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CHAPTER IV – Methods for Tabular Data 

Chapter II presented examples of disclosure limitation techniques used to protect tables and 
microdata.  Chapter III described agency practices in disclosure limitation.  This chapter presents 
more detail concerning methodological issues regarding confidentiality protection in tables.  

As mentioned earlier, tables are classified into two categories for purposes of disclosure risk 
analysis:  tables of frequency (or count) data and tables of magnitude data.  Tables containing 
frequency data show the percent of the population that have certain characteristics, or 
equivalently, the number in the population which have certain characteristics. If a cell has only a 
few respondents and the characteristics are sufficiently distinctive, then it may be possible for a 
knowledgeable user to identify the individuals in the population. For tables of frequency data 
disclosure limitation methods are applied to cells with fewer than a specified threshold number 
of respondents to minimize the risk that individuals can be identified from their data.  Disclosure 
limitation methods applied after tabulation include random rounding, controlled rounding, cell 
suppression, and controlled tabular adjustment.  Disclosure limitation methods applied before 
tabulation include micordata protection techniques such as data perturbation and data swapping.  

Tables of magnitude data typically present the results of surveys of organizations or 
establishments, where the items published are aggregates of nonnegative reported values.  For 
such surveys the values reported by respondents may vary widely, with some extremely large 
values and some small values. The confidentiality problem relates to assuring that a person 
cannot use the published total and other publicly available data to estimate an individual 
respondent's value too closely.  Disclosure limitation methods are applied to cells for which a 
linear sensitivity measure indicates that some respondent's data may be estimated too closely. 
For tables of magnitude data cell suppression is the most widely used method.  Controlled 
tabular adjustment offers another alternative. Both methods are applied after tabulation.  
Disclosure limitation methods applied before tabulation include microdata protection techniques 
such as adding noise.  

Tables of frequency data are discussed in Section A.  The major methodological areas of interest 
are in controlled rounding and the use of microdata methods such as data swapping.  Tables of 
magnitude data are discussed in Section B. This section provides some detail concerning linear 
sensitivity measures, auditing of proposed suppression patterns and automated cell suppression 
methodologies.   

A. Tables of Frequency Data  
 
Tables of frequency data may relate to people or establishments.  Frequency data for 
establishments are generally not considered sensitive because so much information about an 
establishment is publicly available. Disclosure limitation techniques are generally applied to 
tables of frequencies based on demographic data.  As discussed earlier, the most commonly used 
primary disclosure rule for deciding whether a cell in a table of frequency data reveals too 
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much information is the "threshold rule".  A cell is defined to be sensitive when the number of 
respondents is less than some predetermined threshold. If there are cells that are identified as 
being sensitive, steps must be taken to protect them.   The methods of preventing disclosure in 
tables of counts or frequencies were illustrated in II.C.2.  Included are:  combining cells, random 
rounding, controlled rounding, cell suppression, controlled tabular adjustment, and microdata 
techniques.  Combining cells is generally a judgmental activity, performed by the survey 
manager.  There are no methodological issues to discuss.  Selection of cells for complementary 
suppression is the same problem for both tables of frequencies and tables of magnitude data.  
Complementary suppression will be discussed in Section B.2 of this Chapter.   Controlled tabular 
adjustment is most valuable for establishment level data and is also discussed in Section B2.  
Microdata techniques have been used to publish data from the decennial census since 1990.  
These techniques were illustrated in Chapter II, and the technical issues are described in Chapter 
V. 
 
Perturbation methods include random rounding and controlled rounding as special cases. 
Controlled rounding is a special case of random rounding.  Controlled rounding is the most 
desirable of the perturbation methods, because it sets a condition that the cell values must add to 
the published row and column totals. It results in an additive table (sums of row, column and 
layer entries are equal to the published marginal total).  Controlled Rounding can always be 
solved for two-dimensional tables, and can generally be solved for three-dimensional tables.  
Section A.1 provides more detail on the methodology used in controlled rounding.  

A.1. Controlled Rounding  
 
Controlled rounding was developed to overcome the shortcomings of conventional and random 
rounding and to combine their desirable features.  Examples of random rounding and controlled 
rounding were given in II.C.2.  Like random rounding, controlled rounding replaces an original 
two-dimensional table by an array whose entries are rounded values that are adjacent to the 
corresponding original values.  However, the rounded array is guaranteed to be additive and can 
be chosen to minimize any of a class of standard measures of deviation between the original and 
the rounded tables.  

A solution to the controlled rounding problem in two-dimensional tables was found in the early 
1980's (Cox and Ernst, 1982).  With this solution the table structure is described as a 
mathematical network, a linear programming method that takes advantage of the special 
structures in a system of data tables. The network method can also be used to solve controlled 
rounding for sets of two-dimensional tables that are related hierarchically along one dimension 
(Cox and George, 1989). 
 
For three-dimensional tables an exact network solution does not exist (Cox and Ernst, 1982). 
Current methods make use of an iterative approximate solution using a sequence of two-
dimensional networks.  The exact solutions for two-dimensional tables and the approximate 
solutions for three-dimensional tables are both fast and accurate.  Although solutions to the 
controlled rounding problem are available, controlled rounding is not a common practice among 
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U.S. government agencies. 
 
 
B. Tables of Magnitude Data  
 
For tables of magnitude data the values reported by respondents are aggregated in the cells of a 
table. Examples of magnitude data are income for individuals and sales volumes and revenues 
for establishments.  Particularly for establishments, these reported values are typically highly 
skewed with a few very large reported values that might easily be associated with a particular 
respondent by a knowledgeable user.  As a result, a more mathematical definition of a sensitive 
cell is needed for tables of magnitude data.  For tables of frequency data each respondent 
contributes equally to each cell, leading to the simple threshold definition of a sensitive cell.  

Mathematical definitions of sensitive cells are discussed in Section B.1 below.  After the tables 
have been created and the sensitive cells are identified, a decision must be made as to how to 
prevent disclosure from occurring. For tables of magnitude data the possibilities include 
combining cells and rolling up categories, cell suppression, and controlled tabular adjustment. 
All were summarized and illustrated in Chapter II. 
  
In the combination method tables are redesigned (categories rolled-up) so there are fewer 
sensitive cells. Table redesign methods are useful exercises, particularly with tables from a new 
survey or where portions of a table contain many sensitive cells because the population is sparse. 
However, it is not generally possible to eliminate all sensitive cells by collapsing tables, and 
rigorous automated procedures for collapsing in general remain to be developed.  

The historical method of protecting sensitive cells in tables of magnitude data is cell suppression. 
Sensitive cells are not published (they are suppressed). These sensitive suppressed cells are 
called primary suppressions. To make sure the primary suppressions cannot be derived by 
subtraction from published marginal totals, additional cells are selected for complementary 
suppression. Complementary suppressions are sometimes called secondary suppressions.  

For small tables, it is possible to manually select cells for complementary suppression, and to 
apply audit procedures (see Section 2.a) to guarantee that the selected cells adequately protect 
the sensitive cells. For large-scale survey publications with many related tables, the selection of a 
set of complementary suppression cells that are "optimal" in some sense is an extremely complex 
problem.  Complementary suppression is discussed in Section B.2. 

Controlled tabular adjustment is also illustrated in Chapter II.  Some of the technical details are 
discussed in IV.B.3.  Finally, microdata methods are increasingly being used to protect tabular 
data prior to tabulation.  For establishment level data, noise addition is the technique that has 
been applied to date.  This is summarized in Chapter II, and discussed in more detail in IV.B.4. 
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B.1. Definition of Sensitive Cells – Linear Sensitivity Rules 
 
The definitions and mathematical properties of linear sensitivity measures and their relationship 
to the identification of sensitive cells in tables were formalized by Cox (1981).  Although the 
common linear sensitivity rules were known in 1978 and were used to identify sensitive cells, 
their mathematical properties had not been formally demonstrated.  The important definitions 
and properties are given below.  

For a given cell, X, with N respondents the respondent level data contributing to that cell can be 
arranged in order from large to small:  021 ≥≥≥≥ Nxxx K . Then, an upper linear sensitivity 
measure, )(XS , is a linear combination 

xw = S(X) ii

N

=1i
∑  

defined for each cell or cell union X and its respondent data }{ ix . The sequence of constants, 
}{ iw , is called the sequence of weights of )(XS .  These weights may be positive or negative.  A 

cell or cell union X  is sensitive if 0)( >XS .  Note that multiplying a linear sensitivity measure 
by a constant yields another (equivalent) linear sensitivity measure.  The linear sensitivity 
measures described in this section are all normalized so that the weight multiplying 1x  is equal to 
1.  This normalization makes it easier to compare them.  If a respondent contributes to two cells, 
X and Y , then it remains a single respondent to the union of X  and Y , with value equal to the 
sum of its X and Y contributions.  
 
One of the properties which assists in the search for complementary cells is subadditivity, which 
guarantees that the union of disjoint cells which are not sensitive is also not sensitive.  Cox 
shows that a linear sensitivity measure is subadditive if the sequence of weights is nonincreasing, 
i.e. if Nwww ≥≥≥ K21 .  Subadditivity is an important property because it means that 
aggregates of cells which are not sensitive are not sensitive and do not need to be tested.  Valid 
complementary cells have the property that their union with the sensitive cell(s) in a row, column 
or layer where marginal totals are published is not sensitive according to the linear sensitivity 
measure.  A simple result is that zero cells are not valid candidates for complementary 
suppression as the union of a sensitive cell and a zero cell is equal to the sensitive cell, and is 
therefore still sensitive.  Complementary suppressions may not be needed if marginal totals are 
not published.  
 
The commonly used primary suppression rules are described Sections a, b, and c below.  They 
are compared in Section d.  Each of these rules involves parameters that determine the values 
taken by the weights, nww K1 . Although agencies may reveal the primary suppression rule they 
use, they should not disclose parameter values, as knowledge of the rule and its parameters 
enables a respondent to make better inferences concerning the values reported by other 
respondents.  An example is presented in Section 3.  
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There are three linear sensitivity measures that are discussed in the literature and used in 
practical applications. These are the p-percent rule, the pq rule and the (n, k) rule. They are 
described below. All are subadditive, as can be seen by the fact that the weights in the equations 
defining )(xS are non-increasing.  The p-percent and pq rule classify cells of count data as 
sensitive if n<3. 
 
B.1.a. The p-Percent Rule  
 
Approximate disclosure of magnitude data occurs if the user can estimate the reported value of 
some respondent too accurately. Such disclosure occurs, and the table cell is declared sensitive, 
if upper and lower estimates for the respondent's value are closer to the reported value than a pre-
specified percentage, p. This is referred to as the "p-percent estimation equivocation level" in 
Statistical Policy Working Paper 2. It is more generally referred to as the p-percent rule, and has 
linear sensitivity measure, 
 

.xp
100 - x = (X)S i

N

2+c=i

p% ∑1  

 
Here, c  is the size of a coalition, a group of respondents who pool their data in an attempt to 
estimate the largest reported value.  The cell is sensitive if 0>(X)S p% .  Note that if there are less 
than 3 respondents )3( <N  in cell X , then 01 >= x(X)S p%  and the cell is sensitive for all 
values of p  and c .   
 
The p-percent rule is derived as follows.  Assume that from general knowledge any respondent 
can estimate the contribution of another respondent to within 100-percent of its value.  This 
means that the estimating respondent knows that the other respondents' values are nonnegative 
and less than two times the actual value.  For the p-percent rule, it is desired that after the data 
are published no respondent's value should be estimable more accurately than within p  percent 
(where 100<p ).  
 
It can be shown that the coalition including the second largest respondent is in a position to 
estimate the value of 1x  most accurately, and that if 1x  is protected, so are all the smaller 
respondents.  Thus, it suffices to provide the protection to the largest respondent, and to assume 
that the estimating party is a coalition of the second largest respondent and the next largest 1−c  
respondents.  As the coalition respondents may estimate each of Nc xx ,,2 K+  to within 100 
percent, they have an estimate for the sum of these smallest respondents, E , such that  
 

.  | - xEx| i

N

2+c=i
i

N

2+c=i
∑∑ ≤  
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They can estimate the value of 1x  by subtracting the value they reported to the survey ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
+

xi

c

=i

1

2

 

and their estimate of the smaller respondent's total, E , from the published total.  The error in this 

estimate will be equal to the error in estimating E , which is less than or equal to xi

N

2+c=i
∑ . 

The requirement that this estimate be no closer than p-percent of the value of 1x   ( )100<p  
implies that  

.  x100
p

x 1i

N

2+c=i

≥∑  

 
This can be rewritten as the linear sensitivity rule above.   A simpler version of the p percent rule 
that assumes coalitions of size c can be written as follows: 
 
S=  x1 - 100/p * (T - Tc - x1)   
 
Where T is the cell total of all respondents, Tc is the sum of the respondent values in the 
coalition, and x1 is the largest value.  Using this formula the cell is sensitive if S is positive.  In 
the simple case where Tc = x2 (i.e., the coalition is only a size of one), then T – Tc - x1 = T - x2 - 
x1 which means the remaining cell value is the sum of all the smallest companies in the cell with 
the exception of the two largest.  T - Tc - x1 will equal zero only if the coalition (Tc) includes all 
the respondents in the cell except the largest company.     
 
 
B.1.b. The pq Rule  
 
In the derivation for the p-percent rule, we assumed that there was limited prior knowledge about 
respondent's values.  Some people believe that agencies should not make this assumption.  In the 
pq rule, agencies can specify how much prior knowledge there is by assigning a value q which 
represents how accurately respondents can estimate another respondent's value before any data 

are published ( )100<< qp .  Thus, there is an improved estimate, 2E , of xi

N

2+c=i
∑  with the 

property that  
 

.  | - x100
q

Ex| i

N

2+c=i
2i

N

2+c=i
∑∑ ≤  

This leads directly to a more accurate estimate for the largest respondent's value, 1x .  The 
requirement that this estimate be no closer than p-percent of the value of 1x  implies that 
 

. x
100

p x
100

q
i

N

2+c=i
1≥∑  
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This can be rewritten as the linear sensitivity rule. 
Note that the pq rule (sometimes called a prior-posterior ambiguity rule) and the p-percent rule 
are identical if the ratio pq / , the "information gain", is equal to p/100 .  In the table below we 
use the ratio pq /  as a single parameter for the pq rule.  If users fix a value for p  and a value for 

100<q , the pq rule is more conservative (will suppress more cells) than the p-percent rule using 
the same value of p .  
 
Note that if there are fewer than 3 respondents ( )3<N , then 01 >= xS pq  and cell X  is 
sensitive for all values of c  and pq / .  
 
Most frequently the pq rule is given with the size of a coalition equal to 1.  In this case the linear 
sensitivity rule is given by  
 

.x 
p
q - x = (X)S i

N

3=i
1

pq ∑  

 
 
 
B.1.c. The (n, k) Rule  
 
The (n, k) rule, or dominance rule was described as follows in Statistical Policy Working Paper 
2.  "Regardless of the number of respondents in a cell, if a small number (n or fewer) of these 
respondents contribute a large percentage (k percent or more) of the total cell value, then the so-
called n respondent, k percent rule of cell dominance defines this cell as sensitive."  Many 
people consider this to be an intuitively appealing rule, because, for example, if a cell is 
dominated by one respondent then the published total alone is a natural upper estimate for the 
largest respondent's value.  Although coalitions are not specifically discussed in the derivation of 
the (n, k) rule, agencies select the value of n to be larger than the number of any suspected 
coalitions.  Many agencies use an (n, k) rule with 2or1=n . 
 
The linear sensitivity measure for the (n, k) rule is given by  
 

.  x
k-100

k -x = (X)S i

N

1+n=i
i

n

=1i

k)(n, ∑∑  

 

If ∑
=

>=≤
N

i
i

kn xSnN
1

),( 0,  and cell X  is sensitive for all values of k .  

 .x 
p
q - x = (X)S i

N

2+c=i
1

pq ∑  
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B.1.d. The Relationship Between (n, k) and p-Percent or pq Rules  
 
Table 1 is designed to assist users in selecting a value of the parameter p for use with the p-
percent rule with coalitions of size 1 (or for the value of the ratio, pq / , for the pq rule with 
coalitions of size 1) when they are used to thinking in terms of the (n, k) rule.  For various values 
of p% ( )pq / , the table shows the value of 1k  and 2k  such that if the linear sensitivity rule for 
( )1,1 k or ( )2,2 k  is positive then the linear sensitivity rule for the p-percent (pq) rule will be 
positive. With this formulation, the p-percent (pq) rule is more conservative.  It will suppress 
more cells than will either of the two (n, k) rules individually, and also more than the 
combination rule based on the two (n, k) rules.  The derivation of the inequalities used in Table 1 
is presented in the Technical Notes at the end of this Chapter. Additionally, the sensitivity 
regions for (n, k), p-percent, and pq rules are illustrated graphically in the Technical Notes.  See 
Robertson, D. A. (1993) for theoretical analysis comparing disclosure rules.      
 
To illustrate the use of Table 1, if the analyst wants to make sure that a cell where the largest 
respondent contributes more than 75 percent of the total is suppressed, and that a cell where the 
largest two respondents exceed 85 percent of the total is suppressed, he/she could approximately 
accomplish this by using the p-percent rule with p  equal to 33.3 percent, or the pq rule with 
information gain, 3/ =pq .  

The p-percent, pq and (n, k) rules as well as the combination rule,  
 

(X))S(X),S( = S bacomb max  
 
are subadditive linear sensitivity rules. (Here )(and)( XSXS ba  denote any two subadditive 
linear sensitivity measures.)  Any of these rules is acceptable from a mathematical point of view.  
However, the p-percent or pq rule is preferred for two major reasons.  First, the tolerance interval 
concept directly parallels methods currently used for complementary suppression,  (see section 
B.2.a.iii). Second, as illustrated in the table above and the example in the Technical Notes, the p-
percent (pq) rule provides more consistent protection areas than a single version of the (n, k) 
rule.  
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TABLE 1 Relationship Between Suppression Regions for p-Percent or (pq) Rule and (1,k), 
(2,k) Rules 

0)(% >XS p  and Sensitive when cell 

 P  pq /   Tx /1  exceeds:  ( ) Txx /21 +  exceeds: 

 50.0%  2  66.7%  80.0% 

 33.3%  3  75.0%  85.7% 

 16.7%  6  85.7%  92.3% 

 11.1%  9  90.0%  94.7%  

NOTE:   x = T i

N

=1i
∑  is the cell total.  

 
B.1.e. Information in Parameter Values  
 
Agencies may publish their suppression rules, however, they should keep the parameter values 
they use confidential.  Knowledge of both the rule and the parameter values enables the user to 
make better inferences concerning the value of suppressed cells, and may defeat the purpose of 
suppression.  
 
For example, assume that an agency uses the p-percent rule with p=20 percent, and that the same 
value of p is used to determine the protection regions for complementary suppression.  We 
assume that a cell total is 100 and that the cell is sensitive according to the p-percent rule.  That 
cell will be suppressed along with other suitable complementary cells.  For this cell (as with any 
suppressed cell), any user can use a linear programming package to calculate upper and lower 
bounds for the cell total based on the published row and column equations.  Assume that this 
leads to the following inequality: 
 

80 = lower bound ≤ cell total ≤ upper bound = 120. 
 
In this case, the protection region used in selecting cells for complementary suppression assures 
that the cell total cannot be estimated more closely than plus or minus 20 percent of the cell 
value, or plus or minus 20 in this case.  A knowledgable user has thus uniquely determined that 
the value of the suppressed cell total must be 100.  Once the total for one suppressed cell has 
been uniquely determined, it is likely that other cell values can easily be derived by subtraction 
from published marginal totals. 
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B.2. Complementary Suppression  
 
Once sensitive cells are identified by a primary suppression rule, other nonsensitive cells must be 
selected for suppression to assure that the respondent level data in sensitive cells cannot be 
estimated too accurately.  This is the only requirement for a proposed set of complementary cells 
for tables of magnitude data and is generally considered to mean that a respondent's data cannot 
be estimated more closely than plus or minus some percentage.  
  
There are two ways respondent level data can be compromised.  First, implicitly published 
unions of suppressed cells may be sensitive according to the linear sensitivity measure.  This 
depends on the characteristics of the respondent level data in the cell union, and tends to be a 
problem only where the same respondents contribute to both cells.  Second, the row and column 
equations represented by the published table may be solved, and the value for a suppressed cell 
estimated too accurately. Automated methods of auditing a proposed suppression pattern may be 
needed to assure that the primary suppressions are sufficiently well protected (see Section B.2.a).        

Any set of cells proposed for complementary suppression is acceptable as long as the sensitive 
cells are protected. For small tables this means that selection of complementary cells may be 
done manually.  Typically the data analyst knows which cells are of greatest interest to users 
(and should not be used for complementary suppression if possible), and which are of less 
interest to users (and therefore likely candidates for complementary suppression).  Manual 
selection of complementary cells is acceptable as long as the resultant table provides sufficient 
protection to the sensitive cells.  An automated audit should be applied to assure this is true.  
 
For large systems of tables, for example, those based on an Economic Census, the selection of 
complementary cells is a major effort.  Manual selection of cells may mean that a sensitive cell is 
inadvertently left unprotected or that consistency is not achieved from one table to another in a 
publication. (Cox, 1980).  Inconsistency in the suppression patterns in a publication increases the 
likelihood of inadvertent disclosure. For this reason linear programming techniques have been 
applied to the selection of cells for complementary suppression by statistical agencies for many 
years.  (Cox, 1995).  As an additional benefit, agencies expect automated selection of the 
complementary cells will result in less information lost through suppression.  Examples of the 
theory and methods for automatic selection of cells for complementary suppression are discussed 
in Section B.2.b.  

B.2.a. Audits of Proposed Complementary Suppressions  
 
B.2.a.i. Implicitly Published Unions of Suppressed Cells Are Sensitive  
 
If sensitive cells are protected by suppressing other internal table cells when publishing the 
marginal totals, the implicit result is that the unions of the suppressed cells in rows, columns and 
layers are revealed by subtracting from the total.  Thus, one way to audit the protection supplied 
by the suppression pattern is to apply the linear sensitivity rule to those unions to assure that they 
are not sensitive.  While this type of audit is a simple matter for small tables, Cox (1980) points 
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out that for large tables it may be computationally intractable unless a systematic approach is 
used.  This type of audit is not included in standard audit software because of its dependence on 
respondent level data.  
 
Clearly a table for which suppression patterns have been selected manually requires an audit to 
assure that the pattern is acceptable. Early versions of complementary suppression software used 
approximation arguments to select cells for complementary suppression (individual respondent 
data were not used.)  These methods guaranteed that unions of suppressed cells were not 
sensitive as long as different respondents contributed to each cell.  However, if the same 
respondents contributed to multiple cells in a cell union, then an audit was needed.  
 
 
B.2.a.ii. Row, Column and/or Layer Equations Can Be Solved for Suppressed Cells  
 
A two-dimensional table with row and column subtotals and a three-dimensional table with row, 
column and layer subtotals can be viewed as a large system of linear equations.  The suppressed 
cells represent unknown values in the equations.  It is possible that the equations can be 
manipulated and the suppressed values estimated too accurately.  Audits for this type of 
disclosure require the use of linear programming techniques.  The output of this type of audit is 
the maximum and the minimum value each suppressed cell can take given the other information 
in the table.  When the maximum and the minimum are equal, the value of the cell is disclosed 
exactly.  To assure that cells cannot be estimated too accurately the analyst makes sure the 
maximum and the minimum value for the suppressed cell are no closer to the true value than 
some specified percentage protection.  
 
It is well known that a minimal suppression pattern where marginal totals are presented will have 
at least two suppressed cells in every row, column and layer requiring suppression.  This is not 
sufficient, however, as was illustrated in Chapter 2 Section C.2.a.  
 
  
B.2.a.iii. Software For Auditing A Suppression Pattern 
  
Automated methods of auditing a suppression pattern have been available since the mid 1970's at 
the U.S. Census Bureau, and at Statistics Canada.   Modern versions of audit software set up the 
linear programming problem and use commercially available linear programming packages.  All 
audit systems produce upper and lower estimates for the value of each suppressed cell based on 
linear combinations of the published cells. A suppression audit can uncover three types of 
problems for tables cells: 1) the upper and lower limits may be the same; 2) the upper and lower 
limits may be too close together; 3) the upper and/or lower limits may be too close to the cell 
value.  The data analyst uses the output from the audit to determine whether the protection 
provided to the sensitive cells by the proposed complementary cells is sufficient.  The user 
should know the type and extent of the rounding of cell values in a table that is being audited to 
avoid misleading evaluations of data protection.  Depending upon whether suppression was 
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applied to the rounded or unrounded data can result in over- or under-suppression of cells in a 
table.  These audit methods are applicable to tables of both magnitude and frequency.  
 
Linear programming is the most common procedure used for auditing suppression patterns in a 
table because it can be used for higher-dimensional tables.  (Zayatz 1992a).  Network procedures 
have been shown to provide fast solutions for two-dimensional tables.  The network flow method 
for cell suppression is self-auditing only for two-dimensional tables in which there is a hierarchy 
in one dimension.  The network flow method is not-self auditing for two-dimensional tables with 
a hierarchical variable structure in both the row and column, and it is not self-auditing for three 
dimensional or higher dimensional tables that contain a hierarchical structure.  (Massell 2002). 
 
At the U. S. Census Bureau both types of audits are subsumed into the algorithm that selects 
cells for complementary suppression.  The company level contributions for a cell are used in 
selecting a protection level or tolerance interval for each cell that provides protection to all 
respondents in the cell.  The algorithm that selects cells for complementary suppression provides 
that the primary cells cannot be estimated more accurately than that specified tolerance interval.  
The complementary suppressions selected by applying the algorithm do not require additional 
audits.  
 
Audit software was developed by the Confidentiality and Data Access Committee, with support 
from a number of statistical agencies, and is available with documentation at 
http://www.fcsm.gov/committees/cdac/resources.html.  This software is written in SAS® and 
checks the lower and upper bounds around suppressed cells in a table that contains non-additive, 
independently rounded cells.   The program requires a specific format for the ASCII input file.  
The program also checks for whether independent rounded cells exist in the table and adjusts the 
cell values to preserve additivity within the row and columns at the same time it is performing 
the import function.  The user has the option of specifying a protection range based on a 
plus/minus percent basis or absolute value basis.  The software is not limited by the number of 
dimensions in a table and the linear programming methodology provides for two types of 
optimizers.   
 
 
B.2.b. Automatic Selection of Cells for Complementary Suppression  
 
Software that automatically selects complementary cells for suppression has been available since 
the 1970's at Statistics Canada and at the U.S. Census Bureau. These programs typically use 
linear programming methods implemented by accessing general purpose linear programming 
routines which make use of special structures in the data. Due to refinements in linear 
programming algorithms, these routines run much faster now than in the 1980's. Network flow 
methods may be viewed as a special case of linear programming. They work best for two 
dimensional tables, with at most one level of hierarchy (in either rows or columns). Routines 
based on network flow methods are typically much faster than linear programming routines. Cell 
suppression programs can be used for both magnitude data tables and frequency data tables.  
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At the U.S. Census Bureau these programs have been used mainly for business survey magnitude 
data. Robert Jewett (Jewett, 1993) wrote a set of cell suppression programs for this purpose. 
They include much beyond the basic cell suppression model. For example, the program can be 
used to identify sensitive cells from a given input microdata file by using the p% rule. The 
problem of “common respondents” is handled by defining a table of capacities for each primary. 
It is constructed just before complementary suppressions are selected to protect a given primary. 
The “common respondents” problem arises frequently with business survey data since many 
companies have more than one establishment and often these establishments are contributors to 
different cells of the same table. The U.S. Census Bureau must protect not only each 
establishment’s contribution but all sums of an establishment’s facilities, including the 
company’s total contribution. These programs are also able to handle tables that are linked and 
interrelated to cells in two or more of the tables. It uses the method of backtracking to check that 
a given suppressed cell has the same degree of uncertainty in each table in which it appears. 
 
The software, tau-Argus, developed from the Computational Aspects of Statistical 
Confidentiality (CASC) European project offers methods to identify sensitive cells, a choice of 
algorithms to select secondary suppressions, an suppression audit program to compute interval 
bounds for suppressed cells, and a module to generate synthetic values to replace suppressed 
original ones in a publication.  The documentation and software for operating tau-Argus are 
available at http://neon.vb.cbs.nl/casc. 
 
In the straightforward implementation of linear programming, sensitive cells are treated 
sequentially beginning with the most sensitive.  At each step (i.e. for each sensitive cell) the set 
of complementary cells that minimizes a cost function (usually the sum of the suppressed values) 
is identified.  Zayatz (1992a) describes the formulation for two-dimensional tables.  Zayatz 
(1992b) gives the parallel formulation for three-dimensional tables.  As above, these are 
implemented by using a commercially available linear programming package.  The disadvantage 
of the straightforward linear programming approach is the computer time it requires.  For large 
problems, the run time of the Central Processing Unit of a personal computer increases 
significantly with 3 or more dimensions. 
 
Another linear programming approach is based on describing the table structure as a 
mathematical network, and using that framework and the required tolerance intervals for each 
cell to balance the table. The network methods are favored because they give the same result as 
the straightforward linear programming methods, but the solution requires much less computer 
time.  The network method is directly applicable to two-dimensional tables and to two-
dimensional tables with subtotal constraints in one dimension (Cox, 1995). Subtotal constraints 
occur when data in one dimension have a hierarchical additive structure such as the North 
American Industry Classification System (NAICS) coding system.   In the past 20 years, there 
was considerable research in developing faster and more efficient procedures for both two-
dimensional and three-dimensional tables.  Research has involved using methods based on 
integer programming, network flow theory, and neural networks.  
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Complementary suppression and controlled rounding can both be solved using network theory.  
Ernst (1989) demonstrated the impossibility of representing a general three or higher dimension 
table as a network.  For this reason, complementary suppression for three-dimensional tables 
currently uses linear programming as the main approach. (Zayatz, 1992b).  The straightforward 
linear programming methods can be used for small three-dimensional tables.  However, for large 
three-dimensional tables, an iterative approximate approach based on a sequence of two-
dimensional networks is used.  The complementary suppression pattern identified by this 
approximate approach must still be audited to assure that an individual sensitive cell cannot be 
estimated too accurately.  
 
As mentioned above, one possible objective or cost function for automated procedures is to 
minimize the sum of the suppressed values.  With this objective function, automated procedures 
tend to suppress many small cells, a result not generally considered "optimal" by the analyst. 
Other possible cost functions include minimizing the total number of suppressed cells in a table 
or minimizing the suppression for specific data series in a table.  Further research is needed into 
the identification of cost functions for use in selecting the "optimal" complementary 
suppressions.  Possibilities here include research into a cost function for use in a single run of the 
software, as well as cost functions for use in multiple runs of the software.  An example is the 
development of a cost function that is used during a second pass through the software to remove 
superfluous suppressions (Zayatz, 1992b).   
 
Another reason the complementary cells selected by automated methods do not provide the 
"optimal" set for the table as a whole is that all current implementations protect sensitive cells 
sequentially. For any given sensitive cell, the complementary cells selected to protect it will be 
optimal according to the objective function, conditional on all suppressions selected for 
previously considered sensitive cells. The sequential nature of the approach leads to over-
suppression.  
 
In spite of the lack of "optimality" of the result, the automated complementary cell suppression 
procedures identify useful sets of complementary suppressions.  However, work is often needed 
to fine tune, reduce over-suppression, and assure that the analysts' nonmathematical definition of 
an "optimal" solution is more closely realized.    
 
B.3. Controlled Tabular Adjustment 
 
Controlled Tabular Adjustment is a useful methodology for protecting tables of magnitude 
data as well as count data.  It is discussed with an example in Chapter 2 Section D.3.d.  Each 
sensitive original value in a table is replaced with an imputed safe value that is a sufficient 
distance from the true sensitive value.  Some of the remaining non-sensitive cell values are 
adjusted from their true values by as small an amount as possible to restore additivity to the 
published totals.  CTA can be applied to produce solutions where marginal sums are minimally 
changed.  However, allowing minor adjustments to the marginal values reduces the need for 
larger adjustments to the internal non-sensitive cells in a table.   
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There are two different approaches that apply CTA methodology.  The original CTA method 
uses a linear programming method to restore additivity to the table.  Initially, the LP-based  
Controlled Tabular Adjustment procedure used the reciprocal of the cell values as a cost 
function to minimize the overall deviation of non-sensitive cells from the true cell value. Another 
appropriate optimization function may be to minimize the sum of the absolute values of the data 
adjustments.  The reciprocal of the cell value allows for larger changes to large cells and causes 
smaller changes to small cells when compared with other cost functions.  Most LP based 
procedures review the solution quality and feasibility using the underlying table structure. The 
algorithm systematically changes sensitive and nonsensitive cells first seeking to obtain a 
feasible solution, and then once feasibility is reached, then it moves on to optimize the quality of 
the adjustment using a pre-specified cost function.  Software that use some type of adaptive 
memory process for reviewing the optimal adjustments provide better results in terms minimal 
adjustments to cell values than those methods that apply a “rigid memory’ design such as a 
branch and bound technique. 
 
During the first phase of applying either type of CTA methodology, the sensitive cells are 
ordered from largest to the smallest. By using an alternating sequence, the ordered sensitive cell 
values are then changed to either lower or upper protection bounds.  After completing the 
changes to all the sensitive cells in the table, non-sensitive table cells are considered to restore 
the additive table structure.   
 
A second approach, called simplified Controlled Tabular Adjustment, was developed as a cost 
effective alternative to the original LP-based CTA method.  The simplified CTA minimizes the 
percentage deviation from the true cell value for non-sensitive cells as its optimization function.   
The minimum percent deviation criteria used in simplified controlled tabular adjustment 
produces similar results as the reciprocal of the cell value-based cost function used in the LP-
based approach. (Dandekar, 2004). Simplified CTA is easier to implement and more 
computationally efficient than the LP-based CTA procedure, although further research is needed 
on different table structures to further evaluate these two approaches.  LP based CTA and 
simplified CTA use different approaches to restore additivity to the table structure. The original 
CTA method uses a linear programming method to restore table additivity.  The simplified CTA 
method, on the other hand, accepts all necessary adjustments in marginal table cell values to 
restore additive table structure.  
 
 
B.4.  Adding Noise to Microdata Prior to Tabulating Data 
 
Adding noise to the underlying microdata is a method that has been used to protect magnitude 
tabular data.  It is different from the noise procedures used to protect public use microdata files.  
The noise addition method adjusts each value by a small amount (the exact percent to remain 
confidential within the statistical agency).   Each establishment reporting in the sample or survey 
is assigned a multiplier, or noise factor.  A company may have several different stores or 
establishments.  In this case, each establishment may be assigned a slightly different multiplier as 
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long as the overall distribution of the multipliers across all establishments within a company 
average the specified percent for adjusting that company’s reported values.  (Evans, 1998). 
 
For example, if an establishment’s data is adjusted by 10%, then its data would be multiplied by 
a number that is close to either 1.1 or 0.9.  Any type of distribution can be used to choose the 
multipliers for each establishment.  In this example, whatever distribution is used to generate a 
multiplier of 1.1, it is important that the same distribution shape, or its “mirror image,” be used 
to generate the multipliers near 0.9 to adjust data in the opposite direction.  The two distributions 
of multipliers should produce a joint distribution of multipliers that is symmetrical and 
approximates 1. 
 
The direction of adding the noise to each responding company is randomly assigned.  Using the 
example of 10% as the base for perturbation, this is equivalent to determining if all 
establishments in a company have multipliers close to 1.1 or close to 0.9.  The next step in the 
process is to randomly assign a multiplier to each establishment within a company.  The 
multipliers would be generated from that half of the overall distribution of the multipliers that 
corresponds to the direction of perturbation assigned to that company.  An example of assigning 
multipliers to a set of respondents is as follows: 
 
Example 1:    
 
Company          Establishment Direction Multiplier 
Company A   1.1 

Establishment A1   1.12 
Establishment A2   1.09 
Establishment A3   1.10 
Establishment A4   1.11 

Company B  0.9   
Establishment B1   0.89 
Establishment B2   0.93 

Company C 1.1   
Establishment C1   1.08 

 
In this example, the expected value of the amount of noise added in any cell value is zero 
because of the symmetry of the distribution of the multipliers and the random assignment of both 
the direction of perturbation and the multipliers within each company.  The probability that a 
company’s establishments will be perturbed in a positive direction is equal to the probability that 
they will be perturbed in a negative direction.  The distribution of the multipliers is symmetric 
about 1.  The expected value of any given multiplier is 1, hence the expected value of the amount 
of noise in any given establishment is 0, and the amount of noise in any cell value is simply the 
sum of the noise in its component establishments. 
 
Noise addition differs from Controlled Tabular Adjustment because noise addition adjusts the 
reported values prior to any tabulations.  Controlled Tabular Adjustment adjusts the cells after 



                

 73

the data have been tabulated on a cell by cell basis.  Noise addition relies on the random 
assignment of the multiplier to control the effects of adding noise to different types of cells.   
 
C. Online Data Query Systems  
 
Most online query systems that were developed by the federal agencies allow access to summary 
files with matrices of aggregated data.  These query systems allow users to design queries to 
generate customized tabulations.  Special disclosure limitation methods should be considered 
when users access microdata files to produce customized tabulations.   
 
One example of an online query system that allows users to access microdata files is the 
“Advanced Query System”  (AQS) which is part of the Census Bureau’s “American Fact Finder” 
online data dissemination system.  The microdata files in the AQS contain information on 
individuals and households.  To ensure that tabulations from these microdata files do not reveal 
the identities of respondents, the Census Bureau uses data recoding and data swapping 
techniques in addition to other microdata techniques. 
 
Variables such as geography, detailed race, age, occupation, industry, Hispanic origin, and group 
quarters are re-coded and/or collapsed.  All continuous variables, such as income, fuel and utility 
costs, property taxes, rent, and mortgage payments are top coded to mask the outlying values in 
the tails of the distributions of each continuous variable.  The re-coded variables are added to the 
files used by AQS.  An external user is diverted to the re-coded variables and geographic area 
when submitting a query. 
 
In addition to recoding, a swapping technique is also applied to the records in the microdata files.  
The technique consists of swapping pairs of household records selected as having the highest 
disclosure risk based upon a predetermined set of key variables.  In the AQS system, records are 
selected for swapping with a probability inversely proportional to block size. 
 
Any request submitted by a user passes through two filters; the Query filter and the Statistical 
Results filter.  The purpose of the Query filter is to detect those queries that will not pass 
disclosure limitation before the query is submitted for execution, such as the geographic variable 
must meet a minimum threshold.  The Statistical Results Filter checks the final values in the cells 
of the resulting table.   If a table does not pass the filters, the entire table is suppressed and the 
user does not receive the table.  The AQS system does not perform any cell suppression.  A 
message is sent to a user that the table is suppressed for confidentiality reasons and the user may 
then try requesting a table with less detail.  
 
The disclosure protection procedures applied by the Agriculture Resource Management Survey 
(ARMS) uses a different approach than the AQS system.  The ARMS on line query system 
allows users to select across survey data sets and build customized reports.  There are three 
stages to the disclosure protection procedures used in the ARMS system.  In the first step, noise 
is added to the weights for underlying microdata in a unique way to protect large establishments 
that may dominate a cell.   The second step is to develop minimum expanded farm counts in a 
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cell and to test the sensitivity of that cell using the p-percent rule.  The third step applies primary 
cell suppression without any complementary suppression.  No complementary suppression is 
necessary because of the noise that was initially added to the microdata provides the necessary 
protection to the aggregates.  Cells in the outputted files are suppressed if they fail any of the 
three criteria: 1) if the ratio of the cell value with noise to the cell value without noise is outside a 
set range, then the cell is suppressed; 2) if the weighted farm count for a cell is small then the 
cell is suppressed; 3) if the cell fails the p-percent rule and has insufficient noise to protect the 
actual value, then the cell is also suppressed.  The approach used in ARMS avoids the need for 
complementary suppression and simplifies the computational problems associated with 
disclosure protection in an on-line query system.   
  
D. Technical Notes: Relationships Between Common Linear Sensitivity Measures  
 
This section illustrates the relationship between the p-percent, pq and (n, k) rules described in the 
text by using plots of regions of cell sensitivity.  To simplify this presentation we make a few 
assumptions.  First, for the p-percent rule we assume there are no coalitions ( )1=c  and for the 

(n, k) rules we consider only 1=n  and 2=n .  Second, replace xi

N

3=i
∑  by ( )21 xxT −− . Third, 

divide each sensitivity rule through by the cell total, T, and multiply by 100.  Finally, set 
Txz ii /100= , the percent contributed to the cell total by company i.  The sensitivity rules can be 

written  
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The regions where these sensitivity rules are positive (i.e. where the cells are sensitive) are 
shown in Figure 1. The horizontal axis represents the percent contributed by the largest unit, 1z  
and the vertical axis represents the percent contributed by the second largest unit, 2z . Since 

21 zz ≥  and 121 ≤+ zz  (the sum of the two largest is less than or equal to the cell total), the only 
possible values in a table cell will be in the lower triangular region bounded from below by the 
line 02 =z , from above by the line 21 zz =  and to the right by the line 121 =+ zz .   
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The ( )1,1 k  and ( )2,2 k  rules are particularly simple to illustrate graphically.  The inequality 
( )1,1 k  rule simplifies, and a cell is classified as sensitive if 11 kz > .  The dividing line between 
sensitive and nonsensitive region is given by a vertical line through the point ( )1,0 k .  Similarly, 
the inequality for the ( )2,2 k  rule simplifies and a cell is classified as sensitive if ( ) 221 kzz >+  
(z1 + z2) > k2. The dividing line between the sensitive and nonsensitive regions is the line 
through the points ( )2,0 k  and ( )0,2k .  This line intersects 21 zz =  at the point ( )2/,2/ 22 kk .  In 
all cases the sensitive region is the area to the right of the dividing line.  The sensitivity regions 
for the (1,75) and (2,85) rules are illustrated in Figure 1A. 
 
For the p-percent rule the inequality above yields the boundary line for sensitive cells as the line 
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Figure 1B shows the sensitivity regions for the p-percent rule with 6517.p =  and 2935.p = .  
The selection of these values of p will be discussed below.  Note that if 0=p , the sensitivity 
line falls on top of the line 121 =+ zz .  At that point there are no sensitive cells.  Similarly if p is 
negative, there are no sensitive cells.  
 
To Find p so that S

p%
(X) ≤ S

(n,k)
(X) for all cells, X.  

 
Consider the case where the (n, k) rule is being used and there is also a requirement that no 
respondent's contribution be estimable to within p-percent of its value.  We would like to find the 
value of p so that the p-percent rule is closest to the (n, k) rule with (X)S  (X)S p%k)(n, ≥ .  Thus, 
there may be cells classified as sensitive by the (n, k) rule which would not be sensitive by the p-
percent rule, but all cells classified as sensitive by the p-percent rule would be classified as 
sensitive by the (n, k) rule.  Consider the (2, 85) rule illustrated in Figure 1A.  The p-percent rule, 
closest to the (2, 85) rule, which would satisfy this requirement would be the one which 
intersects the line 02 =z  at the same point as the (2, 85) rule.  Thus, for a given value of 2k  we 
must have  
 

(X)S  (X)S p%k)(n, ≥  
 
Similarly, if we were first given the value of p for the p-percent rule, we must have  
 

(X)S  (X)S p%k)(n, ≥  
 
For the (2, 85) rule, 17658515100  . /  p/ == , so that 6517.p =  percent.  Figure 1C shows the 
(2,85) sensitivity region along with the less conservative 6517.p =  percent region. 
 
For the ( )1,1 k  rule, the p-percent rule closest to the (1, 75) rule satisfying this requirement would 
be the one intersecting the line 21 zz =  at the point (75, 75). For a given value of k1 we must 
have  
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With 751 =k , the less conservative p-percent rule would have 7.66−=p , which would result in 
no cell suppression. For %65.17=p , we would need 94.451 =k , a very restrictive rule.  
 
To find parameter p so that S

p%
(X) ≥ S

(n,k)
(X) for all X.  

 
We would like to find the value of p so that the p-percent rule is closest to the (n, k) rule with 

k)(n, 
(X) ≤ S 

p%
(X). Thus, there may be cells classified as sensitive by the p-percent rule which 

would not be sensitive by the (n, k) rule, but all cells classified as sensitive by the (n, k) rule 
would be classified as sensitive by the p-percent rule. Again, we consider the (2, 85) rule as 
illustrated in Figure 1A.  In this case the most conservative p-percent rule needed would be the 
one that intersects the line 21 zz =  at the same point as the (2, 85) rule.  Given the value of 2k  
this leads to  
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If we were first given the value of p, we would need  
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For 852 =k , this gives 3529285200100  .  - /  p/ == .  Figure 1D shows the (2,85) sensitivity 
region along with the 29.35=p  percent region.  
 
To find the most conservative p% rule needed to include the sensitivity region of the ( )1,1 k  rule, 
we need the p-percent rule which intersects the line 02 =z  at the same point as the ( )1,1 k  rule. 
Given the value of 1k , this leads to 
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If we were first given the value of p, we would need  
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For the (1,75) rule, this leads to 33337525100  . /  p/ == .  
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To find the ( )1,1 k  rule going through the same point as the (2,85) rule and the p-percent rule with 
%.p 2935= , substitute the desired value of p into the above equation and find 91731 .  k = . 

 
In this case since we started with the (2,85) rule, which lead to 2935. p = , a consistently less 
conservative ( )1k 1,  rule is the one that has 91731 .  k = .  Thus the p-percent rule with 

2935. p =  provides slightly more protection than either the (2,85) rule or the (1,73.91) rule.  
Table 1 in the text summarizes these results for selected values of  p, or equivalently for selected 
values of q/p .  
 
Example  
Consider the three cells below.  Let kx1  represent the largest value reported by a respondent in 
cell k; kx2  the second largest value reported by a respondent in cell k; and so on.  Here we assume 
that respondents report in only one of the cells 1, 2 or 3.  Cell membership is denoted by the 
superscript k. Superscript T represents the total. 
 

 Cell 1 Cell 2 Cell 3 Total 
    x 1001

1 =     x 12
1 =    x 1003

1 =    xT 1001 =  
     x 12

2 =    xT 1002 =  
     x 12

3 =    xT 1003 =  
   .  . 
   .  . 
   .  . 
     x 12

20 =    xT 10020 =  

SUM 100  20 100 220 

 
Assume that we are using the (n, k) rule with 2=n  and 85=k  percent. As described above, the 
related rules are the p-percent rule with 65.17=p  (more conservative), the p-percent rule with 

2935.p =  (less conservative) and the (1,73.91) rule. 
 
Using any of these rules, Cell 1 and Cell 3 are clearly sensitive )0so  ,1(   S(X) N >= .  It is also 
easy to verify that using any sensible rule Cell 2 is not sensitive. We consider two cells, the 
union of Cell 1 and Cell 2 and the Total. 
 
The cell sensitivities for these rules are  
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32.4320834.2         100(Total) 
96.239120833.2         100(Total) 

34.1320667.5         100(Total) 
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The union of Cell 1 and Cell 2 is not sensitive according to the (2, 85) rule and the 17.65% rule. 
However, both the (1, 75) and the 33.3% rule classify the cell as sensitive.  Looking at the 
respondent level data, it is intuitively reasonable that the union of Cell 1 and Cell 2 is sensitive, 
even though the rule of choice for this example was to protect only against dominance by the 2 
largest respondents.  This cell corresponds to the point (83.3, .008) on Figure 1. 
 
The Total is sensitive for the (2, 85) rule and the p-percent rule with p=35.3%.  It is not sensitive 
for the (1, 73.9) rule or the p-percent rule with p=17.6%.  This point corresponds with the point 
(45.5, 45.5) on Figure 1.  
 
Consider the inconsistency in using the (2, 85) rule alone.  In the above example, if the union of 
cell 1 and cell 2 (not sensitive by the (2, 85) rule,) is published, then the largest respondent 
knows that the other respondents' values sum to 20, and each of other respondents knows that the 
other respondents' values sum to 119.  If the total (sensitive by the (2, 85) rule) is published then 
the largest two respondents each knows that the sum of the remaining respondents' values is 120, 
and each of the small respondents knows that the sum of the others' values is 219.   
 
Intuitively, it would seem that more information about respondent's data is released by 
publishing the nonsensitive union of cell 1 and cell 2 than by publishing the sensitive total.  The 
inconsistency can be resolved by using a combination of (n, k) rules, such as the (1, 73.91) and 
(2, 85), or by using a single p-percent rule with p = 35.29 or a pq-rule with q/p = 2.83.  These 
changes result in additional, but more consistent suppressions.  
 
Proponents of the simple (2, 85) rule claim that more protection is needed when respondents 
have competitors with values close to their own.  Proponents of the simple (1, 75) rule claim that 
more protection is needed if the cell is dominated by a single respondent.  These people argue 
that the use of a simple (n, k) rule allows them to determine which rules are needed for their 
special situations without the additional suppressions which would result from a more consistent 
approach. 

 




