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Abstract: 

 

Microaggregation is a technique used for the protection of the confidentiality of respondents in micro-
data releases. It is typically used for economic data where respondent identifiability is quite high. Rather than releas-
ing a perturbed version of the data, microaggregation releases the averages of small groups in which no single
respondent is dominant.

The original form of microaggregation was for univariate data. It was implemented by sorting the data and then
reporting the averages of adjacent groups of fixed size. Any partial group at the end would be pooled with the final
complete group to ensure that the desired minimum group size was obtained. The typical group size was small, with
five a common choice. An immediate improvement would be to allow some number of internal groups, perhaps near
the center of the data, to be larger to compensate for the incomplete group.

As a further improvement the groups can be allowed to have varying sizes so that no group will include a large gap in
the sorted data. Each of the resulting groups can be more homogeneous when the group boundaries are allowed to be
sensitive to the distribution of the data. This can be described as a clustering problem with a variable number of clus-
ters and a minimum cluster size. The number of clusters is chosen to be as large as possible consistent with homoge-
neous clusters and the minimum cluster size.

Techniques for determining such data directed microaggregations have been proposed which use randomized search-
ing methods. These methods are typically terminated early as they are quite expensive to operate. They seek to mini-
mize the total within cluster sum of squares as suggested by some clustering methods. They have two disadvantages
of not leading to readily solved optimization problems and of not being the most suitable criterion for highly skewed
data typical of economic applications.

For highly skewed data the width of the clusters may be a more suitable measure. The total within cluster width may
be obtained by summing the gaps between adjacent members of the clusters. Cluster size may be controlled by requir-
ing a minimum number of adjacent gaps be included in any cluster. The result is an optimization problem for a linear
objective function over the indicator variables for the gap inclusions. Each data point and its potential cluster neigh-
bors would appear in a constraint which enforces the minimum cluster size. The resulting system can be readily
solved.

For bivariate, or higher dimensional, data a the notion of adjacency is defined even though sorting is no longer well
defined. The size of a cluster can be measured by the length of its minimal spanning tree. The problem of finding
groups of size exactly two is the well known perfect matching problem. One form of clustering is minimal spanning
tree partitioning which resembles the univariate method above. Suitable constraints for minimum cluster size, which
are more elaborate than in the univariate case, can be constructed and the resulting systems solved. For larger prob-
lems, or higher dimensions, we may choose to use only a Delaunay triangulation rather than all adjacencies.
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1. Introduction

 

The demand for public use samples of the files
collected by statistical agencies is very strong.
For demographic data, this demand has been
met by standard practices for some time. These
practices do not carry over to files of establish-
ments. A specialized technique has been devel-
oped to address the needs for establishment
data for secondary analysis. The released data
is the average of a small number of similar
records. This release technique is called micro-
aggregation [4], [1].

The number of records in the groups to be
averaged is as small as the disclosure require-
ments will permit. Often this means five
records in a released group average. We will
use five as our fixed example for simplicity
although other values are possible. The origi-
nal microaggregation proposal was for a single
data variable. The single variable would be
sorted and five adjacent records would be
assigned to a group. If the file for release had
one thousand records, there would be two hun-
dred groups of size five and the released public
use file would have two hundred records. For
other sizes there could be a partial group left
over. In the initial proposal, this partial group
would be combined with the last complete
group so that the final group would have a size
of five to nine members. A modification of this
is to have some number of groups of size six
and for the enlarged groups to be internal
groups rather than the final groups [3]. To deal
with higher dimensional data the technique of
dimensional reduction was used so that the
original proposals could be used. The dimen-
sional reduction was a projection, often that
suggested by a principal component analysis.
More direct techniques are possible, although
more complex technically. The difficulty is that
sorting is not well defined in two or more
dimensions although the notion of adjacent can
be effectively defined.

The microaggregation technique is typically

applied to establishment data. Like most eco-
nomic data, it is highly skewed. When the
effects of microaggregation on secondary anal-
ysis are examined, an immediate question is
the effect of the technique on the distribution
of the data. One measure of the effect is the
spread within the groups. For skewed data, the
final groups will have the highest internal
spread. Having the final group be of varying
size will further increase its variability so the
modification of varying internal group size is
very natural. For skewed data, variance may
not be the preferred measure of within group
spread. Often we would prefer to use the range
of the group. Variance is associated with the
Gaussian distribution. Skewed distributions are
more often like the exponential distribution.
The Laplace, or double exponential, distribu-
tion is a symmetric distribution with the same
long tails as the exponential distribution. The
Laplace distribution leads to medians and
mean absolute deviations in the same way that
the Gaussian distribution leads to means and
variances. We will measure within group
spread by the group range for one dimensional
data. For higher dimensional data we would
use a measure of cluster size. We shall find that
the length of the minimal spanning tree is a
convenient measure.

The next modification of the microaggregation
technique is to deliberately have some groups
be larger than five, or even six, in order to
reduce the total within group spread. The count
of groups might decrease but allow for lower
total within group spread. When there is a
large gap in the data, we would like it to be
between groups rather than within some group,
if this is consistent with our overall objectives.
This has been suggested. Methods to achieve it
have been proposed and experiments have
been done to demonstrate that it is a sensible
suggestion. The proposed methods, based on
genetic algorithm minimization of total within
group variance, require much computer time to
achieve their results [2]. We will demonstrate



 

direct methods requiring smaller amounts of
computer time. The corresponding techniques
in higher dimensions lead to problems well
known to be computationally difficult. Our
first interest will be in whether the higher
dimensional results are useful. Only if they
prove to be useful would it be worth pursuing
the question of how to reduce their computa-
tional cost. The problems may also be of inde-
pendent interest to those studying algorithm
complexity issues.

When we seek groups that have small within
group spread there are elementary observa-
tions that are obviously true for univariate
data. Any two groups will not be interleaved. If
they were interleaved, then groups with
smaller spreads could be obtained by exchang-
ing members to remove the interleaving. A
group of size greater than or equal to ten can
be broken into two groups so that we will only
observe groups with sizes from five to less than
ten. These observations are problematic in
higher dimensions. One might define two
groups to be disjoint if their convex hulls do
not overlap but it is easy to construct examples
where this definition is not compatible with
keeping the group size small.

 

2. Clustering Approach

 

Viewing forming microaggregations as a clus-
tering problem is very natural. However, it
does not readily lead to an optimal solution
although it provides useful insights. As an
approximation technique it is quite useful. For
one dimension we may readily construct a
cluster tree in which the sorted data values are
the external leaves of the tree. The first cluster
would be of the two data items with the small-
est gap between them. The node joining these
two data points would be labeled with the mid-
point of the gap separating them, which is also
their average in this simple case. The following
clusters would be of the two data points, the
data point and the cluster or the two clusters
with the smallest gap between them. In each

case the new node would be labeled with the
midpoint of the gap. Eventually there will be a
single large cluster containing all the data
points. This is a bottom up procedure. A top
down procedure would start with the sorted
data and the gaps to form two clusters by using
the midpoint of the largest gap to separate the
data into two subclusters. We would repeat this
within each cluster until all the clusters are of
size one. However we construct it, the cluster
tree will represent the data. When we seek to
form the microaggregations we will discover a
difference between clustering and microaggre-
gation. We may find a cluster of an adequate
size to form two micro aggregations but the
subclusters violate the microaggregation size
requirements. One of the subclusters may be
too small while the other is of an acceptable, if
slightly large, size. This problem occurs when
the largest gap in the cluster is too close to one
of the cluster ends and we must reorganize the
internal structure of the cluster to match the
microaggregation requirements. The top down
procedures can be redefined to ignore large
gaps which are too close to the end points of
the current cluster. With this redefinition we
will have a procedure which avoids large gaps
and permits variable size microaggregates. We
will later see that it is an effective approximate
procedure.

The top down procedure could be organized to
follow the cluster groupings in the form of a
recursive partitioning process or to follow the
gap sizes in the form of a greedy algorithm.
Recursive partitioning is the basis of the com-
mon quicksort algorithm where an internal
value is used to separate the current partition
into smaller and larger values by moving the
entries. For microaggregation, the initial data
would already be sorted so that the gaps can be
easily determined. The largest gap within a
partition can be identified and the subpartitions
determined with no need for any data moving.
Gaps near the endpoints of a partition can be
ignored so the partitions are always suitable



 

for forming microaggregations. The process of
finding the largest gap in the current partition
is essentially that of quicksort if it were to be
used to sort the gaps. There is no data moving
involved as we are trying to determine which
gaps are boundaries between the microaggre-
gation groups. If the gaps are sorted before
starting, a processing sequence of the parti-
tions can be based on using the largest gap not
yet processed. Here, the next gap to be pro-
cessed can be anywhere in the data rather than
just within the active partition of the recursive
procedure. If a gap is too close to a partition
endpoint it is ignored. This sequence of pro-
cessing of the partitions follows the structure
of a greedy algorithm. The recursive partition-
ing algorithm would examine the unsorted
gaps repeatedly while the greedy algorithm
would examine the sorted gaps only once.

We may also learn about the limitations of the
clustering notions by examining alternate data
sets that are equivalent under the clustering
procedures. All of the clustering decisions are
based on the comparison of gaps. A new set of
gaps, with a reference data point, will define a
new data set. For example, we could define the
new gaps to be 1 plus a small positive multiple
of the given gaps with a reference point of 1 as
the smallest value. This new data set would be
the integers with a small perturbation but with
unchanged gap comparisons. For small pertur-
bations the microaggregation groups would all
be of size five. However the clustering based
groupings could be quite different.

For two or more dimensions the sorting based
procedure can not be applied. The ability to
judge adjacency by sorting and examining
gaps is lost. In one dimension there are two
adjacent points, except at the ends. In more
dimensions there are many adjacent points and
even the number of adjacent points may vary
considerably. To form clusters in a bottom up
fashion we would join the two points which
are closest, as we did in one dimension. We
would then join two points, a point and a clus-

ter or two clusters as our next step. If they were
already in the same cluster then we would not
join them again. This is a complication that
does not arise in one dimension. This process
would be repeated until all the points have
been joined into a single cluster. This process
is the well known Kruskal algorithm for find-
ing the minimal spanning tree. There is a cor-
responding top down procedure for finding the
minimal spanning tree in which we repeatedly
remove the longest connection. We do not
remove connections which would lead to two
components. This alternate algorithm requires
more steps than does the Kruskal algorithm so
is rarely used or even described. Both require a
sorted list of all the connections as input data.
Tarjan[5] provides a generalized proof for
greedy algorithms that covers both these algo-
rithms and many other variants. Partitioning
the minimal spanning tree is one of many clus-
tering algorithms. It may not satisfy the size
requirements of the microaggregation prob-
lem as we have seen in the one dimensional
case. Rather we would use the top down proce-
dure with the requirement that the removal of a
connection should not create a subcluster
which is too small to be a microaggregate. We
would start this procedure with all the connec-
tions as, in general, the final set of connections
is not contained in the minimal spanning tree.
This would usually be more data than we
would like so we would choose a triangulation
which includes the minimal spanning tree,
such as the Delaunay triangulation. For two
dimensional data the total number of connec-
tions in the Delaunay triangulation is a small
multiple of the number of data points. A
Delaunay triangulation in two dimensions can
be determined at a low cost comparable to
sorting the data on one of its coordinates,
which is the first step in the standard algo-
rithms. Some of the final groupings may be
larger than twice the microaggregation size.
There will be a single central point with sev-
eral groups, each too small to be a microaggre-
gate, surrounding it. The number of



 

surrounding groups is limited by the geometry
of crowding, so that the regular hexagon is a
boundary case in two dimensions. An illustra-
tion of this is would be five pairs of points
around a central point. After a postprocessing
stage this would become two microaggregates,
one of five points consisting of two pairs and
the central point and the other of six points
consisting of three pairs which have been
joined. A more awkward example would be
three groups of size three around a central
point. The postprocessing can be done with the
optimization technique discussed below.

 

3. Optimization Approach

 

To treat the microaggregation problem as an
optimization problem we will need both an
objective function, to choose between various
sets of microaggregations, and a model, with
constraints, to define possible sets of microag-
gregations. We can model the problem by hav-
ing two data points be in the same
microaggregation if the connection between
them is chosen as shown by a value of 1 for its
indicator function. The objective function
would be the total length of all selected con-
nections. In one dimension this is relatively
simple as each point has two connections,
except the two end points with one connection.
For groups of size five or greater we would
require that at least four consecutive connec-
tions be made before a connection could be
absent. Such a condition would be xi+1 + xi+2
+ xi+3 + xi+4 + xi+5 

 

≥

 

 4. The number of such
conditions is limited by the number of data
points. We would need minor modifications to

this at the end points. If we avoid technical
issues such as connections of zero or the same
length, we will have solutions in which the
indicator variables assume values of zero or
one when they are only assumed to be continu-
ous on the interval from zero or one. The opti-
mal solutions can be obtained with linear
programming with reasonable cost.

For two or more dimensions the optimization
problem is more difficult to solve. The connec-
tion structure of the groups is more complex
than is the structure in one dimension. The
structure has many similarities to the structure
of the traveling salesman problem, which has
been used to develop many techniques in oper-
ations research. A comparable development is
beyond the scope of the current work. Finding
a solution for smaller problems will allow us to
judge the quality of the approximate method
that was developed above. The extreme case of
exactly one group may be expressed as an opti-
mization problem. This is the optimization for-
mulation for the minimal spanning tree. This
formulation requires that the total number of
connections selected be the number of links in
the spanning tree, which is one less than the
number of data points, and that there be no
loops in the selected connections. This last
condition must be true for all subsets of the
data. For n data points, there are 2n subsets.
This formulation is impractical to use if all the
conditions must be expressed before starting
the computation. Very few of the conditions
are required in any particular example so an
initial trial solution is found. Conditions are
added to eliminate any loops which are found.
The newly added conditions may allow some
of the earlier conditions to be dropped. The
process is repeated until the trial solution is
free of loops. A different example would
require a different set of conditions. However
in practice this iterative formulation is not used
because the minimal spanning tree problem
has very efficient solutions which directly use
its special structure.

 

Large group postprocessed into 2 groups



 

We are seeking multiple spanning trees for dis-
joint subsets of the data. We could use discrete
optimization with our conditions of a lower
limit on the size of the subsets and the condi-
tions that the spanning trees have no loops.
Discrete optimization is typically slow as it
often is based on very generalized methods
used to guide an underlying continuous opti-
mization. Much of discrete methods research
is directed at exploiting the properties of the
problem under study to guide a continuous
optimization method to find the discrete solu-
tion. The first difficulty we notice about the
microaggregation problem is that we do know
how many spanning trees we are trying to con-
struct. If we knew this we could ask what hap-
pens as we modify our objective function to
successively merge the group spanning trees,
perhaps with some reorganization, until we
arrive at the minimal spanning tree for all the
data. When we try to apply continuous optimi-
zation to find the spanning trees of many
groups we encounter fractional values. This is
not surprising as the same phenomena arises in
the traveling salesman problem and is
addressed by the so called comb inequalities.
The fractional values are not an issue for the
full minimal spanning tree problem. We
observe that if we decrease the number of
groups, by increasing the numbers of connec-
tions that are to be selected, we will have no
fractional values at some point even though we
have only used conditions to ensure no loops
and minimal group size. We will obtain some
number of unmerged groups and of merged
groupings. The merged groupings define
smaller subproblems that can be addressed by
the same methods. The calculation of the ine-
quality systems for specific small examples
suggests that this reduction will always work
although general proofs are not available.

We would like to have stronger conditions
which will allow us to find both more and
smaller subproblems at each stage of out pro-
cessing. The smallest example of fractional

values would be three points joined with con-
nections of weight 1/2. The most elementary
condition is that every point should be con-
nected to some other point. The equation for
this would be that the sum of all connections to
a point should sum to 1 or more. Two connec-
tions of weight 1/2 satisfies this condition. The
condition that the three points should not form
a loop requires that the sum of the three indica-
tors should be 2 or less, which is met in this
case by the fractional weights. We want the
internal connections to sum to 2, unless there
are also connections from three points to other
points. If the value we choose for the limit is 2
then we are permitting a group of size three. In
fact we do not want such small groups so the
test value must be 3 to keep the group size up.
We can add up all the connections from the
three points, being careful to avoid using the
connections between the points twice. The
condition of avoiding the double counting of
the internal connections makes these condi-
tions stronger than just adding all the connec-
tions to the three points. (In practice we will
have variables representing the sum of all con-
nections to a point so we can sum these and
subtract the double counted connections to
construct more compact equations for the opti-
mization software.) We would certainly apply
this condition to any isolated group of size
three that was observed. We could also search
for triples of points which violate the condi-
tion. We have constructed a new set of condi-
tions directed at removing fractional values
from the continuous optimization, or a cut in
the operations research usage. This cut has two
uses of either extending a group which is too
small or of helping eliminate fractional values.
Such a cut could be used to extend an isolated
group of size two. It could also be used for
groups of size four which could either be
extended or help have fractional values elimi-
nated. It could also be applied to larger groups
except it would no longer have its test value
increased to extend the group size above the
minimum group size.



 

A working search procedure would be to apply
several sets of conditions until a new fraction
free group has been identified and the set of
conditions is not changing. The conditions
would be those for no loops, for no small iso-
lated groups and for no fractional values in
cuts of size two and three. If a new group has
been found we separate it out and start over on
the smaller problem. If the condition set stops
changing with no new group found then we
would increase the order of the cut being used.
There are many higher order cuts which we
would prefer not to have to use. This reserves
the additional power of the higher order cuts
for the smaller problems which can be isolated
with the lower order cuts.

 

4. Reference Approach

 

Microaggregation was originally defined by
sorting and grouping. In one dimension the
definition is both pragmatic and effective. We
have provided two enhanced methods; one an
approximate or heuristic method and the other
an exact method. The extension of the original
definition to two or more dimensions is some-
what problematic.

The problem of finding groups of size two, or
exact matching, is a very well studied problem
in operations research. The data is the distance
between points or the cost of a connection in
some graph. The optimal exact matching prob-
lem is now a classical problem which was used
to develop many methods and has been subject
to many improvements with the best algo-
rithms being very efficient, low order polyno-
mial, but somewhat elaborate. The extension to
groups of size three is mostly notable for its
discovery that the problem is qualitatively
harder. It is called X3C (Exact 3 Cover) in the
list of well known 

 

NP Complete

 

 problems. The
extensions to larger groups will not lead to eas-
ier problems. The operations research methods
will tend to avoid long connections as the
influence of any connection extends to all
matching through the objective function.

To follow the style of the one dimensional sort-
ing method, we would like a method which is
based on comparisons without the global bal-
ancing of the numerical procedures. In the
sorting method we take an extreme point and
collect the points which are closest to it into a
group and repeat until all points have been
assigned to a group. The extreme points would
be on the convex hull of the data points. In two
dimensions the chosen extreme point could be
defined by the point on the convex hull which
subtends the most acute angle along the con-
vex hull. For higher dimensions we would use
solid angle or its extensions. The points to be
grouped with the extreme point could be its
nearest neighbors. This is a procedure which is
based on comparisons and effected by the local
points only. It can be readily implemented as
convex hull and nearest neighbor computations
can be implemented at low cost. The procedure
will tend to 

 

squeeze around

 

 empty regions
rather than just reach across them as is
required in one dimension. It may also leave
isolated points so the groups may not well sep-
arated.

 

5. Examples

 

We have three sets of procedures that can be
applied to data. The one dimensional proce-
dures have corresponding procedures for two
or more dimensions. A simple indicative
example serves to illustrate the differences
within the one dimensional procedures. The
example data are 1000 values from a random
number generator supplied with a Fortran
compiler with its default starting value. The
idealized version of this data would have each
of the 1000 values centered in its own equal
sized panel for all gaps of size 0.001. For a
group size of five, the total width of all groups
would be 0.8. The reference technique pro-
duces results much as the idealized data would
indicate. The approximate technique has been
successful in avoiding the larger gaps with a
reduced group count. The optimal technique
has improved the grouping with a slightly



 

decreased total width and a slightly increased
group count. The observed data are:

The methods for two or more dimensions are
analogs of the one dimensional procedures.
The methods are illustrated for two dimensions
and readily extended to more dimensions. The
test data in 1000 points distributed uniformly
in the unit square. The data are displayed in
Figure 1 below. (1000 data points in a small
display may exceed the reproduction process
capabilities used for this note. Multiple gener-
ation copies are unlikely to be successful.) If
the points were placed on a uniform grid and
connected the total connection length would be
1000 * (1/) = 31.62 when the approximation is
made that the grid fits exactly. A minimal span-
ning tree of the data can be constructed and has
a length of 20.55. The minimal spanning tree is
shown in Figure 2 below. The poor approxima-
tion illustrates the extent to which it is possible
with the extra freedom to move in two dimen-
sions to find paths around the gaps in the data.
A natural comparison value for microaggrega-
tions would be 4/5 * 20.55 = 16.44. The refer-
ence groups are given in Figure 3 below, the
approximate groups in Figure 5 below and the
optimal groups in Figure 6 below. A hybrid
process to use the approximation methods to
find gross groupings with the optimization
methods used for the final details was also
tried. The gross groupings were approximate
microaggregations of minimal size 25. Each of
these gross groups were then reduced to multi-
ple optimal microaggregations of minimal size
five. The results for this hybrid calculation
were 163 groups with a total length of 16.03 as
shown in Figure 4 below. We see that the
approximate, hybrid and optimal solutions
have sizes that are consistent with avoiding the
longer connections in the minimal spanning
tree as the groups are formed. The reference
groups are larger than the minimal spanning

tree approximation would suggest. The
observed data are:

 

6. Conclusion

 

The univariate microaggregation technique can
be extended to allow for varying group size.
This permits the groups to be chosen for
greater within group homogeneity. An approxi-
mation algorithm, which is a modification of
the usual quicksort algorithm, will produce
data dependent microaggregations at a cost
comparable to sorting the data. The quality of
the grouping found is less than that obtained
by use of optimization techniques. The differ-
ence in quality between the approximation and
the optimization result is pleasantly small. The
optimization based solution is not difficult to
achieve but may be awkward for some organi-
zations. The robustness of the observation on
the quality of the approximation should be
tested by more extensive experimentation with
both artificial and real data.

The univariate methods have natural exten-
sions to two or more dimensions. The underly-
ing notion of adjacency is both simple and
natural in one dimension and easily imple-
mented by sorting. For two or more dimen-
sions the notion of adjacency is natural but
simplicity and ease of implementation are lost
as sorting is not well defined. Standard tech-
niques from computational geometry can be
adapted to the microaggregation problem. An
approximation method, which is a modifica-
tion of a minimal spanning tree algorithm, is
quite effective. Unfortunately it requires two
stages of processing as it can generate over
sized groups. The two stages can be used to
advantage to obtain a better approximation by
using the optimization based second stage to
process small local problems. The approxima-

 

Count Total Width
Reference 200 0.79
Approximate 164 0.63
Optimal 170 0.62

Count Total Length
0.8 * MST 16.44
Reference 200 18.28
Approximate 155 16.18
Hybrid 163 16.03
Optimal 168 15.90



 

tion method is effective but provides less qual-
ity in grouping than does the optimization
based method. The optimization problem is not
one of the standard problems which has been
addressed by computational geometry. Further
elaboration of the techniques for finding the
optimal microaggregates both in the complete
problem and in the post processing phase for
the oversize groups from the approximate
method is indicated. The robustness of the
observation on the quality of the approxima-
tion should be tested by more extensive experi-
mentation with both artificial and real data.

The use of computational geometry techniques
to determine variable size data directed micro-
aggregations is useful. The univariate tech-
niques can be easily implemented. The
techniques for two dimensions are more diffi-
cult to implement with the approximate tech-
nique readily implemented but requiring a
second phase of the more difficult optimization
technique. The optimization technique is suit-
able for small groups but is not, without further
development, for direct use on larger files. The
extension to higher dimensions pose no addi-

tional difficulties beyond those of triangulation
in higher dimensions.
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: Reference Microaggregates

200 groups - 18.28 length

 

Figure 5

 

: 

 

Hybrid Microaggregates

163 groups - 16.03 length
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: Approximate Microaggregates
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Optimal Microaggregates

168 groups - 15.90 length
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