
Time Series Decomposition and Measurement of Business Cycles, Trends 
and Growth Cycles 

 
by 

 
Victor Zarnowitz * 

The Conference Board 
 

Ataman Ozyildirim 
The Conference Board 

 
A study of business cycles defined as sequences of expansions and contractions in the level of general 
economic activity does not require trend estimation and elimination, but a study of growth cycles 
defined as sequences of high and low growth phases does.  Major cyclical slowdowns and booms 
deserve to be analyzed along with classical recessions and expansions, but the needed time series 
decomposition presents difficult problems, mainly because trends and cycles influence each other.  We 
compare cyclical movements in levels, deviations from trend, and smoothed growth rates of the 
principal measures of aggregate economic activity – the quarterly real GDP and the monthly U.S. 
Coincident Index – using the phase average trend (PAT).  Then we compare alternative trend 
estimates, deterministic and stochastic, linear and nonlinear, and the corresponding estimates of 
“cyclical components,” that is, series of deviations from these trends.  We discuss how these measures 
differ in terms of the patterns, timing, amplitudes, and smoothness of the resulting estimates of U.S. 
growth cycles in the post-World War II period. The results of PAT show great similarity to the results 
obtained with the H-P and band-pass filtering methods, but in matters of detail PAT is often superior. 
 
 
JEL Classification: E32, N10, O47  
Keywords: time series decomposition; indicators; business cycles; trends

                                                           
 Corresponding author: Victor Zarnowitz, The Conference Board, 845 Third Avenue, New York, NY 10022 Email: 
victor.zarnowitz@conference-board.org Phone: 212-339-432 
* Zarnowitz: Senior Fellow and Economic Counselor, The Conference Board; Research Associate, National Bureau of Economic 
Research; and Professor Emeritus of Economics and Finance, University of Chicago. Ozyildirim: Economist, The Conference Board. 
First version of this paper was prepared for the meeting of The Conference Board Business Cycle Indicators Program Advisory Panel, 
March 3, 2000.  We have benefited from discussion by members of The Conference Board Business Cycle Indicators Program Advisory 
Panel, and are particularly grateful to James K. Stock for his Comment and permission to use it in the present version of the paper.  We 
thank James Morley and Julio Rotemberg for providing computer programs for trend estimation.  Of course, all remaining errors are ours. 

Page 159

mailto:victor.zarnowitz@conference-board.org


1. Background, Motivation and Plan of This Study 
Recent empirical research on business cycles devotes much attention to time series adjusted for long-

term growth trends.  This is in contrast to the early studies which defined business cycles as sequences of 
expansions and contractions in a large array of series representing the levels of total output, employment, and 
many other component and related processes.  It is the mild or severe absolute declines in general economic 
activity (recessions or depressions) that are of particular concern to economic agents and observers.  The 
expansions and contractions in the level series could be analyzed without trend adjustments.  This was the 
position taken by the “classical cycle” approach dominant particularly in the studies of the National Bureau of 
Economic Research (NBER). 

For a number of reasons to be discussed, it is difficult to estimate and eliminate growth trends from 
economic aggregates and their components, and faulty trend estimates can cause significant errors.  When no 
trend adjustments are required, the analysis can be comparatively simple and reliable.  This is an additional 
reason why studies of cyclical indicators, at the NBER, the U. S. Department's of Commerce Bureau of 
Economic Analysis (BEA), and most recently The Conference Board (TCB), concentrated on timing and other 
aspects of non-seasonal fluctuations in series that in many cases show pronounced long-term trends. 

Much can be, and indeed much has been, accomplished by following this approach.  Intensive and 
detailed studies of a large number of diverse indicators laid the foundation for much of the existing knowledge 
of "what happens during business cycles" (Mitchell 1951).  Thus, discovery of comovements and timing 
characteristics led to the dating of business cycles and the distinction between groups of leading, coincident, and 
lagging indicators.  

But the economy has at times suffered major slowdowns, that is declines not in levels but in growth 
rates that remain positive.  It is certainly possible to conceive of a severe and long slowdown causing more 
hardship than a mild and short recession.  Even though such slowdowns are rare, sequences of serious 
acceleration and deceleration of macroeconomic activity have long attracted considerable public and 
professional concern.  These “growth cycles” can be measured as fluctuations in the deviations of the principal 
indicators around their generally rising trends.  So trend estimation, which is not needed for business cycle 
analysis, cannot be avoided in growth cycle analysis.1 

Clearly, all recessions involve slowdowns, but not all slowdowns involve recessions; hence, growth 
cycles are more numerous than business cycles.  Of course, the two sets of phenomena or processes are related, 
but they are distinct as defined and measured.  Yet some of the recent papers proposing different detrending 
methods, which yield various growth cycle estimates, mistakenly seek verification in NBER chronologies or 
other measures relating to business cycles.  What is frequently implied is that growth cycles and business cycles 
are not distinguishable, and slowdowns are treated like recessions.2 

One can only welcome the revival of interest in methods of filtering and detrending economic and 
financial indicators that is associated with recent research in business cycles.  However, these methods too often 
abstract from the main difficulty of time series decomposition, which is that trends and cycles interact and 
influence each other, as suggested by the literature and data.  Also, there is much diversity and uncertainty about 
which indicators are to be used to define cyclical movements. The NBER chronology of business cycles, which 
is widely accepted, is based on the consensus of coincident indicators of production, employment, real income 
and real sales.  Both comovements and persistence are key characteristics of business cycles.  They are to a large 
extent present in major fluctuations of economic and financial time series after trend elimination as well. 

Despite the rather rich background of past and contemporary work, then, there is much in this area that 
needs to be clarified and improved.  Our intention and hope here is to remove or at least reduce the sources of 
confusion in studies of economic fluctuations.    This provides the basic motivation for the paper in which we 
focus on practical needs of research in the indicators of cyclical turning points and movements.  How do the 
different approaches to trend estimation compare from this point of view? 

The paper has two substantive parts. Part 2 shows how the study of business cycles, i.e., movements 
measured in time series that may include trends, is complemented by the study of growth cycles, which applies 
parallel criteria and methods to the same indicators series adjusted for longer-term trends.  We explain the so-

                                                           
1 As will be shown in section 2.4 below, using fluctuations in smoothed growth rates is not a good substitute. 

 
 

 
 

2 For a recent debate on how “business cycle facts” are reflected in selected detrended aggregates, see Canova (1998a, 
1998b, 1999) and Burnside (1998).  For views similar to ours see Harding and Pagan (1999). 
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called “phase average trend” (PAT) used for this purpose, then examine the possibility of using smoothed 
percentage changes to measure growth cycles. The data used, rules observed, and problems encountered in this 
work are discussed using the resulting chronologies for the United States in the post-World War II period. 

Part 3 asks how useful are other approaches to time series decomposition for the analysis of growth 
cycles.  We proceed from linear deterministic to linear stochastic trends, from unobserved component models to 
the Hodrick-Prescott, heuristic and band-pass filter methods of trend estimation.  A comparative analysis of 
these methods along with PAT suggests that the latter yields on the whole better results for the purposes of 
identification and study of growth cycles. The last section of the paper collects and states briefly our main 
inferences and conclusions. 

 
2. Cyclical Movements in Levels, Deviations from Trend, and Growth Rates 

2.1 Business Cycles and Time Series Components 
In the traditional NBER approach, the business cycle included the intra-cycle trend.  Secular forces were 

believed to influence the cycle and cyclical forces were believed to influence the trend in a way making an 
adequate, clean separation of cycle and trend impossible.  A step function linking the average levels of a 
variable in successive business cycles was effectively the trend representation complementing the cyclical 
measures.3 

In the so defined “classical” business cycles, expansions should tend to be longer and larger than 
contractions, but either phase must be persistent and pervasive enough to allow for the significant cumulative 
and interactive effects that are observed and analyzed in literature. The sequence of up and down phases that 
constitutes the business cycle is recurrent but not periodic. According to Burns and Mitchell (1946), business 
cycles vary in duration “from more than one year to ten or twelve years”. This would still accommodate all the 
cycles identified so far, domestic and foreign, but the more typical range for the U.S. is not so broad, since very 
few cycles are shorter than two or longer than eight years (however, the duration of business expansions may be 
increasing).4 

We accept the NBER definition and the view that seasonally adjusted level data rather than detrended 
data should be used for the analysis of business cycles under the time-honored definition of recessions and 
recoveries.  Yet, this is not the only interesting concept of generalized economic fluctuations. 

In the traditional NBER approach, each monthly or quarterly time series was treated as a product (or, 
less likely, a sum) of three components: the seasonal (S), the irregular (I), and the trend-cycle (TC).5  After 
elimination of S, a combination of smoothing formulas served to reduce the effects on TC of the multitude of 
short, randomly distributed irregular (I) movements and to identify the turning points.  However, no attempt was 
made to segregate and eliminate the effects on longer movements of major episodic disturbances due to wars, 
strikes, industrial combinations and conflicts, technological innovations, abundant or poor harvests, etc. (Bry 
and Boschan 1971, see esp. ch. 3).  The risk that excessive or inappropriate smoothing may distort the measured 
fluctuations or even create spurious ones was recognized early in NBER studies (see Macaulay 1931; Burns and 
Mitchell 1946, ch. 8). 

                                                           
3 Burns and Mitchell (1946, ch. 7) conclude that trend adjustments reduce the variations of cyclical behavior both across 
series and within series over time.  They regard that as a disadvantage because these variations matter in the analysis of 
business cycles (pp. 307-309). 
4 According to the historical NBER chronology for the United States, which goes back to 1796 (annual before 1854, 
monthly thereafter), only four of the 45 peak-to-peak cycles exceeded eight years or 100 months, and only two were shorter 
than two years or 20 months. This count includes the last cycle with the initial peak at July 1990 and the trough at March 
1991, whose expansion lasted ten years to March 2001. It deserves to be noticed that the three longest cycles occurred 
recently, in the 1960s, 1980s and 1990s. Business cycles in Europe have been longer than in the U.S., averaging about five 
instead of four years. (See Moore and Zarnowitz 1986 and Glasner, ed. 1997, Appendix.)  

 
 

 
 

5 On the treatment of seasonal variations in the NBER program of studies in business cycles (see Burns and Mitchell 1946, 
pp. 43-55). Great care would be exercised in the estimation of seasonal variations, using the best available methods that are 
still dominant, albeit in significantly improved form (see Shiskin, Young, and Musgrave 1965). The intrayear S oscillations 
depend more on exogenous factors (weather, customs, etc.) and tend to be well distinguishable from the other components, 
which are either shorter and more erratic (I) or longer and smoother but less systematic (TC).  Hence, the seasonal 
adjustments needed for cyclical analysis (and other purposes), although far from trivial statistically, were believed to be 
relatively tractable. 
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Early work on secular movements at the NBER was motivated by interest either in economic growth per 
se or in how growth affects business cycles (Kuznets 1930; Burns 1934; Macaulay 1938; Burns and Mitchell 
1946, ch. 7).  Here the preference was rather clearly for trends that are flexible and smooth, particularly in the 
literature relating to the effects of trends on cyclical behavior.  Most of the estimated trends were nonlinear, 
some were non-monotonic, even oscillatory; the design was to make their steepness and curvature depend on the 
data. 

Not surprisingly, the NBER studies favored working with data-based rather than model-based 
procedures, e.g., with moving averages rather than time-series models.  This helps explain the choices on 
measuring growth cycles and trends made by Mintz (1969, 1972) and by Boschan and Ebanks (1978).  This 
work first formalized the concept and estimation of the phase average trend (PAT) to be used in the analysis of 
fluctuations in detrended indicators and indexes.  A major task of this paper will be to discuss PAT in some 
detail and compare it with other trends.  First, however, the rationale of the approach must be considered by 
asking why fluctuations in detrended series need to be studied after all. 

 
2.2 Why Trend Adjustments Are Needed 
We have argued that studies of business cycles can go a long way without requiring trend estimation 

and elimination.  Yet the trend-cycle decomposition is needed for several reasons and is not intractable.  
First, reasonably good trend estimates are required to study economic growth empirically and test 

related theories. This task cannot be accomplished without sufficiently long and reliable data and without 
confronting the question of how trends and cycles influence each other.  We list this point first because of the 
dominant importance of economic growth and its major sources (notably productivity) for the society’s well-
being.  But our principal research interest here is in how best to isolate growth and fluctuations, not in how to 
measure secular trends and their welfare effects. 

Second, in the first two post-World-War II decades -- an era of reconstruction, democratization, foreign 
aid, and important monetary, fiscal and structural reforms -- several countries in Europe and the Far East, 
notably West Germany and Japan, enjoyed very high rates of real growth. These expansions were interrupted by 
retardations  rather than absolute declines in overall economic activity. The same applies to more recent 
expansions in some developing countries such as India.6 In the absence of business cycle recessions, sequences 
of slowdowns and speedups of substantial size, spread, and length attracted considerable public attention in 
many advanced and developing market-oriented economies. These “growth cycles“ or “deviation cycles” were 
formally identified and dated for many countries.7 Measurement and analysis of cycles in the deviations from 
trend constitute a very worthwhile subject for the light they may throw on (a) the level and variability of growth, 
and (b) the sources of economic instability.  

Third, the appraisal of cyclical indicators can be substantially improved by considering their trends and 
the fluctuations in the deviations from trends. Leading indicators are much more sensitive to all types of 
disturbances, whether associated with business cycles or with fluctuations at shorter frequencies; hence they are 
generally much more volatile than coincident indicators.  They also have as a group fewer and weaker upward 
trends.  The aggregate output and input, real income and sales series grow strongly, whereas some leaders such 
as the average workweek, unemployment claims, or the diffusion index of slower deliveries (vendor 
performance) are stationary or have only weak trends.  Using deviations from trend or smoothed growth rates 
reduces these differences between the two sets of indicators. 

The leaders seldom miss turning points in coinciders but they show many “extra” turns of their own not 
connected with business cycles. But these apparent “false signals” in leading indicators are not random: most of 
them are associated with turning points in growth cycles.   Numerous tests confirm that most economic 
slowdowns of cyclical proportions have been anticipated by leading indicators, in the U.S. and abroad. Indeed, 
when deviations from trend are used, the series classified as leading, roughly coincident, and lagging in relation 

                                                           
6 It is well to note that historical studies identified business cycles in the past for a number of the same countries, including 
Japan, India, and of course Germany. See Thorp 1926.   

 
 

 
 

7 The first, influential study of major fluctuations in detrended indicator series was by Ilse Mintz for West Germany (1969). 
Her method has been applied and improved by several analysts at the NBER and adopted internationally, notably by the 
Organization for Economic Cooperation and Development (OECD) in Paris. 
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to the U.S. business cycles tend to show corresponding timing characteristics in relation to growth cycles in a 
number of market economies including the United States (Klein and Moore 1985).  

Growth cycles have not replaced business cycles; but we conclude that business cycle research needs to 
be complemented by study of trends and growth cycles.    

 
2.3 The Phase Average Trend 
For a monthly or quarterly series of interest (e.g., the U.S. coincident index or real GDP, both seasonally 

adjusted), compute deviations from a centered 75-month (25-quarter) moving average and from its 
extrapolations at the beginning and end of the series. Break up the series into “phases”, according to the dates of 
cyclical peaks and troughs in the deviations of the series from its moving average. Compute the mean values of 
the series for each successive phase, and smooth the results by means of three-item or two-item moving 
averages. The PAT (phase average trend) is approximated by connecting the midpoints of these “triplets” or 
“doublets”.8 

The use of centered 75-month moving averages makes it necessary to extrapolate backward (forward) 
over the first (last) 37 months of the series covered.  This is the main source of problems and errors here: note 
that the slope of the trend at the end of the period must be estimated while the relevant cyclical developments 
are still unknown.  But this “end-period” difficulty is a general one, applying to all other methods of trend 
determination as well. 

All procedures to estimate and eliminate trends are to some extent arbitrary, and PAT is certainly no 
exception. The method lacks the mathematical elegance or apparent simplicity of other approaches that can be 
summarized by formulae; however, the first impression of it as an excessively elaborate calculation is 
misleading. The multi-step, successive-approximations approach is dictated by the objective of deriving 
estimates that reflect in a reasonable way the interplay of longer (trend) and shorter (cyclical) movements.  

The resulting trend replaces the short, large fluctuations of the series with gradual and persistent 
movements.  PAT passes smoothly through the principal segments of higher and lower average growth in the 
data, which makes it nonlinear and flexible. 

Chart 1 shows the coincident index (CI) for the United States monthly since 1948, with shaded areas 
representing business cycle recessions as dated by NBER.9  This series, published since 1996 by The 
Conference Board, was compiled earlier by the Bureau of Economic Analysis in the U. S. Department of 
Commerce.  It is evident that CI, which is based on the consensus of comprehensive measures of real personal 
income, real manufacturing and trade sales, industrial production, and nonfarm employment, had nine cyclical 
declines in this period, which represent well the nine recessions of 1948-91.  The phase average trend of the 
coincident index continued to rise in each recession with what appears to be only few and weak slope changes 
(the trend slowdowns of the early 1980s and the early 1990s are the most visible ones). 

Chart 2 shows that the percentage deviations from PAT of the U.S. coincident index do stand out very 
clearly, with sharp cyclical peaks (P) and troughs (T) alternating on the plus and minus sides of the zero line, 
respectively. The shaded columns represent the cyclical slowdowns dated according to these P’s and T’s.  The 
series is smooth as it is, in month-to-month movement, showing a months of cyclical dominance (MCD) ratio of 
one. (This is the ratio of cyclical to irregular components on the average, see Bry and Boschan 1971.) 

The dates of the fourteen U.S. growth slowdowns completed between 1948 and 2000, as determined 
from the PAT deviations for CI according to the algorithm developed by Bry and Boschan (1971), are listed in 
Table 1, along with the durations of the corresponding above-trend and below-trend phases (columns 1-6).  The 
table also includes a parallel listing of the turning dates and durations for the nine U.S. business cycles of the 
1948-2001 period.  It is clear that growth cycles are generally shorter, more frequent, and much more nearly 
symmetrical than business cycles; they vary less (but still appreciably) by duration. This is because long 
business cycle expansions are usually interrupted by significant slowdowns. These slowdowns give rise to 

                                                           
8 The above is an attempt to summarize briefly the ten-step procedure developed in Boschan and Ebanks (1978).  See the 
source for details. 

 
 

 
 

9 The Conference Board publishes the U.S. coincident index for the period starting in January 1959.  The coincident index 
used in this paper was extended back to January 1948 with the component data from the Business Cycle Indicators 
Database maintained by The Conference Board. 
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additional declines in the detrended aggregates when compared with the original declines in the levels of the 
same series. In addition, most postwar recessions were preceded by marked retardations of growth. 10  

Chart 3 shows that real GDP declined around the same dates as the CI, although not necessarily in two 
or more consecutive quarters; this popular rule of thumb would clearly have failed in some of the recent 
recessions. The deviations from PAT for real GDP shown in Chart 4 follow closely the pattern of growth cycles 
derived from the data for the U.S. coincident index.  This close correspondence is not surprising, since the 
cyclical movements in the coincident index are well correlated with those in real GDP.  

Note that the upward trend in Chart 3 crosses the real GDP curve approximately at the mid-points of 
each of the nine business cycle contractions of the period covered (marked by shaded areas).  Chart 4 
demonstrates that the series of percentage deviations from the trend declined strongly during the recessions of 
1949, 1953, 1957, 1960, 1970, 1973-75, and 1981-82, less so during the milder and shorter recessions of 1980 
and 1990-91.  In addition, smaller declines in the PAT detrended real GDP occurred in 1952, 1962-63, 1966-67, 
1984-87, and 1994-96: all slowdowns interrupting long economic expansions.11 

 
2.4 Cycles in Smoothed Growth Rates vs. Deviations from Trend 
PAT was applied at the NBER to a large number of indicators with generally satisfactory results.  Still, 

students of growth cycles have long been fully aware that the selection of the trend curve is inevitably associated 
with considerable arbitrariness.  This is why Friedman and Schwartz (1963) and Mintz (1969) looked for an 
alternative to detrending by attempting to identify cyclical fluctuations in series of growth rates directly. 

There are two major problems with this approach.  First, growth rates computed over short unit periods 
tend to be very erratic for many monthly and even quarterly indicator series.  Thus, the growth series, even when 
derived from strongly cyclical level series, often have dominant irregular components, which obscure their 
underlying cyclical movements.  To bring out the latter, the series must be smoothed with fairly long and/or 
complex moving averages.  But this procedure runs a certain risk of distorting the patterns, and perhaps 
especially the timing, of these movements; it calls for careful handling of the data and caution in interpreting the 
results. 

The second perceived problem is the timing of the growth rates, which is very different from that of the 
corresponding level series.  Early in an expansion growth is usually high, starting as it does from a low base 
after a period of decline.  As the base itself rises during the expansion, growth rates fall lower and lower.  
Hence, cycles in growth rates can be expected to lead cycles in levels at peaks.  Mintz (1969, p. 15) argued that 
these leads at downturns are so long (between one half and nearly one full business expansion phase) as to 
invalidate the use of peaks and troughs in growth rates for dating purposes.  Instead she proposed to define the 
downturn in a growth cycle as the end of a period of relatively high growth and the upturn as the end of a period 
of relatively low growth.  These are the “step-cycles” introduced earlier by Friedman and Schwartz in their 1963 
work on the cyclical behavior of money.12 

Despite much informative work on step cycles, the concept has not caught on, and for good reasons.  
Most series of rates of change, when smoothed, show cyclical fluctuations similar to those in detrended values; 
                                                           
10 Note that the Bry and Boschan algorithm identifies a peak in March 1998 and a trough in September 1999.  We did not 
use this peak-trough pair in our analysis since it is uncertain whether it qualifies as a growth cycle contraction; the 
deviations from PAT were not negative in the coincident index and were only briefly negative in real GDP.  
11 Working with related but earlier and inferior methodology, Ilse Mintz found that most detrended indicators for Germany 
in 1950-67 displayed “clear-cut cyclical swings with unmistakable turning points” (1969, p. 14).  The set of centered 75-
month moving averages could do at least rough justice to these diverse time series, something that according to Mintz 
“could not have been done with fitted trends,” and the methods succeeded in distinguishing well between leading, 
coincident, and lagging indicators (ibid. pp. 12 and 28-43). 

 
 

 
 

12 With the average rate during a high step exceeding systematically the average rate during the preceding and succeeding 
low steps, they found the resulting cycles to correspond closely to the cycles in the trend adjusted series proper.  Mintz, 
using a computerized version of the Friedman-Schwartz method, also concludes that deviation cycles and step-cycles show 
a high degree of agreement, particularly for composite indexes and at “strong turns.” (For individual indicators and at weak, 
i.e., not well articulated turns, the correspondence is at times attenuated.)  For evidence, see Mintz 1969 and 1972, tables 
and charts for West Germany and the United States, respectively.  The turning points between the steps are determined by a 
program that maximizes the difference between the corresponding step variances.  For the U.S., the turns in deviation 
cycles and in step cycles are approximately coincident in three-quarters of the cases.  The worst matchings are related to the 
occurrence of flat bottoms and ceilings or of double turns. 
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they do not move in steps.  (Unsmoothed, they are often very irregular or jagged, as already noted.)  Thus, as 
noted by Moore (in Zarnowitz 1972, pp. 178-9), “The step-fitting operation...seems to be imposing on the data 
something that is not obviously there.” 

As Chart 5 shows, using simple year-over-year change in the coincident index (call it CIGY) produces a 
series that falls in each shaded period and rises in each unshaded period, where the shadings are dated according 
to the cyclical declines in the detrended value of the index (to be labeled CIDPAT).  The patterns of movement 
in the two series are very similar: there is a one-to-one correspondence between their cyclical fluctuations.  One 
easily seen difference is that CIGY moves in larger and more varied swings than does CIDPAT.  The latter is 
approximately symmetrical around the zero line, as would be expected of deviations from trend; it seldom 
exceeds the range of ± two percent.  In contrast, CIGY consists largely of positive numbers, again as was to be 
expected; they are concentrated in the range of zero to six percent, with negative numbers limited to recessions 
and their immediate aftermaths in 1960, 1970, 1975, 1980, 1982, and 1991 (see chart).13 

Growth rates of CI (and GDP) do indeed start falling early in expansions before the corresponding series 
of deviations from trend, and this relationship is systematic.  Figure 1 shows how the inflection point in the level 
of aggregate economic activity, which is the peak in smoothed growth rate (Pgr), is likely to precede the point 
where our schematic index exceeds most the corresponding trend, which is the peak in its detrended value (Pdt).  
The underlying assumption is that growth starts decelerating in the vicinity of where economic activity rises 
above trend.  The sequence on the upgrade is that Pgr leads Pdt which in turn leads the peak in the level of 
economic activity itself (BCP).  Thus the downturn in the growth cycle (signaled early by Pgr and identified as 
Pdt) tends to lead the downturn in the business cycle. 

On the downgrade, a deceleration in growth may also start ahead of the time when activity falls farthest 
below the trend, as illustrated by Tgr leading Tdt in Figure 1; however, Tdt may follow rather than lead the 
business cycle trough (BCT).  We show a short lag here, but in sluggish recoveries, like that of 1991-93, Tdt 
could be much slower in arriving. At sudden sharp downturns, growth cycle and business cycle peaks may 
coincide: an example is P’dt and BCP’ (in the second cycle shown in Figure 1).  A very quick V-shaped upturn 
could represent at the same time all three troughs – in growth rates, deviations from trend, and levels (T’gr, T’dt, 
and BCT’ in Figure 1). 

Growth rates are much more likely to lead detrended values at peaks than at troughs. Chart 5 allows ten 
comparisons at peaks of which seven are leads of CIGY relative to CIDPAT and three are exact coincidences.  
The shortest leads are three and five months long, five fall in the 9-12 months range, and the average timing is a 
lead of 6.2 months.  Of the ten comparisons at troughs, six are coincidences, two are short leads of 2-3 months, 
and two are long leads of 9 months each.  The average is a lead of 2.3 months.   

These observations underestimate the true leads of CIGY relative to CIDPAT because the year-over-
year change is not centered whereas the detrended series is.  Centering would add another six months to the 
leads but we purposely avoid it so as to retain the most recent data for CIGY which might be helpful with the 
“end-period” problem of PAT (or other trend) estimation. 

The results of our (so far limited) experimentation with alternative ways of smoothing growth rates and 
computing trends proved encouragingly robust.  Substituting a 6-month smoothed annualized growth rate (from 
Zarnowitz and Moore 1982) for the year-over-year change made little difference.  Comparisons with trends 
derived by various filters discussed later in this paper yielded generally similar findings.  

 
3. Comparing Different Trend Estimates 
3.1 Cyclical Analysis with Linear Deterministic Trends 
For a long time, the dominant approach to modeling growth and fluctuations in upward-drifting 

comprehensive series representing aspects of macroeconomic activity was to view them as a sum of a 
deterministic trend and stochastic deviations treated as the residual “cyclical” component.  For example, on the 
assumption of exponential long-term economic growth, a linear trend would be fitted to the log of real GDP.  
The deviations from this trend should then be themselves stationary; the economy’s output should exhibit 

                                                           

 
 

 
 

13 In retrospect, CIGY can be easily made more symmetrical by taking deviations from a sequence of averages (3.427 for 
1/60-11/70, 2.9595 for 12/70-4/75, 2.953 for 5/75-8/80, 2.104 for 9/80-4/91, and 2.677 for 5/91-12/2000).   The adjustment 
seems fairly innocuous as it does not alter the timing of the cycles in CIGY, but it is based on hindsight and we decided not 
to use it. 
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reversion to the trend; and the effect of shocks to this trend-stationary (TS) model, though they may persist over 
time, should decline and eventually die out.14 

A linear deterministic trend is, of course, free of any cyclical or stochastic short-term movements.  Such 
a clean separation of the long and short time-series components would be just fine if it were empirically 
acceptable.  Unfortunately it is not.  Indeed, it is very unlikely that any given type of linear deterministic trend 
would persist over long stretches of time, surviving major structural and technical changes, wars, business 
expansions and contractions, financial crises, rising and falling inflation, etc.  Surely cataclysms such as the 
World Wars and the Great Depression affected economic trends substantially, but so did probably for some time 
other positive and negative developments (e.g., the long U.S. expansions of the 1960s and 1990s as well as the 
great inflation between). 

From the point of view of cyclical analysis, the cost of using a linear trend is that the deviations from it 
contain indiscriminately all business-cycle, growth-cycle, and shorter irregular movements combined. Thus, too 
much of the overall variation is attributed to business cycles.  Moreover, the linear trends do a poor job of 
differentiating between good and bad economic times. 

To provide evidence for the above statements, consider the log-linear trend fitted to real GDP in Chart 6 
and the deviations from it shown in Chart 7.  The data run below the trend line in four periods: 1959-Q1 1965; 
1975; Q4 1981 – Q11984; and Q4 1990 – Q1 1999.  These include some sluggish times such as all or some of 
the recessions in 1960-61, 1975, 1981-82, and 1990-91, but also some times of good economic growth and 
prosperity in the early 1960s, mid- 1980s, and especially the 1990s.  The data run above the trend line in three 
periods: Q2 1965 – Q4 1975; 1976 - Q3 1981; and Q2 1984 – Q3 1990.  These include the wartime boom of the 
late 1960s; all of the turbulent, inflationary 1970s (except 1975), which witnessed two recessions; a short 
recession and an incomplete recovery in 1980-81; and the post-recovery part of the expansion of the 1980s.  

A method that shows the troublesome 1970s in a very positive light (strongly above-trend) and the 
prosperous 1990s in a rather negative light (continuously below-trend) is quite difficult to accept. In each below-
trend period, the economy was most of the time in a fast growing mode.  Conversely, the above-trend periods 
include three of the six recessions covered (1969-70, 1973-74, and 1980).  Furthermore, the deviations from this 
trend miss or underrepresent some of the growth slowdowns as in 1962-64, 1966-67, and 1984-86 (compare 
charts 2 and 7).15 

 
3.2 Modeling with Linear Stochastic Trends 
In the 1980s, a sequence of influential papers reported favorably on the hypothesis of a single (positive, 

real) unit root in autoregressive representations of macroeconomic variables such as real income, output, and 
employment.  In the newly popular alternative to the TS model, a difference-stationary (DS) process was 
inferred from the failure to reject the unit-root model.  Autoregressive integrated moving-average (ARIMA) 
models were applied to reduce the time series to stationarity, replacing the assumption that the series are 
stationary around their trends.  In the DS model, there is no time trend, only a constant and a stationary and 
invertible ARMA term. 16 As argued by Nelson and Plosser (1982), if important economic aggregates have a DS 
representation then they have no tendency to return to linear trends.  Rather, they have “permanent components” 
that show no such trend reversion as they reflect shocks which have long persistent effects.  The trend is 
stochastic, perhaps simply exponential plus a random error.17   

                                                           
14 Let Q , where Q , 

t
Lbtat ερ )(++= GDPreal    ln= L is the lag (backshift) operator , and ktQtQkL −= tε  is a white 

noise innovation. The polynomial )(Lρ  must satisfy the stationarity and invertibility conditions; in a TS model, the sum of 

autoregressive coefficients  in ∑
=

k

1
ρ

i i
)(Lρ is less than one.  

15 Loglinear trend fits better long series of U.S. real GNP per capita (1909-1970), as shown in Diebold and Senhadji (1996), 
but these are annual data not well suited for study of business cycles.  

16 Consider the equation in footnote 14: in the DS case, b = 0 and  as implied by 1
1

=
=
∑
k

i i
ρ )(Lρ  containing one unit-root. 

 
 

 
 

17 For k = 1 (the first-order autoregression), the DS model reduces to a (generally geometric) random walk with drift. 
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We agree that the linear deterministic trends are inadequate, as already demonstrated.  Trends are indeed 
variable because of interactions with shorter fluctuations as well as structural breaks.  However, this points to 
the need to make the trends nonlinear or at least piecewise linear, but not necessarily stochastic.  To be useful, 
trends should be smooth and, in the case of variables that represent real economic growth, predominantly 
positive.  (Severe and long depressions, which are rare, qualify as most likely exceptions).  But an estimate of 
stochastic trend includes not only the long-term growth but also the major up-and-down movements.  The latter 
are due to the random component of the trend, and the proponents draw a strong conclusion, namely that 
“permanent innovations account for a substantial fraction of transitory economic fluctuations,” (King, Plosser, 
Stock, and Watson 1991, p. 834).  

Chart 8 shows the stochastic trend obtained by applying the Beveridge-Nelson decomposition to the 
monthly data on the U.S. coincident index (1948-2000).18  Chart 9 shows the cyclical component of the 
coincident index estimated by this procedure and compares it with the shaded areas based on the deviations of 
CI from its phase average trend (PAT).  The detrended series in chart 9 is smooth (MCD = 1) and roughly 
symmetric around zero.  It shows declines during all of the growth slowdowns and recessions but some of these 
declines are poorly articulated, very small and mainly or entirely on the positive side of the zero line ((1962-63, 
1995); some others are larger but also mainly or entirely on the positive or negative side only (1951-52, 1960, 
1981-82).  Thus, there is no expected transition from above to below trend and so several large fluctuations in 
this detrended series resemble business cycles more than growth cycles (1949-54, 1960-70, 1975-82, and 1982-
91). 

We found before that linear deterministic trends leave too much of the variation in the economic times 
series to business cycles; now we find that linear stochastic trends include much of the fluctuations and leave too 
little to business cycles.19 

However, careful statistical re-examinations of the subject conclude that there is simply no convincing 
evidence of the DS model outperforming the TS model and of the linear stochastic trends providing satisfactory 
estimates of the behavior over time of aggregate real variables (see part III of Diebold and Rudebusch 1999).  
Series that look like DS can originate in TS processes with roots close to but distinct from one, and finite-sample 
tests cannot conclusively distinguish between DS and TS series in such cases. Not only that, but the tests display 
little power against TS models that are well estimated from the data and even favor such TS models when based 
on long spans of annual data.  Point estimates of persistence of innovation effects are unreliable as they ignore 
the associated high uncertainty (Rudebusch 1992,1993; Diebold and Senhadji 1996). 

Also, note that there is little to be done about the unpredictable shocks, their hypothetical long-term 
effects, and the stochastic variations in economic activity generally.  Hence, countercyclical stabilization 
policies have very limited scope and promise to those who follow the DS-stochastic trend-RBC approach.  This 
is not necessarily a deficiency of the theory, but it may help explain the interest of many economists in exploring 
what may be causing business cycles beyond shocks (Fuhrer and Schuh 1998). 

Table 2 compares the timing of growth cycles according to different methods of detrending the U.S. 
coincident index.  The Beveridge- Nelson trend deviations lead at three peaks and at one trough in the PAT 
deviations by significant intervals but show lags, generally short, at most other turns (column 1).  They miss 
only one PAT slowdown, in 1962-64. On average, the timing of the two series is approximately coincident  
(with means and medians within the ± 3 months interval). 

 
 
 

                                                           
18 We use the state-space approach proposed by Morley (2001) to estimate the trend in the U.S. coincident index on the 
assumption that the proper time series model is ARIMA(2,1,2).  The cyclical component is defined as the difference 
between the index and its trend. 

 
 

 
 

19 This is consistent with the underlying theoretical preconception that attributes most of the cyclical instability to 
exogenous shocks, many of which are supposed to influence the levels of macroeconomic variables in the long run.  With 
monetary shocks believed to have only temporary real effects, the attention here centers on real, especially productivity , 
shocks.  But, as developed elsewhere (Zarnowitz 1992, 1999; Glasner 1997, pp. 557-560), there is much that is doubtful 
about this approach: the exclusion of any plausible endogenous sources of economic instability; the relative neglect of 
financial and expectational factors and of sectoral interactions; the uncertain measurement of productivity shocks.  (Some 
of these points have been recognized by real business cycle (RBC) theorists; see King and Rebelo 2000). 
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3.3 The Local Linear Trend Model  
As noted by James H. Stock in an invited comment on the first draft of this paper prepared for the 

meeting of The Conference Board Business Cycle Indicators Advisory Committee (March 2, 2000), the theory 
of optimal linear filtering is very well developed and understood so one can assess the various filters well on a 
priori grounds for their suitability in the present context.  One desirable feature here is to have changing drifts 
that allow for persistent fluctuations in the mean growth rates.  Stock suggests that this may favor a local linear 
trend model which allows the drift to change. 

This type of structural model is discussed by Harvey (1989, 2000) who assumes that a time series, , is 
composed of a stochastic trend, 

ty

tµ , and an irregular term, tε  as in equation (1) below.20  Equations (2) and (3) 
describe how the slope of the stochastic trend, tβ , is itself a random walk process. The error terms tε , tη , and 

tζ  are normally and independently distributed with zero means and variances , , and  respectively. 2
εσ 2

ησ 2
ζσ

        ttty εµ +=          Tt ,...,1=         (1) 

tttt ηβµµ ++= −− 11      (2) 

ttt ζββ += −1       (3) 
Depending on the assumptions about the variances of the error terms, different trends can be obtained 

this framework.  If variances of both tη  and tζ  are zero, the model reduces to a deterministic linear trend.  
Alternatively, if only the variance of tζ  is zero, the trend is a random walk with drift as in the Beveridge-
Nelson decomposition.  When the variance of tη  is fixed at zero and the variance of tζ is positive, the resulting 
local linear trend is an integrated random walk trend or a smooth trend (see Harvey 2000, p 3). 

The model with local linear trend can be cast in the state-space form and the Kalman filter can be used 
to get estimates of the unobserved trend and slope components (see Harvey 1989, ch. 4).  Restricting our 
attention here to a specific set of assumptions without prior testing of their appropriateness, we estimate the 
model of equations (1)-(3) along these lines to see if it can give good results in terms of growth cycles. 

We believe a good trend estimate should be influenced by the cyclical movements in the data but it 
should also be smooth.  This implies that the trend should show only slow slope changes, with small 
innovations.  Arguably, then, the variance of the residuals in the equation for the trend slope should be small, 
and so we assume  =10-9 while fixing  at zero.  The estimated value of  for the natural log of the U.S. 
coincident index for 1948-2000 is 0.0005.  This, it is interesting to note, is very close to the variance of the 
deviations from PAT, which is 0.00036, suggesting that the local linear trend may give results similar to the 
PAT.  Indeed, when estimated with the parameter values we selected, the local linear trend is smooth (MCD = 
1); its slope changes slowly and is relatively steeper during periods of high average growth rates (Chart 10).  
Compared with the PAT in Chart 1, this trend doesn’t flatten as much during recessions.  

2
ζσ 2

ησ 2
εσ

The deviations from the local linear trend shown in Chart 11 are smaller and smoother than the 
deviations from PAT in Chart 2.  They dip only slightly and briefly below zero at the end of the 1951-52 and 
1979-80 growth cycle contractions, and remain positive throughout during the slowdowns of 1966-67 and 1984-
86.  Conversely, in the retardations of 1963-64 and 1995, this series consists entirely or almost entirely of 
negative values.  In these respects, the local linear trend deviations resemble the larger Beveridge-Nelson trend 
deviations (compare Charts 11 and 9).  The PAT deviations alternate better between positive and negative 
values in these periods. 

The series of deviations from local linear trend, we have estimated shows timing coincident with that of 
PAT at most peaks and troughs (there are only eight nonzero entries here, and only four of them large; see Table 
2, col. 2).  This correspondence is much better than that between the Beveridge-Nelson and PAT deviations.  It 
is interesting because this trend does not explicitly take account of the turning points in the data as PAT does. 

 

                                                           

 
 

 
 

20 Note that no separate cycle component is distinguished here.  A cyclical component is modeled explicitly in Harvey 
1985, but the empirical applicability of this framework is severely limited, especially for the post- World War II period by 
the use of annual data only. 
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3.4 The Hodrick-Prescott Trend 
Let a time series be viewed as the sum of a growth (trend) component and a cyclical component 

 for  The growth component should be smooth, so that the procedure recommended 
by Hodrick and Prescott (1997) is to minimize 

ty
,...,1

tg

tttt cgyc +=: .Tt =

[
2

211
2 )()(∑∑ −−− −−−+

T

t
tttt

T

t
t ggggc λ ]    (4) 

where the parameter λ  is positive. The larger λ , the smoother is the result; if λ , which penalizes 
variability in , is large enough, tg . approaches 0ggt tβ+ Hodrick and Prescott favor 600,1=λ for quarterly 
data, but show that the numbers change little if λ  is reduced or increased by a factor of four.  

The squared second difference of the trend component, , which is multiplied by tg λ , is a very small 
term.  Even very large changes in λ , therefore, influence the cyclical component  only modestly.  For annual 
observations, 

tc
λ  values of 400 or 100 have been used, but Baxter and King (1999) argue that 10 gives better 

results.  We are interested in applications to monthly data, and obtain reasonably good results with λ = 14,400.  
As shown in Charts 12 and 13, the H-P trend shows both a considerable smoothness and some cyclical 
flexibility in this case, while the deviations from trend decline into negatives in each downward phase of growth 
cycles dated according to the PAT (see first curves in each chart).  The only exceptions to this one-to-one 
correspondence occur in 1956 and 1959, when the H-P deviations series falls briefly below zero during apparent 
growth cycle upswings, and in 1989-90, when it shows an overly strong extra rise during a slowdown.  When 
the outliers are properly considered, the turning points in the H-P and the PAT growth cycles are either identical 
or very close in time, with but two significant deviations: the peak near the beginning of the sample period and 
the trough in 1991 (see Table 2, col. 3). 

However, it is worth noting that the H-P series has smaller fluctuations and is less smooth than the PAT 
series (compare Chart 13 first curve with Chart 2).  In particular, the H-P cyclical component (with λ = 14,400) 
seems to distort both the sluggish recovery in the early 1990s (by showing an early upswing) and the vigorous 
boom in the late 1990s (by showing only weak and erratic positive deviations from trend). 

As an experiment, we performed a search to locate a value of λ that would minimize 

∑ −=
T

t
tt Thpd 2)( , where  and h  represent the series of PAT and the H-P trend respectively.  With tp t λ = 

14,400, d = 0.45; when λ is increased by increments of 100, d reaches a minimum of 0.16 for λ = 108,000.  We 
add the corresponding trend and detrended values to Charts 12 and 13, respectively as second curves.  The 7.5-
fold increase in λ  produces moderate improvements in the new H-P estimate of the “cyclical component.” The 
H-P deviations series for λ = 108,000 has somewhat larger and on the whole, more symmetrical fluctuations 
than the series for λ = 14,400.21  The estimate with larger λ is quite similar to the PAT, even in many small 
details.  (For example, the recovery in the early 1990s is now slow in both series; the deviations from trend in 
the late 1990s are relatively small in both, too, but particularly so in the H-P deviations.)  Yet, remarkably, the 
H-P detrended series are not very smooth, even when λ  is set as high as 108,000: the MCD is 2 for each of the 
two variants we have constructed and tested. 

 
3.5 The Rotemberg Trend  
Rotemberg (1999) proposes a heuristic method of time series decomposition which estimates the value 

of λ given two parameters, k and v.  Using the earlier notation, let ttt cgy += , where  and c are trend and 
cycle components of the time series , respectively.  The parameter k ensures that the estimated trend 
minimizes the covariance of two values of the cyclical component, c  and   The parameter v ensures that 

tg t

ty

t .ktc +

                                                           

 
 

 
 

21 However, note that in the years 1962-67 the series for λ = 108,000 is less symmetrical around zero than the series for 
λ = 14,400 (see Chart 13). 
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the trend and cycle components,  and , are orthogonal over the horizon of v periods.  Specifically, 
Rotemberg estimates the trend by minimizing 

tg tc

[
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λ is chosen as the lowest parameter value such that the following constraint holds 

[ 0)()(* =−−−∑
−−

+=
−+

vkT

vkt
vtttvtt ggggc ] .   (6) 

 
Rotemberg recommends that k be set to equal 16 quarters on the admittedly somewhat arbitrary ground 

that historically NBER business cycle troughs for the U.S. have been four years apart on average.  (The 
dispersion around this average is very large.) With large k, the minimization of (5) results in a trend that is quite 
smooth and not very sensitive to either the cyclical movements of the series nor the choice of v.  With low k – a 
fortiori, with zero k, which is the case in the H-P trend – the effects are opposite.  Rotemberg chooses v to equal 
five quarters. 

Chart 14 shows what happens when this procedure (k = 48 months and v = 15 months) is applied to the 
U.S. coincident index between January 1948 and December 2000 while Chart 15 shows the deviations from this 
trend.  The trend in Chart 14 is exceedingly smooth, as the estimate of λ is equal to 4,335,498!  (MCD is, of 
course, one.) As expected, the method produces a trend that is rising persistently, with few slope changes.  Still 
Rotemberg’s trend decelerates slightly in late 1960s, early 1980s and early 1990s, accelerates slightly in 
between, notably in the long expansions of the 1960s and the 1990s.  So there is some mutual dependence of 
trend and cycles, but it is minimized. 

The deviations in trend shown in Chart 15 track the growth cycle downturns shown by the shaded areas 
according to PAT fairly well much of the time and much better during recessions than during the other 
slowdowns.  However, these deviations are not very symmetric around zero, their amplitudes vary widely, and 
the trend is probably not high enough at the end of the sample after 1998 (a shortcoming noted by Rotemberg).  
The growth cycles are reduced strongly (those in 1951-52, 1963-64, 1966-67, 1984-86, and 1995 are almost 
eliminated) so that the general appearance of the fluctuations in this chart tracks business cycles rather than 
growth cycles.  Table 2 col. 4 shows several close correspondences but also large discrepancies between the 
timing of this trend and that of PAT. 

 
3.5 Band-Pass Filters 
Baxter-King (1999) propose a band-pass filter that isolates the components of the time series with 

fluctuations between six and 32 quarters and removes the components of higher and lower frequencies as 
“noncyclical”. They refer to Burns and Mitchell’s definition of business cycles in support of this choice. But 
NBER research always required that business cycles involve absolute declines (contractions) in economic 
activity, whereas Baxter and King (1999) like most others attempting statistical trend-cycle decompositions 
make no distinction between business cycles and growth cycles. Hence, to begin with, it must again be noted 
that they all obtain estimates of growth cycles, not business cycles.  Second, Burns and Mitchell define business 
cycles as ranging up to 10 or 12 (not 8) years, and Table 1 col. 12, suggests that cycles exceeding eight years in 
duration may no longer be so rare.  In contrast, growth cycles lasted 2-6 years in the recent era (Table 1, col. 6).  
Finally, NBER researchers would always determine cyclical timing and other properties of time series in 
seasonally adjusted but otherwise unsmoothed time series, using moving averages cautiously for guidance only. 

The band-pass filtering approach decomposes series into trend , cycle, and irregular components 
corresponding respectively to the low, intermediate, and high frequency parts of the spectrum (Stock and 
Watson 1998).  As noted by Stock in his March 2000 comment (see note 8), the bandpass method filters out all 
fluctuations at both low and high frequencies that are considered “noncyclical”.  The resulting series are 
therefore relatively smooth, which makes for nice graphs, often with well-articulated turning points.  But the 
latter may well be misdated if the short-period variations of the indicators around their peaks and troughs are not 
taken into account properly.  Hence, the elimination of high frequency changes from data may affect the results 
adversely.  Furthermore, it is doubtful that one can precisely identify the exclusively “cyclical” frequencies and 
assume that the resulting band-pass filter remains valid and constant over time.  In some very long phases (e.g., 
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the contraction of the 1930s, the expansions of the 1960s and the 1990s), the relevant frequency mix may be 
rather different from that applying to some very short phases (e.g., the back-to-back recessions separated by the 
incomplete recovery in the early 1980s).  Thus, much flexibility is needed in reconciling reasonable trend 
estimates with both unusually long and unusually short cyclical movements.  On that, the PAT method is 
probably at a significant advantage vis-à-vis the H-P and band-pass filtering methods. 

We experimented with a wide range of band-pass filters so as to accommodate the wide range of growth 
cycles of actual experience.  Generally, the narrower the band, the more numerous and the smaller are the 
fluctuations in the deviations from trend. The evidence suggests that narrow bands are inferior to wide bands in 
that they produce too many estimated growth cycles. For example, using the band-pass filter with a frequency 
range of nine to 50 months one gets 18 growth cycles; using a band of 12 to 50 months, one gets 19 cycles.   

Chart 16 shows the trend and Chart 17 shows the deviations from trend based on a band-pass filter of 
wide range (9 to 96 months). The trend is what is left after the cyclical component and the irregular component 
(less than 9 months) are subtracted from the seasonally adjusted U.S. coincident index.  Again, the shaded areas 
on the chart indicate the growth cycle slowdowns according to the PAT.  A comparison of Charts 2 and 17 
suggests that the band-pass filter for the selected frequency range produced almost a smoothed version of the 
PAT deviations series.  The only blemishes we can find here is that the declines in 1951-52 and 1962-63 are 
underrepresented (the former is limited to positives, the latter to negatives; see Chart 17). 

Table 2 col. 5 compares the peak and trough dates in the cyclical component derived by using the band-
pass filter with those in the deviations from PAT.  The timing of the two series is virtually identical; evidently, 
smoothing has not distorted it in this case. 

 
4. Conclusion 
A trend denotes a long-run tendency in economic time series, for example, an upward inclination 

reflecting real growth or cost (price) inflation.  There is so much variability in intermediate and short run 
components of many series – cyclical, seasonal, irregular – that it is useful to define trend by contrast as 
relatively smooth, that is changing rather slowly, without sudden disturbances that are difficult to explain.  The 
smoothest are the linear trends, yet linear trends are hard to find, for several good reasons.  Economies grow 
through cycles of expansions and contractions that vary widely in amplitude and duration.  Long expansions 
(contractions) can tilt growth trends upward (downward).  So can sequences of such phases or upswings and 
downswings of economic “long waves,” to the extent they exist.  Great technological innovations speed up 
growth temporarily, disruptions of supply or demand in times of war, civil conflict or industrial dispute deter 
growth temporarily.  Monetary and exchange regimes differ, periods of inflation and deflation have historically 
alternated.  Thus trends may be smooth but they vary and change. 

We have looked at different methods of time series decomposition from the viewpoint of how best 
separate trends and growth cycles, i.e. fluctuations in data adjusted for both long-term and seasonal movements.  
Smoothness in trends is desirable, linearity over short periods may be, linearity over long periods is not.  The 
most difficult problem for time-series decomposition in the present context arises because trends and business 
cycles interact.  Just as a long phase of depressed or stagnating business conditions can lower the long trend so a 
long period of maintained high growth can reduce cyclical instability by replacing recessions with slowdowns.  
So a nonlinear or at least a local or piecewise linear trend, which allow for the trend-cycle interaction, is apt to 
do a better job than a linear trend. 

The Phase Average Trend  (PAT) program developed at the NBER (Boschan and Ebanks 1978) 
exemplifies such a trend, with the explicit purpose of growth cycle measurement.  PAT addresses the task 
directly by using preliminary growth cycle turning points and it serves the purpose on hand well.  This is 
revealed by a close examination of cyclical movements since 1948 in two principal measures of U.S. aggregate 
economic activity – the monthly coincident index and the quarterly real GDP.  Growth cycles appear clearly in 
both the deviations from trends and the smoothed growth rates for the series.  They complement well the 
business cycles as measured in the corresponding data on levels of CI and real GDP. 

We have compared the patterns, timing, amplitudes, and smoothness of several estimates of U.S. growth 
cycles in the post World War II period obtained by using different methods of detrending the monthly 
coincident index 1948-2000.  Log-linear trends are clearly inferior for our purposes.  The stochastic Beveridge-
Nelson trend is much better but it includes too much of cyclical fluctuations and the deviations from it often lack 
the proper patterns and timing.  The local linear trend of Harvey leaves deviation cycles that are substantially 
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smaller than those produced by PAT, but the two sets are closer in timing.  The Hodrick-Prescott approach is 
flexible, and with very high λ  it produces growth cycles quite similar to PAT but it falls short on smoothness. 
Rotemberg’s heuristic trend is very smooth, but the deviations from it vary widely in amplitude, miss some 
growth cycles, and are not as symmetric as the deviations from PAT and some other trends.  The band-pass filter 
works quite well for wide frequency ranges (much worse for narrow ranges) and produces very smooth growth 
cycles very similar to those of PAT.  In general, it is reassuring that the results of PAT for the United States 
show great similarity to the results obtained with the more modern H-P and band-pass filtering methods, but in 
matters of detail PAT is often superior. 
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Chart 1: U.S. Coincident Index and Phase Average Trend
Monthly, 1948-2000*

* Shaded areas represent business cycle recessions according to the NBER chronology
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Chart 2: U.S. Coincident Index
Deviations from Phase Average Trend*

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index
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Table 1: US Growth Cycles and Business Cycles, 1948 – 2000 
Durations of Cycles and Their Phases 

Growth Cycles Durations in Months of Growth Business Cycles Durations of Months of  
Peaks (P) and Troughs (T)  Cycles and Phases  Peaks (P) and Troughs (T)  Business Cycles and Phases  

P T P P to T T to P P to P P T P P to T T to P P to P 
(1)            (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Jan-48            Oct-49 Jan-51 21 15 36 Nov-48 Oct-49 Jul-53 11 45 56
Jan-51            Jul-52 Mar-53 18 8 26
Mar-53            Aug-54 Feb-57 17 30 47 Jul-53 May-54 Aug-57 10 39 49
Feb-59            Apr-58 Jan-60 14 21 35 Aug-57 Apr-58 Apr-60 8 24 32
Jan-60            Feb-61 Apr-62 13 14 27 Apr-60 Feb-61 Dec-69 10 106 116
Apr-62            Jan-64 Mar-66 21 26 47
Mar-66            Oct-67 Aug-69 19 22 41
Aug-69            Nov-70 Nov-73 15 36 51 Dec-69 Nov-70 Nov-73 11 36 47
Nov-73            Apr-75 Mar-79 17 47 64 Nov-73 Mar-75 Jan-80 16 58 74
Mar-79            Jul-80 Jul-81 16 12 28 Jan-80 Jul-80 Jul-81 6 12 18
Jul-81            Dec-82 Sep-84 17 21 38 Jul-81 Nov-82 Jul-90 16 92 108
Sep-84            Jan-87 Jan-89 28 24 52
Jan-89            Dec-91 Jan-95 35 37 72 Jul-90 Mar-91 Mar-01 8 120 128
Jan-95            Jan-96 Jun-00 12 53 65

Mean            18.8 26.1 44.9 10.7 59.1 69.8
Median            17.0 23.0 44.0 10.0 45.0 56.0
Standard Deviation           6.2 13.2 14.7 3.4 38.0 39.1
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Chart 3: U.S. Real GDP and Phase Average Trend
Quarterly, 1947-2000*

* Shaded areas represent business cycle recessions according to the NBER chronology
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Chart 4: U.S. Real GDP
Deviations from Phase Average Trend*

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index
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Table 2:  Turning Points in Deviations from PAT and in Deviations from Six Different Trend 
Estimates, U.S. Coincident Index (1948-2000) 
 Leads(-) or Lags(+) Relative to Peaks in Deviations from PAT 
PAT Beveridge-

Nelson  
Local 
Linear  

Hodrick-
Prescott    
( λ  = 14,400) 

Hodrick-
Prescott   
( λ = 108,000)

Rotemberg Band-pass  

 (1) (2) (3) (4) (5) (6) 
Jan-48 miss 6 7 7 6 6 
Jan-51 6 0 0 0 missc 0 
Mar-53 3 0 0 0 0 0 
Feb-57 -7 -2 0 0 -2 -2 
Jan-60 4 0 0 0 -7 0 
Apr-62 missa 0 0 0 0 0 
Mar-66 2 3 0 0 7 0 
Aug-69 -7 0 2 0 0 0 
Nov-73 -7 0 0 0 0 0 
Mar-79 1 0 0 0 0 0 
Jul-81 -3 -7 0 -7 missd 0 
Sep-84 1 6 0 0 missd 0 
Jan-89 1 0 0 0 0 0 
Jan-95 3 0 0 0 missd 0 
Jun-00 -18 3 -2 -2 0 0 

Mean: -1.62 0.60 0.47 -0.13 0.36 0.27 
Median: 1.00 0.00 0.00 0.00 0.00 0.00 
Std. Dev. 6.60 3.14 1.96 2.70 3.70 1.67 
 Leads(-) or Lags(+) Relative to Troughs in Deviations from PAT 
PAT Beveridge-

Nelson  
Local 
Linear  

Hodrick-
Prescott    
( λ  = 14,400) 

Hodrick-
Prescott   
( λ = 108,000)

Rotemberg Band-pass  

Oct-49 3 0 0 0 0 0 
Jul-52 1 0 0 0 missc 0 

Aug-54 3 0 0 0 0 0 
Apr-58 3 0 0 0 1 0 
Feb-61 3 0 0 0 0 0 
Jan-64 missa -12 0b 0 -12 0 
Oct-67 1 0 0 0 0 0 
Nov-70 2 0 0b 0 9 9 
Apr-75 4 1 -1 0 1 1 
Jul-80 3 0 0 0 missd 0 
Dec-82 1 0 0 0 0 0 
Jan-87 1 -7 0 0 missd 0 
Dec-91 -6 0 -9 0 missd 0 
Jan-96 1 0 0 0 missd 0 

Mean: 1.54 -1.29 0.57 0.00 -0.11 0.71 
Median: 2.00 0.00 0.00 0.00 0.00 0.00 
Std. Dev: 2.50 3.63 4.29 0.00 5.33 2.40 
All       
Mean: -0.04 -0.31 0.52 -0.07 0.15 0.48 
Median: 1.00 0.00 0.00 0.00 0.00 0.00 
Std. Dev: 5.15 3.45 3.24 1.91 4.38 2.03 
Note: The turning points in the series are selected by the Bry-Boschan algorithm, except where noted. 
a The early 1963 decline in the B-N series is too short and too small to qualify and has not been accepted by the algorithm (see Chart 9). 
b  The algorithm selected dates lagging the PAT dates by 9 months in both these cases, but we overruled these choices by considering 
outliers (which are identical in the PAT and H-P series). 
C  The early 1951 decline in the Rotemberg series is too short and too small to qualify and has not been accepted by the algorithm (see 
Chart15). 
d  The Rotemberg series shows only a very short, though sharp, increase in 1980; it skips the 1984-86 slowdown; and its decline in 
early 1995 is too short and too small to qualify (see Chart 15). 
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Chart 5: Cycles in Growth Rates and Deviations from Trend
U.S. Coincident Index, Monthly, 1948-2000

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index
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Chart 6: U.S. Real GDP and Its Log-Linear Trend
Quarterly, 1947-2000*

* Shaded areas represent business cycle recessions according to the NBER chronology
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Chart 7: U.S. Real GDP
Deviations from Log-Linear Trend*

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index
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Chart 8: U.S. Coincident Index and Beveridge-Nelson Trend
Monthly, 1948-2000*

* Shaded areas represent business cycle recessions according to the NBER chronology
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Chart 9: U.S. Coincident Index
Beveridge-Nelson Cycle*

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index

In
de

x 
 (1

99
6 

= 
10

0)
 

Pe
rc

en
t 

 
 

 

Page 181



20

40

80

160

50 55 60 65 70 75 80 85 90 95 00

Chart 10: U.S. Coincident Index and Local Linear Trend
Monthly, 1948 - 2000*

* Shaded areas represent business cycle recessions according to the NBER chronology
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Chart 11: U.S. Coincident Index
Deviations from Local Linear Trend*

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index

In
de

x 
 (1

99
6 

= 
10

0)
 

Pe
rc

en
t 

 
 

 

Page 182



20

40

80

160

20

40

80

160

50 55 60 65 70 75 80 85 90 95 00

Chart 12: U.S. Coincident Index and Hodrick-Prescott Trend
Monthly, 1948-2000*

* Shaded areas represent business cycle recessions according to the NBER chronology

Lambda = 108000

Lambda = 14400

-8

-4

0

4

8

-8

-4

0

4

8

50 55 60 65 70 75 80 85 90 95 00

Chart 13: U.S. Coincident Index
Deviations from Hodrick-Prescott Trend*

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index
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Chart 14: U.S. Coincident Index and Heuristic Trend Proposed by Rotemberg (1999)
Monthly, 1948-2000*

* Shaded areas represent business cycle recessions according to the NBER chronology
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Chart 15: U.S. Coincident Index
Deviations from Heuristic Trend Proposed by Rotemberg (1999)*

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index
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Chart 16: U.S. Coincident Index and Band-pass Trend
Monthly, 1948-2000*

* Shaded areas represent business cycle recessions according to the NBER chronology
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Chart 17: U.S. Coincident Index
and Cyclical Component from Band-pass Filter

* Shaded areas represent growth cycle recessions based on the U.S. Coincident Index
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