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Abstract

The problem of estimation for small area means and totals is well-documented in the literature.  Not so, the problem
of estimating variances for small areas.  Yet, small area variance estimators suffer from the same general problem as
small area estimators of means and totals – a small sample size on which to base the estimates.  Current Population
Survey state-level variance estimators are an example of variance estimation with relatively small sample sizes.  In
this paper we examine two modeling approaches to address this small area estimation problem.
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Introduction

The Current Population Survey (CPS) sample design is a two-stage stratified, cluster design for
each state and the District of Columbia.  Within each state primary sampling units (PSUs), which
are groups of counties, are stratified.  A single PSU is selected into the sample in each stratum
and a systematic sample of clusters of housing units is then drawn from each sampled PSU.
Sampling is done independently in each state.

There are two types of strata in the CPS sample design: self-representing (SR) and non-self-
representing (NSR).  Each SR stratum contains a single PSU, which is selected into the sample
with probability one.  Each NSR stratum contains at least two PSUs, one of which is selected
into the sample.  The variances of CPS estimators thus have two components in NSR strata: a
between-PSU component and a within-PSU component.  In SR strata the estimators have only a
within-PSU component of variance.

The U.S. Census Bureau currently calculates monthly estimates of variances for CPS state labor
force estimators.  Both successive difference replication and modified half-sample replication
methods are used to calculate these state-level variance estimates.  (See Fay and Train, 1995, and
U.S. Census Bureau, 2000.)  The method of successive difference replication is used to estimate
within-PSU variances in SR strata and the half-sample replication method is used to estimate
total variances in NSR strata.  These variance estimates suffer from two known problems: They
are based on relatively small sample sizes and they are subject to a bias induced by the procedure
of  collapsing NSR strata to estimate between-PSU variances.  In this paper we address the first
of these problems by discussing methods for modeling the variance estimates to improve their
precision.  Griffiths and Mansur (forthcoming) relate a method for reducing the bias of the
variance estimators.

                                                
1 This paper reports the results of research and analysis undertaken by Census Bureau staff.  It has undergone a
Census Bureau review more limited in scope than that given to official Census Bureau publications.  This report is
released to inform interested parties of ongoing research and to encourage discussion of work in progress.



The approach we take to modeling is colored by the purposes for which the state-level variance
estimates are (or can be) used.  One use is as vital signs of the CPS.  Since the U.S. Census
Bureau is responsible for the statistical methodology of the CPS, it is important for us to monitor
the quality (the “health,” if you will) of the estimators that come from the CPS.  The state-level
variance estimates are important quantities in diagnosing the health of the CPS methodology –
they are vital signs.  A second use is for research purposes: accurate state-level variance
estimates are important in designing changes to the CPS methodology.  Another use of the
variances is in models based on CPS data.  In particular, state-level small area estimation models
need good estimates of variance.  Beyond that, small area models often require covariance
estimates.  (See, for example, Tiller, 1992.)

From these uses we can see a need for modeling both variances and covariances.  Our primary
concern is in modeling the variances, as they are most useful to us as vital signs of the CPS.
However, we recognize the need for estimating covariances – a need that will probably grow as
small area estimation proliferates.  The models we describe in this paper are, in one form or
another, capable of modeling both variances and covariances.

In the following sections, we describe a model introduced by Otto and Bell (1995) for modeling
variance-covariance matrices for the Census Bureau’s Small Area Income and Poverty Estimates
program state-level model.  We then proceed to examine a generalized linear model (GLiM) fit
by maximum partial likelihood estimation.  This model explicitly models only variances, but by
making some assumptions about the relationship between variances and covariances, could be
used to estimate covariances.  After introducing these models, we examine the results of fitting
them to several years of monthly state-level variance and covariance estimates.

The Otto/Bell Model

Otto and Bell (1995) proposed a model for improving estimates of state-level variance-
covariance matrices for March CPS income and poverty estimators.  This model is based on the
principle that the mean of the variance-covariance matrix estimator is a function of several
components: state effects, characteristic estimates, and sample sizes.  Furthermore, the model
assumes a structural relationship between variance and covariance estimates based on the
autocorrelated nature of CPS sampling errors.  Otto and Bell (1995) assumed that the variance-
covariance matrix estimator follows a Wishart distribution; inference about the mean of this
distribution can be made either through maximum likelihood estimation or in a Bayesian
framework by assuming a prior distribution on the model parameters.

The Otto/Bell model assumes that ν νs sWishartC Vs s~ ( , ) , where Cs is the sample-based
variance-covariance matrix estimator for state s, ν s  is the degrees of freedom for Cs, and Vs is
the mean variance-covariance matrix for state s.  Cs is a MxM matrix, with M being the number
of months for which we have estimated variances and covariances.  We denote the (i,j)th element
of Cs by Csij, where Csij is the covariance of the estimators from months i and j in state s.

We assume Vs has the form
V w GVF R GVF ws s s s s( )

~
η = ⋅ ⋅ ⋅ ⋅  (1)



where η
~

 is a vector of unknown parameters contained in the terms on the right-hand side of (1);

ws is a diagonal matrix, with each diagonal element being the square root of the state effect for
state s; GVFs is a diagonal matrix containing the square roots of the generalized variance
function (GVF) estimates divided by the sample size for state s; and R is a matrix which
accounts for the autocorrelated nature of the sampling errors.  In this paper we assume the tth

diagonal element of GVFs is a x n b x nst st st st⋅ + ⋅2 / / , t=1,2,…,M, where a and b are GVF
coefficients, xst is the estimated characteristic total in state s for the tth month, and nst is the state
sample size in month t.  This is the form of the official CPS GVF, divided by the state sample
sizes.  (See U.S. Census Bureau, 2000.)

The R matrix has the following form
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where est is the sampling error for the estimator from state s in month t.  So, Corr(est,es,t-k) is the
lag k sampling error autocorrelation.  We assume the sampling errors represent a stationary
stochastic process.  The process assumed then determines the form of the elements of R.  As an
example, if we assume the sampling errors follow an ARMA(1,1) process, then
e est s t st s t= + −− −φ ε θ ε, ,1 1  , where { } ,...,ε st t M=1  is a white noise process, and the (i,j)th element of R

has the form:  
( )( )1
1 22

1− −
+ −

− −φ θ φ θ
θ φθ

φ j i , iÖj.  (See Vandaele, 1984, pp. 46-47.)

We thus see that the Otto/Bell model assumes the mean of the variance estimator is the product
of the state effect and the GVF divided by the sample size: E C w ax n bx nstt s st st st st( ) ( / / )= +2 ,
where ws is the state effect for state s.  And it assumes that the mean of the covariance estimator

Cstu, tÖu, is w ax n bx n ax n bx n Corr e es st st st st su su su su st su( / / )( / / ) ( , )2 2+ + ⋅ .

Parameter Estimation

The vector of unknown parameters in (1) may be written as
η φ φ φ θ θ θ
~

( , ,..., , , ,..., , , ,..., , , , )= w w w a b dfp q1 2 51 1 2 1 2

where the φ θand  parameters are from the ARMA process used to describe the sampling error
autocorrelations, which will include seasonal terms, and df is a parameter used to estimate the
degrees of freedom in each state ( ν s sdf h= − , where hs is the number of strata in state s).  In this
paper, we examine using estimated monthly state-level variance-covariance matrices Cs to
calculate maximum likelihood estimates of η

~
 and thus of the Vs.  We note that Otto and Bell

(1995) treated the ws as random effects in their work, because they had only five annual variance
estimates from each state for model fitting.  We treat the ws as fixed effects since we have more
observations, owing to the fact that we fit the model using monthly estimates.



Since we have assumed a Wishart distribution for ν sCs , the likelihood function we work with is
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Since CPS sampling is done independently in each state, we assume the state-level variance
estimators are independent and the likelihood function using data from all states is then given by

L L
s

( | ) ( | )
~ ~
η ηC Cs=

=
∏

1

51

, (2)

where C=(C1,C2,…,C51).

Maximizing (2), or the log of (2), for η
~

 gives us $
~
η , the MLE.  The MLE of Vs is then obtained

by substituting $
~
η  into (1).

Partial Likelihood Generalized Linear Model

As an alternative to the Otto/Bell model for improving state-level variance estimates, we
consider a generalized linear model (GLiM) fit through partial likelihood (PL) estimation.  (See
Kedem and Fokianos, forthcoming, and Fokianos and Kedem, 1998, for more on PL estimation
in the context of GLiMs.)  We examine this alternative model for two reasons:

• The Otto/Bell model fits both variances and covariances.  For some purposes (e.g., variances
as CPS vital signs), we are more concerned with the estimation of variances than
covariances.  (In fact, in this paper, we emphasize variances over covariances.)  For these
purposes, a properly-specified model that fits only variances will be more efficient than a
variance-covariance model.

• This alternative model will help us evaluate the fit of the Otto/Bell model for variances.

The basis of this method is a decomposition of the joint density of the Cstt and xst.  We may write
the joint probability density function for state s as
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where As is the fixed auxiliary information for state s.  Here As=(ns1,…,nsM).  Rather than basing
inference on the likelihood, we will base it on the partial likelihood.  The last product in (3) is the
partial likelihood.

Since CPS sampling is done independently in each state, we take the partial likelihood over all
states to be

f C C C x xs stt s s t t s st
t

M

s
( | , ..., , ,..., , ), ,11 1 1 1

11

51

− −
==

∏∏ A s (4)



To develop the model for state-level variances, we assume that  fs(Cstt|Cs11,…,Cs,t-1,t-1,xs1,…xst,As)
is a gamma density, s=1, …, 51; that Vstt is the conditional mean of the state-level variance
estimator for month t: V E C C C x xstt stt s s t t s st= − −( | ,... , , ,..., ), ,11 1 1 1 ; and that

g V w C x n x nstt s s t t st st st st( ) / /, ,= + + +− −β β β1 1 1 2 3
2 ,

for some link function g.  We include the most recent lagged value Cs,t-1,t-1 in the formulation
based on evidence that state-level variance estimates follow an AR(1) process.  (See Mansur and
Griffiths, 2001.)  Since Vstt is a parameter in the density, (4) is a function of
β β β β
~

( ,.. , , , , )= w w1 51 1 2 3 .  Specifying a form for g allows us to estimate β
~

, and thus Vstt, by

maximizing (4) for β
~

.  This estimator is the maximum partial likelihood estimator (MPLE) of

β
~

.  (See Wong, 1986, and Fokianos and Kedem, 1998, for discussions of the asymptotic

properties of the MPLE.)

Choosing the link function as g(Vstt) = ln(Vstt) gives a model with multiplicative state effects:

V e estt
w C x n x ns s t t st st st st= − − + +β β β1 1 1 2 3

2
, , / / .

Choosing the link function as g(Vstt) = Vstt (the identity link) gives a model with the mean as a
linear function of the covariates:

V w C x n x nstt s s t t st st st st= + + +− −β β β1 1 1 2 3
2

, , / / .
Both forms of link function exhibit commonalities with the specification of the mean variance in
the Otto/Bell model and thus will be used in comparing the PL GLiM to the Otto/Bell model in
this paper.  Note that the PL GLiM gives us a model very similar to a GVF and provides a
theoretical justification for regressing on random covariates and past variance estimates.

Results from Fitting the Models

In this section we discuss results obtained by fitting the models to state-level total variance and
covariance estimates.  We used estimated variances and covariances for the (uncomposited)
estimates of number of people unemployed from January 1996 to September 2000 for this fitting.
We made no attempt to account for the bias due to collapsing NSR strata.

We first examined the fit of several versions of both the Otto/Bell model and PL GLiMs.  After
determining which of these models were most appropriate to use in a further evaluation, we
compared their fits for the estimated variances.

Fit of the Otto/Bell Model

We examined the fit of the full model (1) and several reduced models.  The R matrix we used in
fitting these models is for an ARMA(1,1)x(0,1)12 process.  This is the form that corresponds to
sampling error autocorrelation patterns for estimated number of people unemployed.  (See
Griffiths and Mansur, 2000.)  We looked at the following reduced models:

• Model (1) with Θ 12 0=  (i.e. no seasonal MA term)
• Model (1) with ws = 1 for all s (i.e. no state effects)



Table 1  Results of Fitting Full and Reduced Otto/Bell Models
Model Number of Parameters

Estimated2
AIC

Full Model 48 241,322
Model with no seasonal MA term 47 241,976
Model with no state effects   6 305,254

Table 1 gives the AIC values for the fit of each of these models, along with the number of
parameters estimated for each model.  The AIC is calculated as − +

∈
∑2 2ln ( | )

~
L k

s

η Cs
S

, where k is

the number of parameters in η
~

, which depends on the version of the model being fit, and S

indexes the states used in the fitting (see footnote).

From this table we conclude that the state effects and seasonal MA term are important in the
model.  We thus used the full version of model (1) in the subsequent evaluation.

Fit of the Partial Likelihood GLiMs

We performed a similar analysis on the PL GLiMs with log link and identity link functions.
Tables 2 and 3 give the AIC values and number of parameters estimated for each model.  For
these models we calculated the AIC as − +2 2ln( )PL k , where PL is the partial likelihood given
by (4) conditioned on an observation at time t=0 and k is the number of parameters estimated for
the model being fit; thus,

AIC = − +
∈

− −
=

∑ ∑2 200 1 1 1
1s

s stt s s t t s st
t

M

f C C C x x k
S

sAln ( | ,..., , ,..., , ), ,

where Cs00 is the estimated variance from the month prior to month t=1.  From the results shown
in these tables, we conclude that the full models are the appropriate models to use in evaluating
the fits of the PL GLiMs.

Table 2  Fit of Full and Reduced Versions of PL GLiM with Identity Link
Model with identity link Number of parameters

Estimated1
AIC

Full Model 45 25,709
Model with no lagged value of Cstt 44 25,736
Model with no state effects   3 26,281

Table 3  Fit of Full and Reduced Versions of PL GLiM with Log Link
Model with log link Number of parameters

Estimated1
AIC

Full Model 45 25,951
Model with no lagged value of Cstt 44 25,959
Model with no state effects   3 33,755

                                                
2 The number of parameters excludes state effects for states with no NSR PSUs and Hawaii.  These states were not
included in the model fitting.



Comparison of the Models for Variances

Comparing the fit of the models for improving variance estimates is in some sense unfair since
the Otto/Bell model was designed to model both variances and covariances and the PL GLiMs
were designed to model only variances.  On the other hand, the form of the GLiMs studied in this
paper was restricted to make them somewhat comparable to the Otto/Bell model, at least in terms
of link functions used.  However, the comparison is made to help determine if we need different
models for the different purposes mentioned in the opening section of this paper, or if one model
will work for all our purposes. Below, we first compare the models on deviance.  We then
examine the models in terms of the similarity of their fits.  To do this we look at the degree of
smoothing each model provides and at graphs of the observed and modeled variances.

Deviance

The deviance is a measure of the discrepancy between the modeled and observed variances – a
goodness-of-fit statistic.  To determine the appropriate form of the deviance to use in comparing
the models, we note that we assumed a gamma distribution for the Cstt under the PL GLiMs.

Under the Otto/Bell model ν νs sWishartC Vs s~ ( , ) ; thus, ν χ ν
ν

s stt stt s
sC V gamma/ ~ ( ) ( , )2

2
2= , where

Vstt is the tth diagonal element of Vs.  So, we examined the deviance of the model fits under the
assumption of a gamma distribution on the Cstt.

The model deviance for a gamma distribution may be written as

[ ]2
1

− + −
=

∑ ln( / $ ) ( $ ) / $C V C V Vstt stt stt stt stt
t

M

,

where $Vstt  is the modeled variance for state s, month t.  (See McCullagh and Nelder, 1983.)  We
calculated the deviance of each of the models for all states.  We found that the overall deviance
for the Otto/Bell model (230.3) was similar to that of the PL GLiM with identity link (233.8),
while that of the PL GLiM with log link (259.1) was quite a bit larger.  A detailed look at the
deviances by state also indicated that the Otto/Bell model and PL GLiM with identity link had
generally similar deviances, while the PL GLiM with log link tended to have consistently larger
deviances.  Based on the deviance criteria, then, we might conclude that the Otto/Bell model and
the PL GLiM with identity link fit the observed state-level variance data about equally well.

Similarity of the Fitted Variances

Graphs of the time series of observed state-level variances and modeled variances under each of
the models are given in Figure 1 for several states.  Two things stand out in these graphs: the
modeled variances are similar under all three models and they generally describe smoother time
series than do the observed variances.  The similarity of modeled variances, especially those of
the Otto/Bell model and the PL GLiM with identity link, is a result of the commonalities among
the models, notably in the form of the hypothesized means of the variance estimators.

As for the smoothing, under the assumption that the variance estimates are somewhat unstable
(i.e., the small sample size problem), we would like to see time series of modeled variances that



Table 4 Degree of Smoothing
Characteristic of the
Distribution

Otto/Bell Model Partial Likelihood GLiM
with identity link

Partial Likelihood
GLiM with log link

Mean .466 .477 .389
Median .434 .473 .334
Standard Deviation .096 .136 .215

are less oscillatory than those of observed variances.  To measure the smoothness of each
variance time series, we looked at the total variation in the observed and modeled variance time

series.  We defined the total variation in a time series {Vt}t=1,…,M as V Vt t
t

M

− −
=

∑ 1
2

.

We used the ratio of the total variation in the modeled variances to the total variation in the
observed variances to assess the degree of smoothing.  We calculated this ratio for each state and
each model.  Table 4 contains some characteristics of the distribution of this ratio over all states
for the models.

Before proceeding, we note the informal nature of the total variation in assessing the smoothness
of the fits.  We have no absolute criterion for the degree of smoothing that is best.  It is certainly
possible to smooth the estimates too much.  In other words, there could well be a good deal of
oscillation in a time series of true variances (e.g., seasonality) and smoothing the variances too
much might mask this true oscillation.  However, we feel this measure of smoothness provides a
nice descriptive tool for understanding the graphs in Figure 1, plus it gives us another way of
showing the similarities among the modeled variances.

Table 4 shows that the degree of smoothing attained by the PL GLiM with log link was, on
average, greater than that of the other two models, as well as more variable over the states.
Overall, the smoothing for the PL GLiM with identity link was similar to that of the Otto/Bell
model, though a little more variable over the states.  This is another indication of the similarity of
the fitted variances from the Otto/Bell and PL GLiM with identity link models.

Discussion

In this paper we have examined models for improving CPS state-level variance and covariance
estimates, though we have been primarily concerned with the variance estimates.  We have seen
that fitting the Otto/Bell model to variance-covariance matrices and a PL GLiM to variance
estimates resulted in substantially similar modeled variances.

While the Otto/Bell model and the PL GLiM are aimed at somewhat different goals, their
structures, along with some of the assumptions we’ve made, will allow us to substitute one for
the other.  We have seen that the Otto/Bell model when examined solely for its fit to variance
estimates performed at least as well as the PL GLiMs examined in this paper.  It would thus
seem that, unless we can specify a much better form for the PL GLiM, the Otto/Bell model might
be preferred for modeling both variances and covariances, purely on the basis of quality of fit.

With this in mind, though, we also note that given a set of modeled variances from the Otto/Bell
model, the modeled covariances will be completely determined by the estimated ARMA



parameters in the R matrix.  Thus, if we assume the same structural relationship between
variance and covariance estimates as the Otto/Bell model, we can use the PL GLiM variances to
calculate covariance estimates.  Since we have seen that the Otto/Bell model and PL GLiM
produced similar variance estimates, applying the same estimated ARMA parameters to the PL
GLiM variance estimates would give modeled covariances similar to those of the Otto/Bell
model.  Note, though, that without first fitting the Otto/Bell model, the ARMA parameters would
have to be estimated outside of the PL GLiM model fitting.  They would have to be based on an
analysis of sampling error autocorrelations similar to that of Griffiths and Mansur (2000).

Finally, we note that we need to do more work to determine an appropriate link function for the
PL GLiM.  The links studied in this paper were used more for comparability with the Otto/Bell
model than for quality of fit.  However, due to the relative computational simplicity of
implementing the PL GLiM over the Otto/Bell model, we believe that a form of PL GLiM
should be used to produce modeled CPS state-level variance and covariance estimates.
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Figure 1  Time Series of Observed and Modeled Variances
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