

1. the computation of a digital signature
from data, and

2. the verification of a digital signature.

Key pair A public key and its corresponding private
key.

Message The data that is signed. Also known as
“signed data” during the signature verifica-
tion and validation process.

Message digest The result of applying a hash function to a
message. Also known as “hash value”.

Non-repudiation A service that is used to provide assurance
of the integrity and origin of data in such a
way that the integrity and origin can be veri-
fied and validated by a third party as having
originated from a specific entity in possession
of the private key (i.e., the signatory).

Owner A key pair owner is the entity that is autho-
rized to use the private key of a key pair.

Party An individual (person), organization, device
or process. Used interchangeably with “en-
tity”.

Per-message secret number A secret random number that is generated
prior to the generation of each digital signa-
ture.
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Private key A cryptographic key that is used with an
asymmetric (public key) cryptographic algo-
rithm. For digital signatures, the private key
is uniquely associated with the owner and is
not made public. The private key is used
to compute a digital signature that may be
verified using the corresponding public key.

Public key A cryptographic key that is used with an
asymmetric (public key) cryptographic algo-
rithm and is associated with a private key.
The public key is associated with an owner
and may be made public. In the case of digi-
tal signatures, the public key is used to verify
a digital signature that was signed using the
corresponding private key.

Random number generator A device or algorithm that can produce a se-
quence of random numbers that appears to
be statistically independent and unbiased.

Security strength A number associated with the amount of
work (that is, the number of operations) that
is required to break a cryptographic algo-
rithm or system. Sometimes referred to as
a security level.

Shall Used to indicate a requirement of
[FIPS186-3].

Should Used to indicate a strong recommendation,
but not a requirement of [FIPS186-3].

Signatory The entity that generates a digital signature
on data using a private key.

Signature generation The process of using a digital signature algo-
rithm and a private key to generate a digital
signature on data.

Signature verification The process of using a digital signature al-
gorithm and a public key to verify a digital
signature on data.

5



Signed data The data or message upon which a digital sig-
nature has been computed. Also, see “mes-
sage”.

Trusted third party An entity other than the owner and verifier
that is trusted by the owner or the verifier
or both. Sometimes shortened to “trusted
party”.

Verifier The entity that verifies the authenticity of a
digital signature using the public key.

2.2 Acronyms

CA Certification Authority.
EC Elliptic curve.
ECC Elliptic curve cryptography.
ECDSA Elliptic Curve Digital Signature Algorithm;

specified in [ANS-X9.62-2005].
FIPS Federal Information Processing Standard.
NIST National Institute of Standards and Technol-

ogy.
RBG Random Bit Generator; specified in

[SP800-90].
SHA Secure Hash Algorithm; specified in

[FIPS180-3].
SP NIST Special Publication.

2.3 Mathematical Symbols

[i, j] The interval of integers between and includ-
ing i and j. For example, [1, 4] consists of
the integers 1, 2, 3 and 4.

q The size of the underlying field of the ellip-
tic curve. It is a prime number for Suite B
elliptic curves.
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FR The field representation indicator, which is
NULL for Suite B elliptic curves.

a An elliptic curve domain parameter, which is
equal to the integer q − 3 for Suite B elliptic
curves.

b An elliptic curve domain parameter, which
for Suite B curves is an integer in [0, q − 1],
generated using the elliptic curve domain pa-
rameter SEED.

SEED A bit string used to generate elliptic curve
domain parameter b via the method defined
in [ANS-X9.62-2005].

G = (xG, yG) The base point on the elliptic curve. The
coordinates xG and yG are integers in the in-
terval [0, q − 1].

O The point at infinity of the elliptic curve.
n The order of the base point G of the elliptic

curve; nG = O. The bit length of n is con-
sidered to be the key size, and the security
strength associated with the use of a base
point of order n is one-half the bit length of
n.

h The order of the elliptic curve group divided
by the order n of the base point G. For a
Suite B elliptic curve, h = 1; that is, the base
point G generates the entire elliptic curve
group.

d The ECDSA private key, which is an integer
in the interval [1, n− 1].

Q = (xQ, yQ) An ECDSA public key. The coordinates xQ

and yQ are integers in the interval [0, q − 1],
and Q = dG.

k The ECDSA per-message secret number,
which is an integer in the interval [1, n− 1].
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R = (xR, yR) The public value from the ECDSA ephemeral
key pair. (R = kG). The coordinates xR and
yR are integers in the interval [0, q − 1].

r One component of an ECDSA digital signa-
ture. It is an integer in [1, n − 1]. See the
definition of (r, s).

s One component of an ECDSA digital signa-
ture. It is an integer in [1, n − 1]. See the
definition of (r, s).

(r, s) An ECDSA digital signature, where r and s
are the digital signature components.

M The message that is signed using the digital
signature algorithm.

Hash(M) The result of a hash computation (message
digest or hash value) on message M using an
approved hash function.

x mod m The unique integer remainder r, satisfying
0 ≤ r ≤ (m−1), when integer x is divided by
the positive integer m. For example, 23 mod
7 = 2.

Compute y = x mod m Compute the value of x mod m and assign
that value to y. For example, compute y =
23 mod 7 will assign the value 2 to y.

x−1 mod m The multiplicative inverse of the integer x
modulo the positive integer m. Defined only
when x is relatively prime to m and m > 1,
x−1 mod m is the unique integer y satisfying
0 < y < m and (x ∗ y) mod m = 1. For
example, 4−1 mod 19 = 5. (See Appendix
B.1.)
In this document, when the context is clear
(and the value of m is apparent), the simpler
notation x−1 may be used instead of x−1 mod
m. This should not cause confusion, since
we will never use x−1 to indicate the rational
number 1/x.
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len(x) The length (in bits) of the (shortest) binary
representation of the integer x.

bxc The floor of x; the largest integer that is less
than or equal to x For example, b5c = 5,
b5.3c = 5, and b−2.1c = −3.

3 The Elliptic Curve Digital Signature Algo-

rithm (ECDSA)

The standard [ANS-X9.62-2005] defines methods for digital signature gener-
ation and verification using the Elliptic Curve Digital Signature Algorithm
(ECDSA). These methods are reproduced here, specialized to the Suite B
curves P-256 and P-384.

3.1 ECDSA Domain Parameters

ECDSA requires that the private/public key pairs used for digital signature
generation and verification be generated with respect to a particular set of
elliptic curve domain parameters. These domain parameters may be common
to a group of users and may be public. Domain parameters may remain fixed
for an extended time period.

ECDSA Domain parameters are given by

• q, the size of the underlying field,

• FR, a field representation indicator, which is NULL for Suite B curves,

• a, elliptic curve parameter, which is equal to q − 3 for Suite B curves,

• b, elliptic curve parameter,

• SEED, used to generate parameter b,

• G = (xG, yG), a point on the curve, known as the base point,
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• n, the order of the base point G, and

• h, the order of the elliptic curve group divided by the order n of G;
h=1 for Suite B curves.

Suite B allows for two possible sets of elliptic curve domain parameters: the
curves P-256 and P-384. These parameters are given in Appendix C.

3.1.1 Domain Parameter Management

Each ECDSA key pair shall be correctly associated with one specific set of
domain parameters (e.g., by a public key certificate that identifies the domain
parameters associated with the public key). The domain parameters shall
be protected from unauthorized modification until the set is deactivated (if
and when the set is no longer needed). The same domain parameters may
be used for more than one purpose (e.g., the same domain parameters may
be used for both digital signatures and key establishment).

3.2 Private/Public Keys

An ECDSA key pair, (d,Q), consists of a private key d and a public key Q
that is associated with a specific set of EC domain parameters; d, Q and the
domain parameters are mathematically related to each other via the relation
Q = dG, where dG indicates the sum (using elliptic curve arithmetic) of d
copies of the domain parameter G (see 3.1), also known as the elliptic curve
scalar multiply of G by d. The private key d is normally used for a limited
period of time (i.e., the cryptoperiod); the public key Q may continue to be
used as long as digital signatures that have been generated using the associ-
ated private key need to be verified (i.e., the public key may continue to be
used beyond the cryptoperiod of the associated private key). See [SP800-57]
for further guidance.

ECDSA keys shall only be used for the generation and verification of ECDSA
digital signatures. ECDSA keys shall not be used for any other purpose,
e.g., key establishment.
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3.2.1 Key Pair Generation

A digital signature key pair (d,Q) is generated using a specific set of domain
parameters. Methods for the generation of (d,Q) are provided in Appendix
A.1.

3.2.2 Key Pair Validation

Prior to or during the signature verification process, the verifier shall obtain
the public key Q in a trusted manner. After obtaining the public key the
verifier shall obtain assurance of the validity of the signer’s public key Q as
specified in Appendix A.3 using the appropriate set of domain parameters.

3.2.3 Key Pair Management

Guidance on the protection of key pairs is provided in [SP800-57]. The secure
use of digital signatures depends on the management of an entity’s digital
signature key pair as follows:

1. The validity of the domain parameters shall be assured prior to the
generation of the key pair, or the verification and validation of a dig-
ital signature. For Suite B this means that the entity shall have an
authentic copy of appropriate domain parameters.

2. Each key pair shall be associated with the domain parameters under
which the key pair was generated.

3. A key pair shall only be used to generate and verify signatures using
the domain parameters associated with that key pair.

4. The private key shall be used only for signature generation as specified
in this document and shall be kept secret; the public key shall be used
only for signature verification and may be made public.

5. An intended signatory shall have assurance of possession of the private
key prior to or concurrently with using it to generate a digital signature
(see [SP800-89] section 6).
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6. A private key shall be protected from unauthorized access, disclosure
and modification.

7. A public key shall be protected from unauthorized modification (in-
cluding substitution). For example, public key certificates that are
signed by a CA may provide such protection.

8. A verifier shall be assured of a binding between the public key, its asso-
ciated domain parameters and the key pair owner. For example, public
key certificates that are signed by a CA may provide such protection.

9. A verifier shall obtain public keys in a trusted manner (e.g., from
a certificate signed by a CA that the entity trusts, or directly from
the intended or claimed signatory, provided that the entity is trusted
by the verifier and can be authenticated as the source of the signed
information that is to be verified).

10. Verifiers shall be assured that the claimed signatory is the key pair
owner and that, at the time that the signature was generated, the owner
possessed the private key that was used to generate the signature (i.e.,
the private key that is associated with the public key that will be used
to verify the digital signature) (see [SP800-89] Section 6).

11. A signatory and a verifier shall have assurance of the validity of the
public key (see Appendix A.3).

3.3 Per-Message Secret-Number Generation

A new nonzero secret random number k shall be generated prior to the
generation of each digital signature for use during the signature generation
process. This secret number shall be protected from unauthorized disclo-
sure and modification. Methods for the generation of the per-message secret
number are provided in Appendix A.2.

The number k−1 mod n, referred to as k−1, is also required for the signature
generation process. A technique is provided in Appendix B.1 for deriving
k−1 from k.
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The values k and k−1 may be pre-computed, since knowledge of the message
to be signed is not required for the computations. When k and k−1 are
pre-computed, their confidentiality and integrity shall be protected.

3.4 ECDSA Digital Signature Generation and Verifi-
cation

An ECDSA digital signature (r, s) shall be generated as specified in 3.4.1
below, using:

1. An authentic copy of the domain parameters for the curve P-256 or
P-384 (see Appendix C),

2. a private key d that is generated (along with a public key Q) as specified
in Appendix A.1,

3. a per-message secret number k that is generated as specified in Ap-
pendix A.2,

4. an approved hash function as discussed below, and

5. an approved random number generator as specified in [SP800-90].

An ECDSA digital signature shall be verified as specified in 3.4.2 below,
using the same domain parameters and hash function that were used during
signature generation.

Suite B requires that SHA-256 be the hash used when the parameter set is
P-256, and that SHA-384 be the hash used when the parameter set is P-384.
This is in conformance with the requirements of [FIPS186-3].

3.4.1 ECDSA Signature Generation

Prior to generating an ECDSA signature, the signatory shall obtain

1. an authentic copy of the domain parameters,

13



2. a digital signature key pair (d,Q), either generated by a method from
Appendix A.1, or obtained from a trusted third party,

3. assurance of the validity of the public key Q (see Appendix A.3), and

4. assurance that he/she/it actually possesses the associated private key
d (see [SP800-89] Section 6).

The signatory shall use the process specified below to sign a message:

Input:

1. a message M , which is the bit string to be signed,

2. the elliptic curve domain parameters,

3. the identity of the hash function selected by the signatory, as deter-
mined by the elliptic curve domain parameters, and

4. the elliptic curve private key d employed by the signatory, as generated
in Appendix A.1.

Output: The pair of integers (r, s), each in the interval [1, n− 1].

Process:

1. Use one of the routines in Appendix A.2 to generate (k, k−1), a per-
message secret number and its inverse modulo n. Since n is prime, the
output will be invalid only if there is a failure in the RBG.

2. Compute the elliptic curve point R = kG = (xR, yR) using EC scalar
multiplication (see [Routines]), where G is the base point included in
the set of domain parameters.

3. Compute r = xR mod n. If r = 0, then return to Step 1. 1.

4. Use the selected hash function to compute H = Hash(M).

5. Convert the bit string H to an integer e as described in Appendix B.2.

1The probability that r = 0 is approximately 1/n.
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6. Compute s = (k−1 ∗ (e + d ∗ r)) mod n. If s = 0, return to Step 1.2.

7. Return (r, s).

3.4.2 ECDSA Signature Verification

Prior to accepting a verified digital signature as valid the verifier shall have

1. assurance of the signatory’s claimed identity,

2. an authentic copy of the domain parameters, (q, FR, a, b, SEED,G, n, h),

3. assurance of the validity of the public key (d,Q), and

4. assurance that the claimed signatory actually possessed the private
key that was used to generate the digital signature at the time that the
signature was generated.

Methods for the verifier to obtain these assurances are provided in [SP800-89].

The following process shall be used to verify a purported signature if the
verifier is not the purported signatory, and may be used if the verifier is the
purported signatory:

Input:

1. M ′: the received message, which is a bit string,

2. (r′, s′): the received signature on M ′, which is a pair of integers

3. the EC domain parameters used by the signatory,

4. the identity of the hash function selected by the signatory, as deter-
mined by the EC domain parameters, and

5. Q: the EC public key chosen by the signatory.

2The probability that s = 0 is approximately 1/n
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Output: An indication as to whether the purported signature is valid or
not – either VALID or INVALID.

Process:

1. If r′ and s′ are not both integers in the interval [1, n − 1], output
INVALID.

2. Use the selected hash function to compute H ′ = Hash(M ′).

3. Convert the bit string H ′ to an integer e′ as described in Appendix B.2.

4. Compute w = (s′)−1 mod n, using the routine in Appendix B.1.

5. Compute u1 = (e′ ∗ w) mod n, and compute u2 = (r′ ∗ w) mod n.

6. Compute the elliptic curve point R = (xR, yR) = u1G + u2Q, using EC
scalar multiplication and EC addition (see [Routines]). If R is equal to
the point at infinity O, output INVALID.

7. Compute v = xR mod n.

8. Compare v and r′. If v = r′, output VALID; otherwise, output IN-
VALID.

This concludes the presentation of the ECDSA signature algorithms for the
Suite B curves. Additional material is presented in the following appendices:

Appendix A: Key Pair Generation and Validation
Appendix B: Generation of Other Quantities
Appendix C: The NIST Curves P-256 and P-384
Appendix D: Example Data

A Key Pair Generation and Validation

This appendix specifies methods for the generation of ECC key pairs and
secret numbers. All generation methods require the use of an approved,
properly instantiated random bit generator (RBG) as specified in [SP800-90];
the RBG shall have a security strength equal to or greater than the security
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strength associated with the key pairs and secret numbers to be generated.
Security strengths for Suite B are 128 bits for P-256 and 192 bits for P-384.

An approved process to provide assurance of public key validity is also given.
Assurance of public key validity is inherent in both key generation methods,
hence additional steps to provide assurance of public-key validation immedi-
ately after generation are not required.

This appendix does not indicate the required conversions between bit strings
and integers. When required by a process in this appendix, the conversion
shall be accomplished as specified in Appendix B.2.

See [Routines] for definitions of elliptic curve arithmetic and appropriate
algorithms.

In addition to their desired output, each of the generation routines in this
appendix returns a value status, which will be set to either SUCCESS or
ERROR, where, in practice, SUCCESS will be some appropriate indication
of successful completion of the routine, and ERROR will be some appro-
priate indication of an error condition. For example, if an error indication
is returned by the call to the RBG, then status is set to ERROR, where
ERROR is an appropriate indication of the RBG failure.

The routines presented in this appendix are are based on [FIPS186-3] Ap-
pendix B, sections B.4 and B.5.

A.1 ECC Key Pair Generation

Given a set of domain parameters (q, FR, a, b, SEED,G, n, h), one can gen-
erate an ECC key pair (d,Q). Two methods are provided for the generation
of the ECC key pairs (d,Q) (from Section 3.4.2); one of these two methods
shall be used to generate (d,Q). Prior to generating ECC key pairs, an
authentic copy of the domain parameters (q, FR, a, b, SEED,G, n, h) shall
be obtained.
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A.1.1 ECC Key Pair Generation Using Extra Random Bits

In this method, 64 more bits are requested from the RBG than are needed
for d so that bias produced by the modular reduction in step 6 is negligible.

Input: (q, FR, a, b, SEED,G, n, h): domain parameters.

Output:

1. status: the status returned, either SUCCESS or ERROR, from the key
pair generation procedure, and

2. (d,Q): the generated private and public keys. If an error is encoun-
tered during the generation process, pair of invalid values for d and
Q, represented by (Invalid d, Invalid Q), should be returned. The
generated private key d is an integer in the range [1, n − 1], and Q is
an elliptic curve point.

Process:

1. Set N = len(n). Check that N is valid, that is, N = 256 or N = 384
(these are the only valid lengths for Suite B).

2. If N is invalid, then return ERROR; the pair (Invalid d, Invalid Q)
should also be returned.

3. Set requested security strength to be the security strength associated
with N , which is 128 when using P-256 or 192 when using P-384.

4. Obtain a string of N + 64 returned bits from an RBG with a se-
curity strength of requested security strength or more. If an error
indication is returned by the RBG, then return ERROR; the pair
(Invalid d, Invalid Q) should also be returned.

5. Convert returned bits to the (non-negative) integer c (see Appendix
B.2).

6. Set d = (c mod (n− 1)) + 1.

7. Compute Q = dG using EC scalar multiplication (see [Routines]).

8. Return SUCCESS and (d,Q).
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A.1.2 ECC Key Pair Generation by Testing Candidates

In this method, a random number is obtained and tested to determine that
it will produce a value of d in the correct range. If d is out-of-range, the
process is iterated until an acceptable value of d is obtained.

Input: (q, FR, a, b, SEED,G, n, h): domain parameters.

Output:

1. status: the status returned, either SUCCESS or ERROR, from the key
pair generation procedure, and

2. (d,Q): the generated private and public keys. If an error is encoun-
tered during the generation process, a pair of invalid values for d and
Q, represented by (Invalid d, Invalid Q), should be returned. The
generated private key d is an integer in the range [1, n − 1], and Q is
an elliptic curve point.

Process:

1. Set N = len(n). Check that N is valid, that is, N = 256 or N = 384
(these are the only valid lengths for Suite B).

2. If N is invalid, then return ERROR; the pair (Invalid d, Invalid Q)
should also be returned.

3. Set requested security strength to be the security strength associated
with N , which is 128 when using P-256 and 192 when using P-384.

4. Obtain a string of N returned bits from an RBG with a security
strength of requested security strength or more. If an error indication
is returned by the RBG, then return ERROR; the pair (Invalid d, Invalid Q)
should also be returned.

5. Convert returned bits to the (non-negative) integer c (see Appendix
B.2).

6. If (c > n− 2), then go to step 4.
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7. d = c + 1.

8. Compute Q = dG using EC scalar multiplication (see [Routines]).

9. Return SUCCESS and (d,Q).

A.2 ECC Per-Message Secret-Number Generation

ECDSA requires the generation of a new non-zero secret random number k
for each message to be signed. Two methods are provided for the generation
of k; one of these two methods shall be used.

Let inverse(k,m) denote a function that computes the inverse of a positive
integer k with respect to multiplication modulo the number m.

A.2.1 ECC Per-Message Secret Number Generation Using Extra
Random Bits

In this method, 64 more bits are requested from the RBG than are needed
for k so that bias produced by the modular reduction in step 6 is not readily
apparent.

Input: (q, FR, a, b, SEED,G, n, h): domain parameters.

Output:

1. status: the status returned, either SUCCESS or ERROR, from the
secret number generation procedure, and

2. (k, k−1): the generated secret number k and its inverse k−1, which are
integers in the range [1, n − 1]. If an error is encountered during the
generation process, a pair of invalid values for k and k−1, represented
by (Invalid k, Invalid k inverse), should be returned.

Process:

1. Set N = len(n). Check that N is valid, that is, N = 256 or N = 384
(these are the only valid lengths for Suite B).
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2. If N is invalid, then return ERROR; the pair (Invalid k, Invalid k inverse)
should also be returned.

3. Set requested security strength to be the security strength associated
with N , which is 128 when using P-256 and 192 when using P-384.

4. Obtain a string of N + 64 returned bits from an RBG with a se-
curity strength of requested security strength or more. If an error
indication is returned by the RBG, then return ERROR; the pair
(Invalid k, Invalid k inverse) should also be returned.

5. Convert returned bits to the (non-negative) integer c (see Appendix
B.2).

6. k = (c mod (n− 1)) + 1.

7. (status, k−1) = inverse(k, n).

8. Return status and (k, k−1).

A.2.2 ECC Per-Message Secret Number Generation by Testing
Candidates

In this method, a random number is obtained and tested to determine that
it will produce a value of k in the correct range. If k is out-of-range, another
random number is obtained (i.e., the process is iterated until an acceptable
value of k is obtained).

Input: (q, FR, a, b, SEED,G, n, h): domain parameters.

Output:

1. status: the status returned, either SUCCESS or ERROR, from the
secret number generation procedure, and

2. (k, k−1): the generated secret number k and its inverse k−1, which are
integers in the range [1, n − 1]. If an error is encountered during the
generation process, a pair of invalid values for k and k−1, represented
by (Invalid k, Invalid k inverse), should be returned.
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Process:

1. Set N = len(n). Check that N is valid, that is, N = 256 or N = 384
(these are the only valid lengths for Suite B).

2. If N is invalid, then return ERROR; the pair (Invalid k, Invalid k inverse)
should also be returned.

3. Set requested security strength to be the security strength associated
with N , which is 128 when using P-256 and 192 when using P-384.

4. Obtain a string of N returned bits from an RBG with a security
strength of requested security strength or more. If an error indication
is returned by the RBG, then return ERROR; the pair (Invalid k, Invalid k inverse)
should also be returned.

5. Convert returned bits to the (non-negative) integer c (see Appendix
B.2).

6. If (c > n− 2) then go to step 4.

7. k = c + 1.

8. (status, k−1) = inverse(k, n).

9. Return status and (k, k−1).

A.3 Assurance of Public Key Validity

The following routine, ECC Partial Public-Key Validation, from [SP800-56A]
shall be executed prior to executing a routine that performs elliptic curve
computations on a public key.

Note: ECC Full Public-Key Validation includes an additional check to ensure
that the point has the correct order. This check is not necessary for curves
having prime order (and cofactor h = 1), such as P-256 and P-384. As
long as the implementation under testing claims to support only the Suite B
subset of the NIST curves, the partial validation routine will be sufficient to
satisfy FIPS 140 CAVP testing of both full and partial public key validation
capabilities.
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Input:

1. (q, FR, a, b, SEED,G, n, h): domain parameters, and

2. Q = (xQ, yQ), a candidate ECC public key.

Process:

1. Verify that Q is not the point at infinity O. This can be done by
inspection if the point is entered in the standard affine representation.
If the point can be represented in the standard affine representation,
then the point is not the point at infinity.

2. Verify that xQ and yQ are integers in the interval [0, q − 1]. This en-
sures that each coordinate of the public key has the unique correct
representation of an element in the underlying field.

3. Verify that

((yQ)2) mod q = ((xQ)3 + a ∗ xQ + b) mod q

where a, b, q are the values indicated in the domain parameters used.
This ensures that the public key is on the correct elliptic curve.

Note that in [SP800-56A] the interval in step 2 is specified as [0, p − 1] and
the modulus in step 3 is specified as p. For Suite B curves, q = p.

Output: If any of the above checks fail, then output an error indicator.
Otherwise, output an indication of validation success.

B Generation of Other Quantities

This appendix contains routines for supplementary processes required for
the implementation of this document. Appendix B.1 provides a method
to produce the inverse of the per-message secret k (see Section 3.4.1 and
Appendices A.2.1 and A.2.2) and the inverse of the signature portion s′ that is
used during signature verification (see Section 3.4.2). The routine Appendix
B.2 is required to convert between bit strings and integers in Appendices
A.1, A.2 and Section 3.4.
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B.1 Computation of the Inverse Value

This algorithm or an algorithm that produces an equivalent result shall be
used to compute the multiplicative inverse z′ = z−1 mod m, where 1 ≤ z ≤
(m − 1), 1 ≤ z′ ≤ (m − 1), and both z and z′ are relatively prime to m. In
this document, z is either k in the case of signature generation or s′ in the
case of signature verification, and m is the EC domain parameter n.

In addition to the inverse value this algorithm returns a value status, which
will be set to either SUCCESS or ERROR, where, in practice, SUCCESS
will be some appropriate indication of successful completion of the routine,
and ERROR will be some appropriate indication of an error condition. If an
error is encountered during the routine, an invalid value for z′, represented
by Invalid z prime, should be returned.

Input:

1. z: the value to be inverted modulo m (i.e., either k or s′), and

2. m: the modulus.

Output:

1. status: the status returned, either SUCCESS or ERROR, and

2. z′: the multiplicative inverse of z modulo m, if it exists.

Process:

1. Verify that m and z are positive integers such that z < m; if not, return
ERROR; the value Invalid z prime should also be returned.

2. Set i = m, j = z, y2 = 0 and y1 = 1.

3. quotient = bi/jc.

4. remainder = i− (j ∗ quotient).

5. y = y2 − (y1 ∗ quotient).
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6. Set i = j, j = remainder, y2 = y1, and y1 = y.

7. If j > 0, then go to step 3.

8. If i 6= 1, then return ERROR; the value Invalid z prime should also
be returned.

9. Compute z′ = y2 mod m.

10. Return SUCCESS and z′.

B.2 Conversion of a Bit String to an Integer

An M -long sequence of bits x1, . . . , xM is converted to an integer by the rule

x1, . . . , xM → (x1 ∗ 2M−1) + (x2 ∗ 2M−2) + · · ·+ (xM−1 ∗ 2) + xM

Note that the first bit of a sequence corresponds to the most significant bit of
the corresponding integer, and the last bit corresponds to the least significant
bit.

Input:

1. x1, x2, ..., xM , which is the bit string to be converted.

Output:

1. C, the requested integer representation of the bit string.

Process:

1. Let x1, x2, ..., xM be the bits in the bit string to be converted, from
leftmost to rightmost.

2. C =
∑M

i=1 2M−i ∗ xi.

3. Return C.
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C The NIST Curves P-256 and P-384

Domain parameters for ECC schemes are of the form

(q, FR, a, b, SEED,G, n, h),

where q is the field size; FR is an indication of the basis used; a and b are two
field elements that define the equation of the curve; SEED is an optional
bit string that is present if the elliptic curve was randomly generated in a
verifiable fashion; G is a generating point of prime order on the curve (i.e.,
G = (xG, yG)); n is the order of the point G, and h is the cofactor (which is
equal to the order of the curve divided by n).

The equation of the curve is generally given as

y2 = x3 + ax + b mod q.

For the Suite B curves, a = q − 3, and with this value of a, the equation is
equivalent to the one given in [FIPS186-3], namely

y2 = x3 − 3x + b mod q.

Suite B requires the use of one of the following two sets of domain parameters.
All values are given in hexadecimal notation.

C.1 Domain Parameters for Curve P-256

Field size:

q = ffffffff 00000001 00000000 00000000 00000000 ffffffff

ffffffff ffffffff

Field Representation indicator:

FR = NULL

Curve parameter:
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a = ffffffff 00000001 00000000 00000000 00000000 ffffffff

ffffffff fffffffc

Curve parameter:

b = 5ac635d8 aa3a93e7 b3ebbd55 769886bc 651d06b0 cc53b0f6

3bce3c3e 27d2604b

Seed used to generate parameter b:

SEED = c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

x-coordinate of base point G:

xG = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0

f4a13945 d898c296

y-coordinate of base point G:

yG = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece

cbb64068 37bf51f5

Order of the point G:

n = ffffffff 00000000 ffffffff ffffffff bce6faad a7179e84

f3b9cac2 fc632551

Cofactor (order of the elliptic curve group divided by the order of the point
G):

h = 1

C.2 Domain Parameters for Curve P-384

Field size:
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q = ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 ffffffff

Field Representation indicator:

FR = NULL

Curve parameter:

a = ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

ffffffff fffffffe ffffffff 00000000 00000000 fffffffc

Curve parameter:

b = b3312fa7 e23ee7e4 988e056b e3f82d19 181d9c6e fe814112

0314088f 5013875a c656398d 8a2ed19d 2a85c8ed d3ec2aef

Seed used to generate parameter b:

SEED = a335926a a319a27a 1d00896a 6773a482 7acdac73

x-coordinate of base point G:

xG = aa87ca22 be8b0537 8eb1c71e f320ad74 6e1d3b62 8ba79b98

59f741e0 82542a38 5502f25d bf55296c 3a545e38 72760ab7

y-coordinate of base point G:

yG = 3617de4a 96262c6f 5d9e98bf 9292dc29 f8f41dbd 289a147c

e9da3113 b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c 90ea0e5f

Order of the point G:

n = ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff

c7634d81 f4372ddf 581a0db2 48b0a77a ecec196a ccc52973

Cofactor (order of the elliptic curve group divided by the order of the point
G):

h = 1
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D Example Data

This section gives example data for the ECDSA signature generation and
verification for the Suite B curves P-256 and P-384. All values are given in
hexadecimal notation, with the exception of the output values of the conver-
sion of hash output bit strings (denoted H, H ′) into integers (denoted e, e′),
which are given in base ten notation.

D.1 Example ECDSA Signature for P-256

D.1.1 Key Generation

The private key d:

d = 70a12c2d b16845ed 56ff68cf c21a472b 3f04d7d6 851bf634

9f2d7d5b 3452b38a

The public key Q = dG = (xQ, yQ):

xQ = 8101ece4 7464a6ea d70cf69a 6e2bd3d8 8691a326 2d22cba4

f7635eaf f26680a8

yQ = d8a12ba6 1d599235 f67d9cb4 d58f1783 d3ca43e7 8f0a5aba

a6240799 36c0c3a9

D.1.2 Signature Generation

1. Generate (k, k−1), a per-message secret and its inverse modulo n:

k = 580ec00d 85643433 4cef3f71 ecaed496 5b12ae37 fa47055b

1965c7b1 34ee45d0

k−1 = 6a664fa1 15356d33 f16331b5 4c4e7ce9 67965386 c7dcbf29

04604d0c 132b4a74

2. Set R = (xR, yR) = kG (elliptic curve arithmetic):
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xR = 7214bc96 47160bbd 39ff2f80 533f5dc6 ddd70ddf 86bb8156

61e805d5 d4e6f27c

yR = 8b81e3e9 77597110 c7cf2633 435b2294 b7264298 7defd3d4

007e1cfc 5df84541

3. Compute r = xR mod n:

r = 7214bc96 47160bbd 39ff2f80 533f5dc6 ddd70ddf 86bb8156

61e805d5 d4e6f27c

4. Message M=“This is only a test message. It is 48 bytes long”. H =
Hash(M):

M = 54686973 20697320 6f6e6c79 20612074 65737420 6d657373

6167652e 20497420 69732034 38206279 74657320 6c6f6e67

H = 7c3e883d dc8bd688 f96eac5e 9324222c 8f30f9d6 bb59e9c5

f020bd39 ba2b8377

5. Conversion of bit string H to integer e (shown in base ten):

e = 5619727804762743239458334196284328793726

6210957576322469816113796290471232375

6. Compute s = (k−1 ∗ (e + d ∗ r)) mod n:

s = 7d1ff961 980f961b daa3233b 6209f401 3317d3e3 f9e14935

92dbeaa1 af2bc367

The signature on the message M is the pair (r, s).

D.1.3 Signature Verification

The receiver receives a message M ′, along with a signature (r′, s′).

1. Validation checking on r′, s′:
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r′ = 7214bc96 47160bbd 39ff2f80 533f5dc6 ddd70ddf 86bb8156

61e805d5 d4e6f27c

s′ = 7d1ff961 980f961b daa3233b 6209f401 3317d3e3 f9e14935

92dbeaa1 af2bc367

r′, s′ are in the range [1, n− 1].

2. H ′ = Hash(M ′)

H ′ = 7c3e883d dc8bd688 f96eac5e 9324222c 8f30f9d6 bb59e9c5

f020bd39 ba2b8377

3. Integer e′ derived from H ′ (shown in base ten):

e′ = 5619727804762743239458334196284328793726

6210957576322469816113796290471232375

4. Compute w = (s′)−1 mod n:

w = d69be75f 67ee5394 cabb6c28 6f3610cf 62d722cb a9eea70f

aee770a6 b2ed72dc

5. Compute u1 = (e′ ∗ w) mod n, and compute u2 = (r′ ∗ w) mod n:

u1 = bb252401 d6fb322b b747184c f2ac52bf 8d54b95a 1515062a

2f6141f2 e2092ed8

u2 = aae7d1c7 f2c232df c641948a f3dba141 d4de8634 e571cf84

c486301b 510cfc04

6. R = (xR, yR) = u1G + u2Q (elliptic curve arithmetic):

xR = 7214bc96 47160bbd 39ff2f80 533f5dc6 ddd70ddf 86bb8156

61e805d5 d4e6f27c

yR = 8b81e3e9 77597110 c7cf2633 435b2294 b7264298 7defd3d4

007e1cfc 5df84541

7. Compute v = xR mod n:

v = 7214bc96 47160bbd 39ff2f80 533f5dc6 ddd70ddf 86bb8156

61e805d5 d4e6f27c

8. Compare v and r′: Successfully Verified.
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D.2 Example ECDSA Signature for P-384

D.2.1 Key Generation

The private key d:

d = c838b852 53ef8dc7 394fa580 8a518398 1c7deef5 a69ba8f4

f2117ffe a39cfcd9 0e95f6cb c854abac ab701d50 c1f3cf24

The public key Q = dG = (xQ, yQ):

xQ = 1fbac8ee bd0cbf35 640b39ef e0808dd7 74debff2 0a2a329e

91713baf 7d7f3c3e 81546d88 3730bee7 e48678f8 57b02ca0

yQ = eb213103 bd68ce34 3365a8a4 c3d4555f a385f533 0203bdd7

6ffad1f3 affb9575 1c132007 e1b24035 3cb0a4cf 1693bdf9

D.2.2 Signature Generation

1. Generate (k, k−1), a per-message secret and its inverse modulo n:

k = dc6b4403 6989a196 e39d1cda c000812f 4bdd8b2d b41bb33a

f5137258 5ebd1db6 3f0ce827 5aa1fd45 e2d2a735 f8749359

k−1 = 7436f030 88e65c37 ba8e7b33 887fbc87 757514d6 11f7d1fb

df6d2104 a297ad31 8cdbf740 4e4ba37e 599666df 37b8d8be

2. Set R = (xR, yR) = kG (elliptic curve arithmetic):

xR = a0c27ec8 93092dea 1e1bd2cc fed3cf94 5c8134ed 0c9f8131

1a0f4a05 942db8db ed8dd59f 267471d5 462aa14f e72de856

yR = 85564940 9815bb91 424eaca5 fd76c973 75d575d1 422ec53d

343bd33b 847fdf0c 11569685 b528ab25 49301542 8d7cf72b

3. Compute r = xR mod n:

r = a0c27ec8 93092dea 1e1bd2cc fed3cf94 5c8134ed 0c9f8131

1a0f4a05 942db8db ed8dd59f 267471d5 462aa14f e72de856
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4. Message M=“This is only a test message. It is 48 bytes long”. H =
Hash(M):

M = 54686973 20697320 6f6e6c79 20612074 65737420 6d657373

6167652e 20497420 69732034 38206279 74657320 6c6f6e67

H = b9210c9d 7e20897a b8659726 6a9d5077 e8db1b06 f7220ed6

ee75bd8b 45db3789 1f8ba555 03040041 59f4453d c5b3f5a1

5. Conversion of bit string H to integer e (shown in base ten):

e = 2849397615545047540430248224306646376918

0620629462008675793884393889401828800663

731864240088367206094074919580333473

6. Compute s = (k−1 ∗ (e + d ∗ r)) mod n:

s = 20ab3f45 b74f10b6 e11f96a2 c8eb694d 206b9dda 86d3c7e3

31c26b22 c987b753 77265776 67adadf1 68ebbe80 3794a402

The signature on the message M is the pair (r, s).

D.2.3 Signature Verification

The receiver receives a message M ′, along with a signature (r′, s′).

1. Validation checking on r′, s′:

r′ = a0c27ec8 93092dea 1e1bd2cc fed3cf94 5c8134ed 0c9f8131

1a0f4a05 942db8db ed8dd59f 267471d5 462aa14f e72de856

s′ = 20ab3f45 b74f10b6 e11f96a2 c8eb694d 206b9dda 86d3c7e3

31c26b22 c987b753 77265776 67adadf1 68ebbe80 3794a402

r′, s′ are in the range [1, n− 1].

2. H ′ = Hash(M ′)
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H ′ = b9210c9d 7e20897a b8659726 6a9d5077 e8db1b06 f7220ed6

ee75bd8b 45db3789 1f8ba555 03040041 59f4453d c5b3f5a1

3. Integer e′ derived from H ′ (shown in base ten):

e′ = 2849397615545047540430248224306646376918

0620629462008675793884393889401828800663

731864240088367206094074919580333473

4. Compute w = (s′)−1 mod n:

w = 1798845c d0a6cea5 327c501a 71a4baf2 f7be882c fbc30375

0a7c861a f8fe8225 467a257f 5bf91a4a aa5a79a8 637d218a

5. Compute u1 = (e′ ∗ w) mod n, and compute u2 = (r′ ∗ w) mod n:

u1 = 6ce25649 d42d223e 020c1114 0fe77232 6612bb11 b686d35e

e98ed455 0e0635d9 dd3a2afb ca0cf2c4 baedcd23 313b189e

u2 = f3b24075 1d5d8ed3 94a4b5bf 8e2a4c0e 1e21aa51 f2620a08

b8c55a2b c334c968 99231626 48f06e5f 4659fc52 6d9c1fd6

6. R = (xR, yR) = u1G + u2Q (elliptic curve arithmetic):

xR = a0c27ec8 93092dea 1e1bd2cc fed3cf94 5c8134ed 0c9f8131

1a0f4a05 942db8db ed8dd59f 267471d5 462aa14f e72de856

yR = 85564940 9815bb91 424eaca5 fd76c973 75d575d1 422ec53d

343bd33b 847fdf0c 11569685 b528ab25 49301542 8d7cf72b

7. Compute v = xR mod n:

v = a0c27ec8 93092dea 1e1bd2cc fed3cf94 5c8134ed 0c9f8131

1a0f4a05 942db8db ed8dd59f 267471d5 462aa14f e72de856

8. Compare v and r′: Successfully Verified.
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