

Morphologic Analysis of Glioblastoma Identifies Morphology-Driven Clusters and Molecular Correlates Associated With Patient Survival

Lee Cooper¹, Jun Kong¹, David Gutman^{1,2}, Daniel Brat³, Joel Saltz^{1,2,3}

¹Center for Comprehensive Informatics ²Department of Biomedical Informatics ³Department of Pathology and Laboratory Medicine, Emory University, Emory University Hospital, Atlanta, GA

In Silico research using public data sources

THE CANCER GENOME ATLAS

clincal\pathology

	Α	В	С	D	E
1	Age at Dx	Gender	Survival	Disease	
2	30-34	F	>60M	OLIGODE	NDRO
3	50-54	М		GBM	
4	50-54	М		GBM	
5	50-54	F	30-36M	GBM	
6	20-24	М		UNKNOW	/N
7	65-69	М	12-18M	UNKNOW	/N
8	55-59	F		ASTROCY	ТОМА

TCGA and whole slide imaging

- Scans of frozen tissue associated with molecular studies
- Scans of diagnostic-block permanent sections
- 20X magnification (40X possible?)
- Pathology evaluations (%necrosis, %tumor nuclei, histology 0,+1,+2)

Glioblastoma morphology

- Cell morphologies
- Are there clusters of GBM morphology?
- Are there morphological links to patient outcome and molecular characteristics?

Computational Pathology and Correlative Analysis

Genome Wide Analysis

Differential Expression DNA Methylation Copy Number Analysis Integrate Expression, Methylation, Genetics * Gene Ontology and Pathway Analyses

Morphology engine

TABLE I Nuclear Features

Category	Features		
Morphometry	Area, Perimeter, Eccentricity, Circularity, Major Axis Length, Minor Axis Length, Extent Ratio		
Intensity Statistics	Mean Intensity, Max Intensity, Min Intensity, Std. Dev. Intensity		
Texture	Entropy, Energy, Skewness, Kurtosis		
Gradient Statistics	Mean Grad. Magnitude, Std. Dev. Gradient Magnitude, Entropy Gradient Magnitude, Energy Gradient Magnitude, Skewness Gradient Magnitude, Kurtosis Gradient Magnitude, Sum Canny Pixels, Mean Canny Pixels		

Note: Set of 23 features for characterization of nuclei fall into four broad categories.

Clustering engine

Patient Morphology Profiles

Correlative engine and genome wide analysis

Patient Cluster Labels

Genome Wide Analysis

Differential Expression DNA Methylation Copy Number Analysis Integrate Expression, Methylation, Genetics * Gene Ontology and Pathway Analyses

Clustering identifies three morphological groups

- Analyzed 200 million nuclei from 162 TCGA GBMs
- Named for functions of associated genes: Cell Cycle (CC), Chromatin Modification (CM), Protein Biosynthesis (PB)
- Prognostically-significant (logrank p=4.5e-4)

Representative nuclei

PΒ

Validation

• Separate set of 84 GBMs from Henry Ford Hospital

Associations

	CC Cluster	CM Cluster	PB Cluster
Prognosis	Average	Poor	Better
Subtype Associations	Neural Depleted	Neural enriched Proneural Depleted	None
Pathology	Small cells enriched	Lymphocytes enriched	Inflammation depleted
Genetics	<i>NF1</i> mutant depleted <i>TP53</i> mutant depleted	None	None

Transcriptional class associations

Molecular associations

	CC Cluster	CM Cluster	PB Cluster
Prognosis	Average	Poor	Better
Differential	2740 / 663 Genes up/down	200 / 463 Genes up/down	0 / 188 Genes up/down
Expression	97 / 100 miRNAs up/down	121 / 81 miRNAs up/down	15 / 5 miRNAs up/down
Differential Methylation	69 Genes hypermethylated	244 Genes hypermethylated	45 Genes hypomethylated
Copy	1068 Deletions	301 Deletions	399 Deletions
Number	38 Amplifications	5 Amplifications	7 Amplifications
Expression	23 mapped to methylated sites	8 mapped to methylated sites	1 mapped to methylated sites
Mapping	595 mapped to CNV sites	27 mapped to CNV sites	19 mapped to CNV sites

Gene Ontology and Pathway Analysis

 Nuclear lumen localization most highly enriched in cluster associated genes

(CC *p*=2.8e-36, CM *p*=2.17e-19, PB *p*=1.08e-15)

- Other enriched GO terms: DNA repair, cell cycle, protein biosynthesis, chromatin modification, mphase
- Differences in activation of cancer-related pathways including ATM and TP53 DNA damage checkpoints, NFκB pathway, Wnt signaling and PTEN/AKT pathways

Conclusion

- Whole-slide images contain signal
- Image analysis can provide scalable, quantitative measurements of cellular morphology
- Datasets like TCGA present a unique opportunity to correlate morphology with genomics and patient outcome
- Need more complex models to account for heterogeneity

Thank You

• Emory In Silico Brain Tumor Research Center NCI Contract HHSN261200800001E

Joel Saltz, MD, PhD (Director) Dan Brat, MD, PhD (Scientific PI) David Gutman, MD, PhD Jun Kong, PhD Lisa Scarpace (Henry Ford Hospital) Tom Mikkelsen, MD (Henry Ford Hospital)