

Cancer Epigenetics

Peter W. Laird

USC Epigenome Center USC/Norris Comprehensive Cancer Center Keck School of Medicine University of Southern California

DNA Methylation Alterations in Cancer

- CpG Islands may acquire abnormal hypermethylation in cancer
- Methylated CpG Island promoters are transcriptionally silenced in cancer
- Areas of low-CpG density may lose DNA methylation in cancer

Epigenetic Silencing of BRCA1 in Serous Ovarian Cancer

- Red: Fallopian Tubes
 Purple Somatic Mutation
- Green Germline Mutation
- Blue Epigenetic Silencing
- ° Hollow Not Sequenced

SURVIVAL

TCGA Research Network (2011) Nature 474, 609

• CpG Island Methylator Phenotypes - Glioblastoma

Glioma-CpG Island Methylator Phenotype (G-CIMP) (TCGA)

Noushmehr et al. 2010 Cancer Cell 17, 510

Gereic Glioblastomas with Better Survival

Glioma-CpG Island Methylator Phenotype (G-CIMP) (TCGA)

CIMP

G-CIMP is Tightly Linked to IDH1 Mutation

ALL TUMORS		G-C	TOTAL	
			+	TOTAL
IDH1	Wild-type	184	5	5 189
	Mutant	0	18	3 18
TOTAL		184	23	3 207

DNA METHYLATION

LOW HIGH

Noushmehr et al. 2010 Cancer Cell 17, 510

Model for G-CIMP

IDH1 Mutation Causes Aberrant CpG Island Methylation

.....Does not explain G-CIMP IDH1^{wt} cases

Outline

- CpG Island Methylator Phenotypes Glioblastoma
- Cross-tumor Comparisons

Comparison of 2,275 TCGA Cancer Samples and 409 Normal Tissues

T / N AML 188/2 AML GBM CIMP 29/4 GBM NC 264/4 219/199 KIRC STAD NC 62 / 59 STAD CIMP 20 59 COAD CIMP 33/37 3/5 READ CIMP 135/37 COAD NC READ NC 67 / 5 134 / 27 LUSC 128/24 LUAD 258 / 27 BRCA NB 58 / 27 BRCA Basal 99 / 11 UCEC Endo 18/11 UCEC Serous 557 /14 ov င် ဂင် 2,272/409 S S **()** $\boldsymbol{\bigcirc}$ **BRCA n-B** m AML LUAI KIR TAD n-UCEC 20 BM D BRCA GBM STAD UCE 4 READ O Ū ່ທ

GBM G-CIMP GBM non-CIMP KIRC STAD non-CIMP **STAD CIMP** COAD CIMP **READ CIMP COAD non-CIMP READ non-CIMP** LUSC LUAD **BRCA non-BASAL BRCA BASAL UCEC ENDOM UCEC SEROUS OV SEROUS**

Outline

- CpG Island Methylator Phenotypes Glioblastoma
- Cross-tumor Comparisons
- Bisulfite Sequencing Epigenetic Origins of Cancer

TCGA Whole Genome Bisulfite Sequencing (WGBS)

			Bisulfite non-	Mean	#	1x cvg (%	5x cvg (%
TCGA Sample	Туре	Description	conversion	cvg	CpGs	ĊpGs)	ČpGs)
AA-3518-01A	COAD	MSI-H	0.92%	23x	51.8M	92%	90%
AA-3518-11A	COAD - N		0.86%	22x	51.5M	91%	90%
A7-A0CE-01A	BRCA	Basal-like subtype	0.31%	19x	50.7M	90%	86%
A7-A0CE-11A	BRCA - N		0.36%	19x	50.3M	89%	85%
AA-3518-01A	UCEC	Grade 1 endometrioid	0.31%	19x	52.1M	92%	90%
AA-3518-11A	UCEC - N		0.31%	18x	51.8M	92%	89%
60-2722-01A	LUSC	Classical subtype	0.30%	21x	51.8M	92%	89%
60-2722-11A	LUSC - N		0.61%	5x	39.3M	69%	33%

- In Production: 3 Lung squamous Tumors, 3 Breast Tumors
- In Sample Selection: 2 GBM Tumors, 3 Renal Cell Kidney Pairs

Whole Genome Bisulfite Sequencing of TCGA Tumors and Normal Tissues

Methylation-Prone Elements are Enriched for Stem-Cell Polycomb Marks

ENCODE chromatin types from J. Ernst et al. Nature 2011

- Active promoter: K4me3, K9ac, K27ac
- Weak promoter: K4me3, K9ac
- Poised promoter: K4me1/2, K27me3

- Strong enhancer: K4me1/2, K9ac, K27ac
- Weak enhancer: K4me1/2
- CTCF Insulator: CTCF

Transcriptional Potential Associated with Histone H3 Methylation

Polycomb Target Genes in Embryonic Stem Cells:

- Master regulators of differentiation and development
- Poised to be turned on during differentiation
- Bivalent epigenetic state: Active (H3K4me3) and Repressive Marks (H3K27Me3)

Polycomb Target DNA Methylation Starts in Normal Tissues

16,846 CpG Probes 1,000 ES-Cell Polycomb Targets

Model: Polycomb Crosstalk Leads to Cumulative Stochastic Methylation

This Model....

- Would explain the DNA methylation behavior for about half of cancer-specifically methylated genes
- Is consistent with the observation of epigenetic field effects adjacent to tumors
- Is consistent with the stem-cell like behavior of cancer cells and with the evidence for tumor-initiating cells
- Suggests that therapeutic cloning strategies using human ES cells or IPS cells should incorporate screening for PRC2 DNA methylation abnormalities
- Suggests that the first steps of oncogenesis may be epigenetic

Outline

- CpG Island Methylator Phenotypes Glioblastoma
- Cross-tumor Comparisons
- Bisulfite Sequencing Epigenetic Origins of Cancer
- Bisulfite Sequencing Long Range Instability

Methylation-Prone CpG Islands

Berman et al. 2011 Nature Genetics 43. In Press

Regions of Focal Hypermethylation and Long-Range Hypomethylation Coincide

A Subset of the Cancer Epigenome Has Partially Lost Methylation

20-kb Windows

Berman et al. 2011 Nature Genetics 43, In Press

Regions of Focal Hypermethylation and Long-Range Hypomethylation Coincide

Berman et al. 2011 Nature Genetics 43, In Press

Outline

- CpG Island Methylator Phenotypes Glioblastoma
- Cross-tumor Comparisons
- Bisulfite Sequencing Epigenetic Origins of Cancer
- Bisulfite Sequencing Long Range Instability
- Bisulfite Sequencing Nuclear Architecture

Hypomethylated "Oceans" Correspond to Lamin Attachment Domains

Spatial Organization of the Epigenome

SUMMARY

Epigenetic Subtypes

• CpG Island Methylator Phenotype in Glioblastoma – *IDH1* Mutation

Epigenetic Origins of Cancer

- Polycomb Repressor Binding in ES-Cells Predisposes to Aberrant DNA Methylation in Cancer
- Polycomb Repressor Predisposition Seen Across Cancer Types

The Role of Nuclear Architecture in Epigenetic Instability

- Focal Hypermethylation and Long-Range Hypomethylation Coincide in Partially Methylated Domains (PMDs)
- Epigenetically Unstable PMDs are Associated with Nuclear Lamina Attachment and Late-Replicating Regions

Acknowledgements

USC EPIGENOME CENTER Dan Weisenberger Ben Berman Houtan Noushmehr **Toshi Hinoue** Hui Shen Tim Triche Jr. Simeen Malik Swapna Mahurkar Fei Pan Yaping Liu Zack Ramjan **Jonathan Buckley David Van Den Berg** Joe Aman Philip Lai

COLLABORATORS Steve Baylin Jim Herman Leslie Cope Kornel Schuebel Ken Aldape

TCGA RESEARCH NETWORK

FUNDING NIH/NCI Canary Foundation OCRF CIRM EIF