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Abstract 
 
Conventional multiple imputation (MI) (Rubin, 1987) replaces the missing values in a dataset by m > 1 sets of simulated 
values. We describe a two-stage extension of MI in which the missing values are partitioned into two groups and imputed N = 
mn times in a nested fashion. Two-stage MI divides the missing information into two components of variability, lending 
insight when the missing values are of two qualitatively different types. It also opens new possibilities for making different 
assumptions about the mechanisms producing the two kinds of missing values. Point estimates and standard errors from the N  
complete-data analyses are consolidated by simple rules derived by analogy to nested analysis of variance.  After reviewing 
the theory and practice of two-stage MI, we illustrate the method with a simple analysis of binary variables from a 
longitudinal survey. 
 
Introduction 
 
Missing values in a dataset may be of two different types. In response to a sensitive question in an interview survey, for 
example, some participants may simply refuse to answer, whereas others may say, “I don’t remember.” Other examples 
include unit versus item nonresponse, planned missingness (e.g. as would arise from double sampling or matrix sampling) 
versus unplanned missing values, and mortality versus dropout for other reasons. In this article, we explore a two-stage 
version of Rubin’s (1987) multiple imputation in which we impute the first kind of missing value m times; then, for each 
imputation of the first type, we impute the second type n times, treating the imputed values for the first type as if they were 
fixed and known. 
 
Imputing in stages has several potential advantages. From a computational standpoint, it is sometimes possible to identify a 
small set of missing values which, if known, would simplify the process of imputing the rest. An application of this type is 
described by Rubin (2003), who first completed a monotone pattern by computationally intensive iterative procedure, then 
imputed the remaining missing values by a less demanding, non-iterative method. Second, two-stage MI allows us to identify 
the amount of uncertainty in population estimates contributed by each type of missing value, which may have important 
implications for interpreting current results and planning future studies. 
 
Finally, two-stage MI may allow us to posit different assumptions about the probabilistic mechanisms generating the two 
types of missing values. Suppose that some values are missing by design but others are missing for reasons beyond the data 
collectors’ control; the missing at random (MAR) condition (e.g., Little and Rubin, 1987) is known to hold for the former but 
not the latter.  With two-stage MI, it may be feasible to impute for unplanned missing values under some alternative non-
MAR methods, then impute for planned missing values under an MAR assumption. In that case, however, we would need to 
clarify what it means for some missing values to be MAR and others to be non-MAR.  Making this notion precise requires us 
to extend Rubin’s (1976) concepts of MAR and ignorability to mechanisms that partition the complete data into three parts 
(observed, missing for one reason, missing for the other reason). A full treatment of that topic has been given by Harel (2003) 
but is beyond the scope of this paper. 
 
In many cases, two-stage MI can be carried out by repeatedly applying algorithms and software designed for conventional 
MI, such as the missing-values library in S-PLUS  or SAS PROC MI. Once the N = mn imputed datasets exist, they are 
analyzed by complete data methods, and the results are combined by simple algebraic rules derived by Shen (2000). In the 
remaining sections, we describe in generic terms the methods for generating the imputations and combining the results; we 
also discuss how to estimate the amount of missing information due to each set of missing values.  We conclude with a 
simple example involving a binary variable from two adjacent waves of the National Crime Survey. 
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Imputing in Two Stages 
 
Let ),( misobscom YYY = denote the complete dataset, part of which is observed )( obsY and part of which is missing )( misY . In 
conventional MI, we would typically propose a parametric model for the complete data, say ),|( θcomYP and a Bayesian prior 

distribution )(θP for the unknown model parameters. The m multiple imputations, ,,,, )()2()1( m
mismismis YYY K  are independent draws 

from the posterior predictive distribution 

∫= θθθ dYPYYPYYP obsobsmisobsmis )|(),|()|( , 

which reflects uncertainty about θ  as well as misY . Computational algorithms for producing these draws under a variety of 
multivariate models are described by Schafer (1997).  Software for MI is available from a variety of commercial and non-
commercial sources; see Horton and Lipsitz (2001) for a review. 
 
Now suppose that the missing data are divided into two parts, ),( B

mis
A

mismis YYY = . To carry out two-stage MI, we first draw m 

independent values )()2()1( ,,, mA
mis

A
mis

A
mis YYY K the posterior predictive distribution )|( obs

A
mis YYP . Then, for each of these, we draw 

n conditionally independent values ),()2,()1,( ,,, njB
mis

jB
mis

jB
mis YYY K  from mjYYYP jA

misobs
B

mis ,,1),,|( )( K= . Care must be taken to 
reflect uncertainty in the parameterθ  at each stage.  The resulting  N = mn  completed datasets, 

nkmjYYYY kjB
mis

jA
misobs

kj
com KK ,1,,,1),,,( ),()(),( === , 

are not independent, because each block or nest ),()2,()1,( ,,, njB
mis

jB
mis

jB
mis YYY K contains identical values for A

misY .  Notice, 

however, that gathering the first completed dataset from each nest, )1,()1,2()1,1( ,,, m
comcomcom YYY K , does give us m independent 

imputations from )|( obsmis YYP . Therefore, we can perform two-stage MI by first creating m conventional imputations for 

misY , then discarding B
misY and recreating 1−n   additional imputations of it for each imputed version of A

misY . 
 
In this discussion, we have not made use of the response indicators, the set of binary random variables that indicate for each 
element of comY  whether the item is observed or missing.  In conventional MI, we would need to condition upon the response 
indicators if the missing data were not MAR (Rubin, 1987). With two-stage MI, we might also need to consider the process 
that bifurcates misY ; that is, we might need to condition upon the set of three-level indicators that partition comY  into obsY , 

A
misY and B

misY . Using an extended theory of ignorability presented by Harel (2003), one can show that these three-level 

indicators can ignored in two-stage MI if (a) misY  is MAR, and (b) the process that divides misY into A
misY and B

misY does not 
depend on any portion of misY . Condition (b) allows a data analyst classifies the missing values into groups on the basis of 

information gleaned from obsY  or from the realized pattern of nonresponse—for example, by taking A
misY to be a set of missing 

values that would complete a monotone pattern, as suggested by Rubin (2003).  Other conditions under which part or all of 
the missingness mechanism can be ignored in one or both stages of two-stage MI are described by Harel (2003). 
 
 
Consolidating Results from Post-Imputation Analyses 
 
After imputation, each of the mnN =  imputed datasets from two-stage MI should analyzed as if it had no missing values.  
Estimates and standard errors from these analyses may then be consolidated using Shen’s (2000) extension of Rubin’s (1987) 
method for conventional MI. Let Q denote a scalar population quantity to be estimated, and let ),(ˆ kjQ and ),( kjU denote the 
point and variance estimates for Q  calculated from the ),( kj th completed dataset.  The overall point estimate for Q  is 
simply the grand average 
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),(),( ˆ1 . The uncertainty associated with this overall estimate involves three components: the 

estimated complete-data variance 
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and inferences about Q are based on the Student’s t-approximation ( ) νt ~T⋅⋅−QQ with degrees of freedom 
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These rules arises from analysis-of-variance techniques, regarding the ),(ˆ kjQ ’s as measurements from a balanced experiment 

with A
misY as a random blocking factor. For the special case of 1=n , the term involving W drops out of the total variance, and 

the method becomes identical to that of Rubin (1987) for conventional MI with m  imputations. 
 
 
Rates of Missing Information and Relative Efficiency 
 
Shen (2000) did not consider rates of missing information, but these rates are easily estimated from the variance components.  
The estimated overall rate of missing information for Q  is 
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where ( )( ) ⋅⋅−+= UWnBr 11ˆ is the relative increase in variance due to nonresponse. The estimated rate of missing 

information due to B
misY if A

misY were known is 
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where ⋅⋅= UWr AB |ˆ .  The difference ABA |ˆˆˆ λλλ −=  estimates the amount by which the missing information would drop if 
A

misY became known, and λλ ˆˆA is the proportionate reduction in missing information if A
misY became known. It is possible for 

Aλ̂ to be negative, in which case the estimate should be set to zero. 
 
Rubin (1987) showed that the relative efficiency of a point estimate based on m conventional MI’s to a fully efficient one (i.e. 
based on an infinite number of imputations) is approximately ( ) 11 −+ mλ , where λ is the overall rate of missing information 

for Q .  For two-stage MI, one can show that the relative efficiency of ⋅⋅Q  lies between ( ) 11 −+ mλ  and ( )( ) 11 −+ mnλ , 

reaching the upper bound when A
misY carries no information about Q . The degrees of freedom for estimating the within- and 

between-nest variance components are approximately equal when 2=n .  In practice, we typically set 2=n and then choose 
m large enough to achieve a reasonable level of efficiency. As with conventional MI, only a few imputations are usually 
needed to achieve a highly efficient estimate. Unfortunately, the estimated rates of missing information can be rather noisy 
when m is small. Asymptotic results on the variability of these estimated rates are given by Harel (2003). 
 
A Simple Example 
 
The data in Table 1, previously analyzed by Kadane (1985) and Schafer (1997), were obtained from the National Crime 
Survey conducted by the U.S. Bureau of the Census.  Occupants of sampled housing units were asked whether they had been 
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victimized by crime in the preceding half-year; six months later, occupants of the same units were asked the question again. 
Of the 765 sampled units, 561 (74%) provided responses at both occasions, 42 (6%) responded only the first time, 38 (5%) 
responded only the second time, and 115 (15%)  did not respond at  either time. 
 

Table 1: Victimization status of housing unit occupants in two successive six-month periods 

Victimized second period? 
Victimized first period? No Yes Missing 

               No 392 55 33 
               Yes 76 38 9 
               Missing 31 7 115 

 
For simplicity of presentation, we will regard this as a simple random sample from the population of interest. Let tY denote 
victimization status (1=no, 2=yes) during period 2,1=t , and let ijπ denote the proportion of units in the population with 

jYiY == 21 , . Assuming a multinomial model with ignorable nonresponse, the loglikelihood function is 

++++++ ++++++++= πππππππππ  log 115 log 7 log 31 log 9 log 33 log 38 log 76 log 55 log 392 212122211211l , 
where ‘+’ denotes summation over a subscript.  Maximum-likelihood (ML) estimates computed by the EM algorithm of 
Chen and Fienberg (1974) are 6971.ˆ11 =π , 0986.ˆ12 =π , 1358.ˆ21 =π  and 0685.ˆ22 =π (Schafer, 1997, pp. 42-45).  
 
Multiple imputations for missing data in cross-classified contingency tables under the multinomial model can be generated 
using a data augmentation (DA) algorithm, a Markov chain Monte Carlo procedure described by Schafer (1997, Chap. 7). 
This algorithm, which has been implemented in the missing-data library of S-PLUS (Schimert et al., 2001), can also be used 
for imputation in two stages. To illustrate, we defined A

misY  to be the missing values of 1Y  and B
misY  to be the missing values 

of 2Y .  Using the default prior density 

( ) ( ) 5.
211211

5.
21

5.
12

5.
11211211 1,, −−−− −−−∝ πππππππππP , 

 
we generated ten imputations in two stages with 5=m  and 2=n  in the following manner.  First, we generated five ordinary 
MI's using 100 cycles of DA between imputations. Then, for each of the five datasets, we removed the imputed values for 2Y  
and re-imputed them once using another 100 cycles of DA. Frequencies for the ten imputed datasets are shown in Table 2.   
 

Table 2: Frequencies for victimization status in two periods after two-stage multiple imputation, with estimated odds ratios 
and differences 

 j = 1  j = 2 j = 3 j = 4  j = 5 
 k = 1 k = 2  k = 1 k = 2 k = 1 k = 2 k = 1 k = 2  k = 1 k = 2 
No, No 536 531  526 523  528 526  526 530  532 527 
No, Yes 70 75  75 78  71 73  75 71  72 77 
Yes, No 102 92  104 101  108 102  101 107  103 102 
Yes, Yes 48 58  51 54  49 55  54 48  49 50 
α̂  3.60 4.46  3.44 3.58  3.37 3.89  3.75 3.35  3.52 3.36 

α̂log  1.28 1.50  1.24 1.28  1.22 1.36  1.32 1.21  1.26 1.21 
( )α̂logSE  0.22 0.21  0.21 0.21  0.21 0.21  0.21 0.21  0.21 0.21 

δ̂  .042 .022  .038 .030  .049 .038  .048 .048  .041 .033 

( )δ̂SE  .017 .017  .018 .018  .018 .017  .018 .018  .017 .018 
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Notice that in each of the blocks 5,,1K=j , the imputed values for the marginal 1Y  frequencies are constant. Two parameters 

of interest are the odds ratio 22
1

21
1

1211 ππππα −−= and the change in victimization rate 122122 ππππδ −=−= ++ .  Estimates of 
α , αlog and δ from each imputed dataset are shown in Table 2, along with standard errors calculated as 
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where ijx is the sample frequency of jYiY == 21 , (e.g. Agresti, 1990).  Combining these quantities by Shen’s rules, the 

overall estimate of αlog  becomes 29.1=⋅⋅Q  with a standard error of 23.0=T , and the estimate of δ  becomes 38.0=⋅⋅Q  

with a standard error of 19.0=T . Although these estimates are based only on a small number of imputations, the large 
values for the degrees of freedom ( 345=ν  and 282=ν , respectively) indicate that the loss of precision relative to estimates 
based on more imputations is slight. For comparison, we computed asymptotic standard errors by evaluating the Hessian of 
the actual loglikelihood at the ML estimate; this loglikelihood method gives 27.1ˆlog =α with a standard error of 0.26, and 

037.ˆ =δ  with a standard error of .020. 
 
Although the estimates and standard errors from such a small number of imputations are reliable, the estimated rates of 
missing information are not. To estimate these rates very precisely, we repeated the procedure to create 500=m  blocks of 

2=n  imputations each. The estimated parameters, standard errors and rates of missing information from this larger 
simulation are displayed in Table 3. 
 

Table 3: Estimated parameters, standard errors and rates of missing information for crime victimization data from multiple 
imputation with m = 500 and n = 2. 

 est SE λ̂  AB|λ̂  Aλ̂  λλ ˆˆA  
αlog  1.27 0.25 .27 .21 .06 .24 

δ  .038 .020 .21 .13 .08 .39 
 
The rates of missing information are intuitively reasonable. First, consider the log odds ratio, which measures the strength of 
association between 1Y  and 2Y . Because 26% of the units had missing values for one or both of these variables, we would 

expect the overall rate of missing information to be approximately 0.26, and indeed it is ( 27.ˆ =λ ). Because  the odds ratio 
can be regarded as a property of the conditional distribution of 2Y  given 1Y , recovery of the missing values of 1Y  should 

provide little additional information about this parameter, so we would expect Aλ̂  to be much smaller than AB|λ̂ . The 
difference δ , however, is a function of the 1Y  and 2Y  marginal distributions, so we might expect the overall rate of missing 
information for this parameter to be something like the proportion of units for which 1Y  and 2Y  are both missing, plus one-

half the proportion of units for which one of the two measurements is missing. Indeed, the estimate ( 21.0ˆ =λ ) is very close 
to .15 + (.05+.06)/2. If 1Y  were filled in, 2Y  would still be missing for 21% of the units, and indeed 13.ˆ =λ  is close to one-
half of .21. 
 
Discussion 
 
The simple example presented here is not intended to represent a typical application of two-stage MI; we provide it merely to 
illustrate the method and to demonstrate the reasonableness of its results. The method was originally proposed by Shen 
(2000) for computational efficiency when imputation of A

misY  is costly but B
misY  given A

misY  is cheap. Situations of that type 
do exist (e.g. Rubin, 2003). However, we believe that the most valuable contribution of two-stage MI is that opens up many 
new possibilities for interesting and innovative data analysis. Some of these possibilities are listed below. 
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Questionnaires with planned missingness (Raghunathan and Grizzle, 1995) and longitudinal data-collection schedules with 
intentionally dropped occasions may reduce respondent burden and can be very cost-effective; with two-stage MI, one can 
isolate the effects of planned and unplanned missing values to inform decisions about the design of current and future studies. 
 
Analysis of longitudinal data with nonignorably missing values has received great attention in recent years (e.g. Little, 1995). 
In real applications, it is often reasonable to view the missing values as a mixture, with some missing for reasons closely 
related to the phenomena being measured and others missed for unrelated reasons. With two-stage MI, we can potentially 
separate the effects of the two types of missing values. As shown by Harel (2003), however, what it means for some values to 
be ignorably missing and others to be nonignorably missing needs to be made precise.  
 
Another important set of applications pertains to data with both measurement errors and missing values. Viewing observed 
items as imperfect measures of unobservable or latent true scores has been fundamental to the social sciences for decades, 
and is the central idea of item-response theory, factor analysis and latent-class modeling.  Despite these models' long history, 
the role of missing values in the manifest items remains largely unexplored. We believe that two-stage MI will prove useful 
for investigating not only the relative contributions of response error and nonresponse to overall uncertainty, but how the 
nonresponse and measurement processes interact. 
 
Finally, two-stage MI can also be used to measure the expected increase in information if a single missing datum or a group 
of missing values were suddenly observed.  If this type of analysis were implemented in a survey during the data-gathering 
process, data collectors could identify the nonrespondents who, if converted, would yield the greatest increase in information 
about various population quantities of interest, and then focus their efforts for nonresponse followup on these units. 
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