

Multi-cancer mutual exclusivity analysis of genomic alterations

Giovanni Ciriello

Computational Biology - MSKCC TCGA Annual Symposium Washington DC, 2011

Recurrent genomic alterations target specific pathways

Functional alterations targeting the same pathway frequently occur in a mutually exclusive manner

(TCGA, Nature, 2011)

MEMo: Mutual Exclusivity Modules

Mutual Exclusivity Module

MEMo has been applied to the following TCGA projects:

 Glioblastoma Multiforme (GBM) 	
Phase 2	338 samples
 Serous Ovarian Cancer (OVCA) 	
 Updated dataset 	384 samples
 Colon and Rectum Adenocarcinoma (COAD) 	
 Non hyper-mutators 	151 samples
 Uterine Corpus Endometriod Carcinoma (UCEC) 	
 Non serous / Non hyper-mutators 	144 samples
 Invasive Breast Cancer (BRCA) 	
	463 samples

Mutually exclusive patterns of alteration identified in several oncogenic pathways:

- Rb signaling
- p53 signaling
- DNA repair
- PI(3)K/Akt signaling

MEMo has been applied to the following TCGA projects:

 Glioblastoma Multiforme (GBM) 	
 Phase 2 	338 samples
 Serous Ovarian Cancer (OVCA) 	
 Updated dataset 	384 samples
 Colon and Rectum Adenocarcinoma (COAD) 	
 Non hyper-mutators 	151 samples
• Uterine Corpus Endometriod Carcinoma (UCEC)	
 Non serous / Non hyper-mutators 	144 samples
 Invasive Breast Cancer (BRCA) 	
	463 samples

Mutually exclusive patterns of alteration identified in several oncogenic pathways:

- Rb signaling
- p53 signaling
- DNA repair

• PI(3)K/Akt signaling

Mutual exclusivity in PI(3)K/Akt

Mutual exclusivity in PI(3)K/Akt

GBM (338 samples)

Endometriod Carcinoma (144 samples)

Colon and Rectum Adenocarcinoma

(151 samples)

Altered Samples: 49%

Breast Carcinoma (463 samples)

MEMo does not find PI(3)K/Akt modules

MEMo does not find PI(3)K/Akt modules

Are there low-frequency but functional events affecting this pathway?

Multiple Low-frequency events target PI(3)K pathway

24% Altered Samples

Over-expressed Down-regulated Amplified Hom. Del.

Breast Cancer (463 samples)

Altered Samples 66%

Basal vs. Not Basal

Basal vs. Not Basal

Is the PI(3)K pathway altered by other means in Basal tumors?

• PTEN is down-regulated in Basal tumors

- PTEN is down-regulated in Basal tumors
- Down-regulated samples show higher Akt phosphorylation

OS THINDWIN CONCERCENTER

Overall Extent of Alteration

• **MEMo** systematically identifies **mutually exclusive** alterations targeting oncogenic pathways across multiple cancer types

• **PI(3)K /Akt** signaling is consistently altered in cancers, with different **extents of alteration**, and by **different mechanisms**

 Mutual exclusivity analysis across multiple cancers unveils the underlying heterogeneity of the disease, thus suggesting candidate therapeutic targets in different subtypes

Thanks!

Chris Sander

Niki Schultz Ethan Cerami

Jianjiong Gao Nils Weinhold Serena Bradde Rileen Sinha ... and everyone at cBio!

