Discussion of Three Papers on Treatment of Missing Data

Nathaniel Schenker
Senior Scientist for Research and Methodology
National Center for Health Statistics nschenker@cdc.gov

Presented at the FCSM Research Conference November 14, 2001

Introduction

- I enjoyed reading the three papers and listening to the presentations of them.
- First two papers (Fetter; Piela and Laaksonen): regression-based methods for imputing continuous and/or categorical missing data
- Third paper (Greene, Smith, Levenson, Hiser, and Mah): raking-based methods for handling missing data when the variables are categorical and form a contingency table with several dimensions and many cells
- I will discuss the first two papers first and discuss the third paper afterwards.

Explicit models vs. implicit models

- Fetter's models:
- MCMI procedure based on explicit model
- RER procedure has both explicit (regression) and implicit (empirical residual) components
- Piela \& Laaksonen's models:
- CART procedures based on implicit models
- Implicit models often have a nonparametric flavor; attempt to be more robust
- Schenker and Taylor (1996) studied "partially parametric" techniques
- Results from Schenker and Taylor (1996, Table 4) on estimating the distribution function at the median, when the regression model underlying the multiple-imputation method is misspecified regarding the transformation of the outcome variable:

	Imputation Method			
	Fully Parametric	Predictive Mean Matching	Local Residual Draw	No Missing Data
MSE	2.37	1.43	1.31	1.00
Coverage of Nominal 95% Interval	86.6	93.2	94.1	94.9

Multiple imputation

- M independent draws from

$$
p\left(Y_{m i s} \mid Y_{o b s}\right)=\int p\left(Y_{m i s} \mid Y_{o b s}, \boldsymbol{\theta}\right) p\left(\boldsymbol{\theta} \mid Y_{o b s}\right) d \boldsymbol{\theta}
$$

- For many models, can use two-step procedure to produce each draw of $Y_{m i s}$:

1. Draw a value θ^{*} from $p\left(\theta \mid Y_{o b s}\right)$
2. Draw a value $Y_{\text {mis }}^{*}$ from $p\left(Y_{\text {mis }} \mid Y_{o b s}, \theta^{*}\right)$

- Can follow two-step paradigm for partially-parametric and/or nonparametric models
- e.g., for RER, for each of the M sets of imputations, draw regression parameters from approximate posterior distribution prior to calculating predicted values and residuals (see Schenker and Taylor 1996)
- e.g., for each of the M imputations of $Y_{m i s}$, run CART on a bootstrap sample to determine the tree

Additional comments on Fetter

- Designed missing data to reduce respondent burden is an attractive idea
- Reminiscent of one-sixth sampling for census "long form"
- Consider one multivariate procedure for all of the logistic regressions?
- e.g., sequential regression imputation (Raghunathan et al. 2001)
- Might help to preserve relationships among the variables
- Don't forget to reflect uncertainty in estimating logistic regression parameters
- Unclear of the need to set some zero values to "missing" before running MCMI
- Could cause bias due to nonignorable missingness?
- Reason for lower precision of MCMI relative to RER?
- Seems preferable to condition on zero values
- Drawing from "local" empirical residuals rather than "global" empirical residuals might improve robustness to model misspecification (see Schenker and Taylor 1996)

Additional comments on Piela and Laaksonen

- Potential for achieving robust imputations
- Can the method be used when there are missing values in the covariates?
- Difficult to judge performance based on one data set. Could just be "unlucky".
- Useful to examine performance under repeated sampling
- Useful to consider properties of inferences (multiple imputation?)
- Is it possible to build an assumption of nonignorable missing data into CART-based imputation?
- Problems with mode or mean imputation
- Distorts distribution of variables
- Biases when estimator is nonlinear in data
- Choosing the number of explanatory variables and the number of terminal nodes
- Bias/variance trade-off
- Analogous to choosing the number of donor cells in a hot-deck scheme
- Schenker and Taylor (1996) used an adaptive method for choosing the number of prospective donors for each missing value

Comments on Greene et al.

- Greene et al. method has desirable properties relative to "national estimates method"
- All marginals are preserved
- Independent of ordering of variables
- Might be interesting to compare Greene et al. method with the "national estimates" method with respect to models underlying:
- contingency table
- missing-data mechanism
- Consider prior distributions to handle sparse data? - Rubin and Schenker (1987) and Clogg et al. (1991) discussed simple Bayesian methods for logistic regression
- Raking generally is useful when the marginal distributions for a table are known but the distributions inside the table are not known. In the application to fire data:
- How precisely are the marginals known?
- Could other methods for handling missing data in contingency tables be useful?
- Consider Table 1 of Greene et al. (this is Table 1 of the draft that was sent to me)

	Female	Male	Unknown	Total
Old	65	30	5	100
Young	25	50	25	100
Unknown	10	2000	70	2080
	100	2080	100	2280

- Marginal distribution of age not known very precisely, since 2080 values of age are missing
- Is it reasonable to distribute the $\mathbf{2 0 8 0}$ missing values on age 50/50 into young and old, and then treat the resulting marginals as the known "population" values for raking, as is done in Greene et al.?
- Note that 2000 of the missing values on age are for males
- Results of a few iterations of Greene et al. procedure:

	Female	Male	Total "Population"	
Old	84.3	1055.8	1140.1	1140.0
Young	20.6	1119.3	1139.9	1140.0
Total	104.9	2175.1	2280.0	2280.0
"Population"	104.6	2175.4	2280.0	

- "Population" marginals preserved
- Odds ratio from original table preserved
- Distributions of age by gender from original table not preserved
- Some young females from original table "removed"; i.e., cell count for young females smaller than that in original table
- Results of a few iterations of EM algorithm (done by hand, with three significant digits of precision) for maximum likelihood under a saturated multinomial model, assuming ignorable missing data (see Little and Rubin 1987, Section 9.3):

	Female	Male	Total
Old	74.9	798	873
Young	29.3	1378	1407
Total	104	2176	2280

- Gender marginals close to those for raking, but age marginals much different
- Odds ratio from original table nearly preserved
- Distributions of age by gender from original table nearly preserved
- Cell counts all greater than those in original table

References

Clogg, C.C., Rubin, D.B., Schenker, N., Schultz, B., and Weidman, L. (1991), "Multiple Imputation of Industry and Occupation Codes in Census Public-Use Samples Using Bayesian Logistic Regression," Journal of the American Statistical Association, 86, 68-78.

Little, R.J.A., and Rubin, D.B. (1987), "Statistical Analysis with Missing Data," Wiley: New York.

Raghunathan, T.E., Lepkowski, J.M., Van Howewyk, J., and Solenberger, P. (2001), "A Multivariate Technique for Multiply Imputing Missing Values Using a Sequence of Regression Models," Survey Methodology, 27, 85-95.

Rubin, D.B., and Schenker, N. (1987), "Logit-Based Interval Estimation for Binomial Data Using the Jeffreys Prior," Sociological Methodology, 17, 131-144.

Schenker, N., and Taylor, J.M.G. (1996), "Partially Parametric Techniques for Multiple Imputation," Computational Statistics \& Data Analysis, 22, 425-446.

