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Abstract

Social and economic data commonly have a nested structure (for example, households nested within
neighborhoods). Recently techniques and computer programs have become available for dealing
with such data, permitting the formulation of explicit multilevel models with hypotheses about
e¤ects occurring at each level and across levels. If data users are planning to analyze survey data
using hierarchical linear models rather than concentrating on means, totals, and proportions, this
needs to be accounted for in the survey design. The implications for determining sample sizes (for
example, the number of neighborhoods in the sample and the number of households sampled within
each neighborhood) are explored.
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1 Introduction

There has been an upsurge in interest in analyzing data in a way that accounts for the
naturally occurring nested structure, for instance, in analyzing households nested within
neighborhoods. Linear models appropriate for such data are called “hierarchical” or “mul-
tilevel.” In part, the increased interest has been sparked by the availability of new software
that properly handles the nested structure and facilitates the analyses. There has also been
a realization that one can take advantage of the nested structure to explore relationships not
amenable to other approaches.

If researchers are planning to analyze data from federal surveys using hierarchical linear
models rather than concentrating on means, totals, and proportions, it is best to account for
this in the survey design. One important aspect of the design is the sample size at each level
(for example, the number of neighborhoods in the sample and the number of households
sampled within each neighborhood). Cost models can be developed to determine the most
e¢cient allocation of the sample.

To date, there has been only a limited amount of research on this topic. A key paper is
Snijders and Bosker (1993). Afshartous (1995) and Mok (1995) did empirical studies for
particular datasets. The most up-to-date account is given in Chapter 10 of Snijders and
Bosker (1999). Except for the author’s article (Cohen, 1998), the emphasis has been on
small single-purpose surveys rather than on large federal surveys.

This article will begin with a brief description of multilevel models. No prior knowledge
of these models will be assumed. The roles of cost functions in survey design will then
be discussed. There will be a review of traditional sample size determination as in, for



example, Hansen, Hurwitz, and Madow (1953). Extensions of previous work on sample size
determination for surveys to be analyzed by multilevel analysis will be made to estimating
the …xed coe¢cients in the multilevel model and to estimating the intraclass correlation
coe¢cient.

2 Multilevel Models

Goldstein (1987, 1995), Bryk and Raudenbush (1992), Longford (1993), Hox (1995), Kreft
and de Leeuw (1998), and Snijders and Bosker (1999) are recommended for book-length
discussions related to multilevel models.

Consider a simple example. Suppose the household-level model is

Yij = ¯0j + rij

and the neighborhood-level model is

¯0j = °00 + u0j:

The rij are mean zero, independent, normally distributed random variables, each with vari-
ance ¾2, for the i = 1; : : : ; nj persons in neighborhood j. The u0j are independent of each
other and of the rij : They are normally distributed, each with mean zero and variance ¿2.
The ¾2 are the household-level variances, and the ¿ 2 are the neighborhood-level variances.
This is a two-stage model. We could, of course, have further levels below the household
(persons, person trips); we could have more levels above the neighborhood (city, state or
province).

3 Simple Two-Stage Design with a Simple Cost Function

In order to gain insight into the problem, we restrict our attention to a simple two-stage
sampling design with a simple cost function. We select m neighborhoods, and from each
of the m neighborhoods, we select n households (a balanced sample design). It costs C2 to
include a neighborhood in the sample and an additional C1 for each household sampled at
the neighborhood. We wish to hold total sampling costs to our budgeted amount C where

C = C2m+ C1mn:

We refer to the …rst stage units as neighborhoods and the second stage units as households
throughout this article in order to avoid cumbersome terminology. Of course, the results
apply much more broadly (for example, to students within schools, to beds within hospitals,
or to books within libraries).

In reality we would almost certainly select the neighborhoods by a strati…ed design. Addi-
tional levels (e.g., cities, persons) are possible. Unequal probability sampling might be used
at any level. Our assumption of a balanced sample design (same number of households from
each neighborhood) would almost certainly not hold exactly, but we do not expect that our
results are very sensitive to this assumption, provided that the design is not too unbalanced.



4 Traditional Sample Size Determination

Hansen, Hurwitz, and Madow (1953, pp. 172-73) have developed the formula for the op-
timal size n for the number of households to sample from each neighborhood. It applies
to estimating means, totals, and ratios. A simple approximate version of the formula is as
follows:

nopt
:=

s
C2

C1
£ 1 ¡ ½
½
; (1)

where ½ is the measure of homogeneity, also called the intraclass correlation coe¢cient. The
number of neighborhoods sampled is then

mopt =
C

C2 + C1nopt
:

In the two-level setting, we have

½ =
¿2

¾2 + ¿ 2
;

where ¾2 is the household level variance and ¿2 is the neighborhood level variance. It will
also be convenient to work with the variance ratio ! de…ned by ! = ¿ 2=¾2. In terms of the
variance ratio, (1) becomes

nopt
:=

s
C2

C1
£ 1
!
; (2)

so that the optimal number of households to sample from each neighborhood in the tradi-
tional setting varies inversely with the square root of the variance ratio !.

It is perhaps worth mentioning that we are interested in …nding the optimal values of n and
m, not with the notion that they should be adhered to exactly, but rather with the idea that
they can serve as a guide in survey planning.

5 Sample Size Determination for Regression Coe¢cients

For household i in neighborhood j, let us consider the simple the multilevel model

Yij = ¯0j + rij

where
¯0j = °00 + °01z1j + ¢ ¢ ¢ + °0qzqj + u0j

and the frij; u0jg are mutually independent random variables with E(rij) = E(u0j) = 0,
var(rij) = ¾2, and var(u0j) = ¿20. Notice that this simple model has no explanatory variables
at the household level.

Suppose we want to estimate a0° where ° = (°00; : : : ; °0q)0 and a is a vector of constants
(a0; : : : ; aq)0. This includes the case in which we are mainly interested in estimating a single
coordinate of °. Let °̂ be an (asymptotically e¢cient) estimator of °. Let m denote the



number of neighborhoods in the sample; let n denote the number of households in each
neighborhood in the sample (assumed constant); and let E(zj) = ¹ and var(zj) = §z. As
in Snijders and Bosker (1993, pp. 248–249),

var(a0°̂) ¼ 1
m

Ã
¿20 +

¾2

n

!
a0(¹z¹

0
z +§z)¡1a:

They show that for the cost model C = C2m+ C1mn,

nopt =
s
C2¾2

C1¿20
:

For this choice of n,

var(a0°̂) ¼ 1
C

µq
C1¾ +

q
C2¿0

¶2
a0(¹z¹

0
z +§z)¡1a:

Clearly, if we want to know the total cost C needed to achieve a speci…ed value of var(a0°̂),
this will be

C ¼ 1
var(a0°̂)

µq
C1¾ +

q
C2¿0

¶2
a0(¹z¹

0
z +§z)¡1a:

6 Sample Size Determination for the Intraclass Correlation Coe¢cient

The variance for estimating the intraclass correlation coe¢cient ½ is

var(½̂) =
2(1 ¡ ½)2(1 + (n¡ 1)½)2

n(n¡ 1)(m¡ 1)

(Snijders and Bosker, 1999, p. 21). We would like to …nd the value of n that minimizes this
expression subject to the cost constraint C = C2m + C1mn (so that m = (C2 + C1n)=C).
This can be done, but the expression is cumbersome and not of any use. We will instead
optimize the nearly equal expression

2(1 ¡ ½)2(1 + (n¡ 1)½)2

(n¡ 1)2m
: (3)

This gives

nopt =

q
8½(1 + C2=C1) + 1

2½
+

1
2½

+ 1:

The variance expression (3) at nopt can be easily solved for C, giving the cost needed to
achieve a given (approximate) variance for ½̂.

7 Final Remark

The importance of multilevel models among today’s data analysts poses a challenge to de-
signers of surveys. The surveys should be well designed for multilevel analysis. Research
into the design of such surveys is an exciting and relatively new area.
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