Sequence-based RNA profiling

Expression maps at base-pair resolution

TCGA at a glance

Genome Data Analysis Centres (Broad, ISB, LBNL, MSKCC, UCSC, UNC, UofT/MDACC)

Expression profiles

Recurrent events

The Cancer Genome Atlas

Acknowledgements

- Gordon Robertson
- Andy Chu
- Andy Mungall
- Dominik Stoll
- Payal Sipahimalani
- Elizabeth Chun
- Jared Slobodan
- Robin Coope
- Yisu Li
- Ryan Morin
- Inanc Birol
- Steven Jones

Patients
The TCGA Research Network

- Chuck Perou, UNC
- Neil Hayes, UNC
- Katie Hoadley, UNC
- Todd Auman, UNC
- Matt Wilkerson, UNC
- Chad Creighton, BCM
- Angela Hadjipanayis, Harvard
- Sorana Morrissy, Sickkids (TO)
- Malachi Griffith, WashU
- Timothy Ley, WashU
- Li Ding, WashU
- Peter Westervelt, WashU
- Elaine Mardis, WashU
- Richard Wilson, WashU

Applications

- RNA Seq enables analyses of:
- gene expression
- isoform expression
- gene-fusion detection
- "expressed mutations"
- cancer sub-types
- ...
- miRNA Seq enables analyses of:
- cancer sub-types
- regulatory networks

Chuck Perou
 1,530 Samples/lanes (DCC)

Analysis tools (Garber et al., Nat Meth 2011)

Table 1	Selected list of RNA-seq a nalysis programs
Class Category	

Class	Category	Package	Notes	Uses	Input
Read mapping					
Unspliced aligners	Seed methods	Short-read mapping package Smith-Waterman extersion (SHRiMP)			
		Stampy			

Expression quantification

Expression quantification	Gene quantification	Alexa-seq ${ }^{47}$	Quantifies using differentially included exons	Quantifying gene expression	Reads and transcript models
		Enhanced read analysis of gene expression (ERANGE) ${ }^{20}$	Quantifies using union of exons		
		Normalization by expected uniquely mappable area (NEUMA) ${ }^{82}$	Quantifies using unique reads		
	Isoform quantification	Cufflinks ${ }^{29}$	Maximum likelihood estimation of relative isoform expression	Quantifying transcript isoform expression levels	Read alignments to isoforms
		MISO ${ }^{33}$			
		RNA-seq by expectaion maximization (RSEM) ${ }^{60}$			
Differential expression		Cuffdiff ${ }^{29}$	Uses isoform levels in analysis	Identifying differentially expressed genes or transcript is oforms	Read alignments and transcript models
		DegSeq ${ }^{79}$	Uses a normal distribution		
		EdgeR ${ }^{77}$			
		Differential Expression			

RNA Seq read depth and coverage

Total exonic bases with increasing read depth (MIP101)

Malachi Griffith, Elizabeth Chun, Yisu Li The Cancer Genome Atlas

Exon wiring maps

Alternative Expression Modes

Gene expression

Double-stranded genomic DNA template

Single-stranded pre-mRNA (nuclear RNA)

Protein (amino acid sequence)
$\mathrm{H}_{2} \mathrm{~N}-00000000000000000000000000-\mathrm{COOH}$

$\mathrm{H}_{2} \mathrm{~N}-\mathrm{COOCO}^{-\mathrm{COOH}}$

Types of alternative expression

Alternative polyadenylation

Malachi Griffith

Alternate poly(A) sites

The Cancer Genome Atlas

Actin (cell lines)

www.AlexaPlatform.org/alexa seq/

Gene model for 'ACTB'

Malachi Griffith

UMPS (cell lines)

Gene model for 'UMPS'

CA12 (cell lines)

Gene model for 'CA12'

Exon and junction expression levels (all libraries)

TPM2 (DLBCL)

ABC vs. GCB gene expression classifier
Wright et al, 2003

log2(expression)

Exon-level expression in CRC

Splicing patterns CORRELATED with total gene levels

Splicing patterns NOT CORRELATED with total gene levels

Splicing patterns ANTICORRELATED with total gene levels

MSI/CIMP inv CIN

Splicing

MSI/CIMP inv CIN

MSI/CIMP

Diff Ex Exon Level

The Cancer Genome Atlas

De novo assembly

Detection of "fusion genes"

Trans-ABySS (Robertson, G. et al. 2010 Nature Methods 7(11):909-12)

-Alignment-independent detection of:

- Gene fusions
- Alternative transcripts
- Internal tandem duplications
- Partial tandem duplications
- Insertions / deletions

Verified AML gene fusions

Detecting PTDs \& ITDs

"Expressed mutations"

RNA Seq for mutation detection

Codon	Number of Samples	Distinct mutations	Gene Name
602;646	30	4	EZH2
$83^{\text {§ }}$	9	2	MEF2B
69§	4	2	MEF2B
81 §	2	2	MEF2B
$1482{ }^{\text {§ }}$	3	2	CREBBP
$1499{ }^{\text {§ }}$	2	2	CREBBP
$1467{ }^{\text {§ }}$	2	2	EP300
287§	2	1	HLA-C
1	8	5	BCL7A ${ }^{\ddagger}$
206§	4	1	MYD88 ${ }^{\ddagger}$
230§	2	1	MYD88 ${ }^{\text { }}$
252^{\S}	6	1	MYD88 ${ }^{\text {\# }}$
59	7	3	BCL2*
92;196;197	5	4	CD79B ${ }^{\ddagger}$
73;160§	4	2	IKZF3
164;255§	3	2	PIM1
97;188	3	2	PIM1
18§	3	2	IRF4
587§	3	2	BCL6
45§	3	2	BTG2
141;234	3	2	TP53

RNA Seq for mutation verification in lung cancer

RNA Seq confirms fusions detected using low pass sequencing of CRCs

$43,407,710 \quad 43,407,738$

TAAAAGACAGATTATATTTTACTAGAGATA
TTC17
27,395,743
27,395,772

TCTTTATTTTAAGATGTTTTCCACATACAT
TTC28
$174,129,543 \quad 174,129,553$
AAAGTTAACCAGA

3,085 miRNA-seq profiles at DCC

Cases sequenced	$\mathbf{3 , 5 3 6}$
Bases sequenced (raw)	$1,140,211,885,680$
Bases sequenced (pf)	$871,388,396,000$
Cancer types sequenced	19
Cases submitted to DCC	3,085
Cancer types submitted to DCC	18

Andy Chu
The Cancer Genome Atlas

miRNA biogenesis

- Products of miRNA biogenesis include mature miRNA and miRNA*.
- Non-canonical miRNA variants ("isomiRs") may further expand target gene repertoire.

miRNA Seq sampling depth (AML)

- 191 libraries sequenced.
- Mapped reads avg 0.98M.
- Known miRNAs detected: 270 to 422 (avg 328).
- 16 novel miRNAs detected (*miRBase 13).

Number of mapped reads

Star vs mature strand expression

Clustering cancer subtypes

Making sense of antisense

Antisense transcription regulates TRa alternative splicing

- Also associated with epigenetic silencing

Antisense - correlated splicing

Category	$\mathbf{1 , 0 1 4}$ Arrays	Expressed SAS genes	Expressed SAS probesets	Genes with SAS-correlated splicing	Probesets with SAS-correlated splicing
GBM*	266	4,594	83,646	2,179	9,410
OVC*	518	4,739	90,287	3,099	14,610
Normals**	230	4,801	107,179	3,312	17,420

Strand specific RNA Seq

Parkhomchuk et al., Nucleic Acids Research 2009
Levin et al., Nature Methods 2010
Sorana Morrissy

Strand specific RNA Seq

genome.gov
National Human Genome Research Institute National Institutes of Health

CARE + RESEARCH
An agency of the Provincial Health Services Authority

[^0]
Sense-Antisense Expression

- Sense-antisense (SAS) genes: encoded on opposite strands; share sequence overlap
- transcription rate, RNA editing, epigenetic state, alternative transcript processing

bidirectional spread of epigenetic silencing neighbouring imprinted genes

HAS2A down-regulates HAS2 expression affects: cell proliferation, cell adhesion, migration, differentiation, metastatic spread

TSIX

escape from X-chromosome inactivation via Xist promoter silencing (H3K9me3, DNA meth)

epigenetic silencing of CDKN2A (tumor suppressor) via heterochromatin formation in promoter (H3K9me2 increased, H3K4me2 decreased)

- Antisense transcription observed at >75\% of genes (RIKEN, Science, 2005)

ssRNA Seq

Skewed representation of alleles in DLBCL RNA Seq data

- 27% of somatic mutations exhibit significantly skewed expression (red).
- 25% are skewed in favour of the wildtype, 2% are skewed in favour of the mutant.
- $\quad \sim 50 \%$ of these would be undetectable by RNA-seq alone.
- 47% of truncating mutations are significantly skewed.
- Skew observed in favour of mutant allele for some known oncogenes: CD79B, CARD11, BCL2, EZH2.

RNAseq Summary: Coverage

RNA detects major mutation types and is related to RNA read depth

Mutation sites with
RNA read depth >=1

Mutation sites with
RNA read depth >=10

RNA Allelic Fraction for a locus : (mutant allele count / total allele count)

Is it stable among replicates?

Same tissue; two RNA isolations
Alternate Allele Fraction

Two pieces of tissues; two RNA isolations

The Cancer Genome Atlas

RNA mutation detection helps determination of significantly mutated genes across LUSC

	gene	rank	descriptior		n	npat	q	RNApropor
8004	KEAP1	5	kelch-like I	342602	28	26	$1.96 \mathrm{E}-10$	0.56
10194	NFE2L2	4	nuclear fac	350318	31	30	$1.96 \mathrm{E}-10$	0.740741
11730	PIK3CA	3	phosphoinı	642727	32	29	$1.96 \mathrm{E}-10$	0.793103
16200	TPTE	2	transmemt	340181	39	31	$1.96 \mathrm{E}-10$	0.028571
12536	PTEN	6	phosphata	235065	18	16	$9.56 \mathrm{E}-10$	0.636364
5507	FAM5C	7	family with	454186	29	28	8.67E-08	0.074074
16301	TRIM58	8	tripartite m	213206	19	17	1.62E-07	0
14087	SI	9	sucrase-is	1096333	53	42	1.63E-07	0
14832	SPHKAP	10	SPHK1 int	1002191	40	32	2.63E-07	0
3889	CSMD3	11	CUB and 5	2233452	135	88	$2.82 \mathrm{E}-07$	0
13008	REG1B	12	regeneratir	101985	11	11	3.80E-07	0
4082	CYP11B1	15	cytochrom	299598	18	18	6.04E-07	0
5009	ELTD1	14	EGF, latro	402283	17	17	6.04E-07	0
10896	OR4M2	13	olfactory re	184976	18	16	6.04E-07	0
13009	REG3A	17	regeneratir	107324	16	13	8.97E-07	0
16824	USP29	16	ubiquitin s\|	543416	21	20	8.97E-07	0
13010	REG3G	18	regeneratir	107404	10	10	9.91E-07	0
11326	PCDH11X	19	protocadhe	772044	41	33	2.10E-06	0
11020	OR6F1	20	olfactory re	182457	15	15	4.26E-06	0
3791	CRB1	21	crumbs ho	835491	31	27	4.81E-06	0
8850	LRRC4C	22	leucine ricl	377191	20	18	7.70E-06	0
17280	ZBBX	23	zinc finger	482017	20	19	8.38E-06	0
11516	PDYN	24	prodynorph	151254	12	12	0.000012	0
4661	DPPA4	25	developme	184757	12	12	0.000016	0
10990	OR5L2	26	olfactory re	184082	15	13	0.000023	0
184	ACSM2B	27	acyl-CoAs	344327	18	18	0.00004	0
10909	OR51B2	28	olfactory re	183143	12	11	0.000046	0
12895	RB1	29	retinoblast	511628	16	15	0.000047	0.375
3110	CDKN2A	30	cyclin-depı	144372	18	17	0.000066	0.722222
5966	FSCB	31	fibrous she	471791	22	20	0.00013	0
8798	LRP1B	32	low density	2738792	122	78	0.00013	0.026316
11967	PNLIPRP3	33	pancreatic	283560	13	13	0.00013	0.090909
13559	RYR2	34	ryanodine	2692767	134	87	0.00025	0.064286
11057	OR8H2	35	olfactory re	184436	16	13	0.00027	0
9690	MS4A14	36	membrane	399632	14	14	0.0004	0

Likely passenger mutations (e.g. olfactory receptors) removed

Antisense-correlated splicing events in brain and ovarian cancers

Category	$\mathbf{2 8}$ Tissues	$\mathbf{1 , 0 1 4}$ Arrays	Expressed SAS genes	Expressed SAS probesets	Genes with SAS-correlated splicing	Probesets with SAS-correlated splicing
GBM*	1	266	4,594	83,646	2,179	9,410
OVC*	1	518	4,739	90,287	3,099	14,610
Normals**	26	230	4,801	107,179	3,312	17,420

* TCGA, Nature, 2008
** GEO, Barrett et al., NAR, 2009

Probesets with antisense-
correlated splicing

Normals

Genes with antisensecorrelated splicing events

Acute Myeloid Leukemia

- Selected for study by The Cancer Genome Atlas (TCGA)
- Haematopoietic stem cell disorder
- Most common acute adult leukemia
- World Health Organization identifies 4 subtypes
- Characterized by abnormal myeloblasts that do not mature into healthy WBC
- Abnormal cells build up in bone marrow, decreasing available space for healthy blood cells
- Possible causes: smoking, previous chemotherapy, radiation exposure

Known molecular abnormalities in AML

Rearrangement(s)	Fusion protein	FAB	Prognosis	Frequency	
$\mathrm{t}(15 ; 17)$	PML-RARa	M3	Favourable	10%	
$\mathrm{t}(8 ; 21)$	RUNX1-RUNX1T1	M2	Favourable	10%	
$\ln v(16)$	CBFß-MYH11	M4	Favourable	5%	
$\operatorname{der}(11 q 23)$	MLL-fusions	M4/M5	Variable	4%	
$\mathrm{t}(9 ; 22)$	BCR-ABL1	M1/M2	Adverse	2%	
Others	Multiple	Multiple	Variable	$<1 \%$	

Martens and Stunnenberg (2010) FEBS Letters 584:2662-9

- Partial tandem duplications (PTDs) and internal tandem duplications (ITDs) are relatively common in AML:
> MLL and FLT3
- Insertion/Deletions \& point mutations have also been identified in e.g.:
> ASXL1, CBFB, DNMT3A, FLT3, IDH1\&2, JAK2, NPM1, RAS, RUNX1, TET2, WT1

RNA Sequencing in AML

- 191 AML samples received; 179 sequenced and submitted to SRA/dbGaP/DCC
- Sequence 2 Illumina GAllx lanes per sample with 50 bp paired reads
- Average 125 million reads, 6.26 Gb (filtered) per sample
- Gene detection per sample:
- 25,426 genes detected
- 18,413 with $\geq 1 X$ coverage
- 13,254 with $\geq 5 X$ coverage
- 1,607 with $\geq 100 X$ coverage

TCGA-AB-2927

Trans-ABySS pipeline

4 www.bcgsc.ca/platform/bioinfo/software/trans-abyss
\square Open in Papers $\quad \square$ auth: /tcgafiles/... \quad public - /tcgafil... $\boldsymbol{X} \log \ln$ - Nationa... \& PubMed $\quad \square$ about a Guilt an... \square TcGA $\quad \square$ osx

BC Cancer Agency
CARE + RESEARCH
An agency of the Provincial Health Services Authority

Platforms

Projects
Data
|Training \qquad Servic
You are here: Home, Platforms, Bioinformatics, GSC Software Centre, Trans-ABySS

Platform

Bioinformatics
Bioinformatics License
GSC Software Centre
PASsit
Adapter Trimming for Small RNA
Sequencing
Spark
TASR
XpressAlign: FPGA Short Read Aligner

Anchor
BLISS
MiRNA Profiling
ORegAnno: Open Regulatory

Trans-ABySS
Analyze ABySS multi-k-assembled shotgun transcriptome data.

Current release
Trans-ABySS 1.2.0
Released Jan 07, 2011
Bug fixes and performance improved for chimeric transcript codes; also fixed assembly.py to handle output from different ABySS versions
More about this release

G Get Trans-ABySS for all platforms (5.2 MB)
trans-ABySS-v1.2.0.tar.gz

Project Description
Trans-ABySS is a software pipeline for analyzing ABySS-assembled contigs from shotgun transcriptome data. The pipeline accepts assemblies that were generated

Chimeric transcripts

Fusions

Medves S, Demoulin J-B: Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies. J Cell Mol Med 2011, [Epub ahead of print]

Partial tandem duplications

Liu HC, Shih LY, May Chen MJ, Wang CC, Yeh TC, Lin TH, Chen CY, Lin CJ, Liang DC. Expression of HOXB genes is significantly different in acute myeloid leukemia with a partial tandem duplication of MLL vs. a MLL translocation: a cross-laboratory study. Cancer Genet. 2011 204(5):252-9.

Internal tandem duplications
Fathi AT, Arowojolu O, Swinnen I, Sato T, Rajkhowa T, Small D, Marmsater F, Robinson JE, Gross SD, Martinson M, Allen S, Kallan NC, Levis M. A potential therapeutic target for FLT3-ITD AML: PIM1 kinase. Leuk Res. 2011 [Epub ahead49 print]

ITD

Splice donor site mutation alters HACE1 exon expression

A role for microRNAs in AML?

- miRNAs are key players in gene regulation, acting primarily via target mRNA degradation and/or translational repression.
- Clinically relevant biomarkers include:
- miR-126/126* increased expression is associated with t(8;21) and inv(16) and inhibits apoptosis [Li et al. 2008 PNAS 105:15535-40]
- miR-29b targeting DNMT3A and associated with improved clinical response to decitabine (DNMTi) [Blum et al. 2010 PNAS 107:7473-8]
- miR-223- and miR-181b-like binding sites created by somatic mutation of the TNFAIP2 3'UTR leading to translational repression of this gene [Ramsingh et al. 2010 Blood 116:5316-5326]
- miR-17-92 cluster members are over-expressed as a direct result of promoter binding by MLL fusion proteins [Mi et al. 2010 PNAS 107:37105]
- miRNA expression profiling may therefore have important roles in cancer prognosis and therapeutics

Multiplexed small RNA sequencing - the proble

Method

Barcoding bias in high-throughput multiplex sequencing of miRNA

Shahar Alon, ${ }^{1,6}$ Francois Vigneault, ${ }^{2,3,4,6}$ Seda Eminaga, ${ }^{2}$ Danos C. Christodoulou, ${ }^{2}$ J.G. Seidman, ${ }^{2}$ George M. Church, ${ }^{2,3}$ and Eli Eisenberg ${ }^{5,7}$
${ }^{1}$ Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; ${ }^{2}$ Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; ${ }^{3}$ Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, USA; ${ }^{4}$ Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts 02129, USA; ${ }^{5}$ Raymoni and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
http://www.genome.org/cgi/doi/10.1101/gr.121715.111

"Here we report that barcodes introduced through adapter ligation confer significant bias on miRNA expression profiles."

A

B Different bar-codes - mouse normal heart

PCR bar-coding

Multiplexed small RNA sequencing - the solutic

- Adding barcodes during PCR amplification minimizes the bias we and others (Alon et al. 2011 Gen. Res. Epub Aug 4 \& Hafner et al. 2011 RNA Epub July 20) observe when employing bar-coding by ligation.
- Illumina GAllx/HiSeq 2000 platforms

Plate-based miRNA-Seq
library construction
ssDNA 3' Adapter Ligation
\square
ssRNA 5' Adapter Ligation

Library pooling and Size Selection

T4 RNA Ligase 2

ssRNA 5' adapter

miRNA product is enriched by PCR with an index primer

PCR primer

rence analysis pipelines

- Profile miRNA expression
- Library quality assessment
- Hierarcbical clustering

Consensus clustering
MicroRNA prediction

- RNA edits \&/or mutations
- 3' untemplated additions

miRNA sequence analysis pipeline

Cross-library miRNA saturation plot.

By plotting the number of miRNA reads against number of miRNA species found in all samples in a given tissue, we can see the when we've captured most of the miRNAs we'd expect to see in the sample.

I ne vancer Genome Atias

miRNA quality assurance

MX0091_CGTGAT - Percentage of Aligned Tags At Each Tag Length With Annotation

Profile miRNA expression of samples through read counts to all known miRNAs
Quality assessment what other RNA species are present?
Comparison of miRNA expression across multiple samples

miRNA quality assurance

- Profile miRNA expressioh of samples through read counts to all known miRNAs
Quality assessment what other RNA species are present?
- Comparison of miRNA expression across multiple samples

miRNA-Seq expression in AML

- Top 10 expressed miRNAs are leukemia

Top $\mathbf{1 0}$ miRNAs	Average tags per million	Role in cancers
hsa-miR-21	119,563	Overexpressed in many tumours including leukemias
hsa-miR-142	96,583	Aberrant expression in leukemia
hsa-miR-92a-2	96,005	Overexpressed in many tumours including leukemias
hsa-miR-10a	89,865	Down regulated in chronic myeloid leukemia
hsa-miR-223	39,032	Aberrant expression in AML; CEBPA target
hsa-miR-181a-1	38,565	Aberrant expression in leukemia and other cancers; HOX regulator
hsa-miR-30e	35,442	Metastasis related in hepatocellular carcinoma
hsa-miR-25	32,725	Aberrant expression in many tumours
hsa-miR-148a	31,990	Hypermethylated in breast cancer; differentiates T \& B cell leukemias; targets DNMT3
hsa-let-7b	28,928	Highly discriminatory between Acute Lymphocytic Leukemia and Acute Myeloid Leukemia (over-expressed)

Mature vs star miRNAs

Novel microRNA prediction

Aggregate all filtered reads from a set of samples.
Use FindPeaks to find relative expression "hotspots".

Genome Coordinate
Re-annotate the peaks themselves, rather than using the read annotation.
This allows greater stringency (eg. bp overlapped) than the original annotation.
Add flanking sequence around each peak and attempt to fold the RNA using RNALfold (ViennaRNA package), then extract structure information using RNAfold.

The Cancer ${ }^{\prime}$

Vienna RNA

mRNA-seq and miRNA-seq data

Library construction

index	Hean coverage	HiSeq 2000 V
\square		2 libraries/lane

HiSeq 2000 v3 N libraries/lane

UMPS mutations affect

UMPS locus

Allele B

UMPS catalyses the the last step in the pyrimidine nucleotide synthesis pathway: conversion of orotate to UMP. UMPS is required for 5 FU induced cell death.

[^1]
Correlating alternative expression and

antisense transcription

Antisense-correlated probe set expression: MSH6

85\% of expressed SAS loci ($n=402$) have significant correlations between antisense transcription and sense gene probeset inclusion \& exclusion events (i.e. splicing)

Cancer-associated antisensecorrelated splicing events'

- Known SAS gene pairs have altered expression ratios in cancer (Chen et al., TiG, 2005)
- Intronic antisense transcripts correlate to the degree of tumor differentiation in prostate cancer (Reis et al., Oncogene, 2004)
- Many known cancer-related genes have novel antisense transcription
- ex. p15, Yu et al., Nature, 2008
- 215 of 389 Cancer Gene Census genes (p-value $=4.2 \times 10^{-9}$)

Goal: Assess cancer-specific antisense-correlated splicing events using exon array data Focus: 266 Glioblastoma multiforme samples from The Cancer Genome Atlas (TCGA)

Antisense-correlated splicing events have tissuespecific patterns

- inclusion \& exclusion of probesets is tissue specific
- like gene expression values, SI values can be used to group samples
- unsupervised hierarchical clustering of all 17,420 probesets expressed in normal samples recapitulates groups of normal tissues

Antisense-correlated splicing events reveal GBM subbtypes

1,000 probesets (629 genes) with cancer-specific alternative inclusion can be used to find GBM sub-types

Cluster 1
Cluster 2A
Cluster 2B1
Cluster 2B2 \square

Known GBM candidate driver genes have prognostic splicing events

Expressed in GBM	Antisense- correlated splicing	Cancer- specific isoforms	GBM- specific isoforms
A2M	Y	Y	Y
AKT3	Y	Y	Y
AVIL	Y	Y	Y
CCND2	Y	Y	Y
CDKN2C	Y	Y	Y
EGFR	Y	Y	Y
PIK3R1	Y	Y	Y
PTEN	Y	Y	Y
SPRY2	Y	Y	Y
APC	Y	Y	Y
FOXO1	Y	Y	Y
PLCL2	Y	Y	Y
TSC1	Y	Y	Y
CCND1	Y	Y	
FGFR1	Y	Y	
KLF6	Y	Y	
PLCB1	Y	Y	
EPHA3	Y		
PTPN11	Y		
FGFR2			
IFNW1			
SH3GL2			
CBL			
FOXO3			
PTPRB			
TUBGCP2			
TBP			
PIK3C2B			
TP53			
FRS2			
CRK			
IRS1			
7BNC2			

- 33 of 82 candidate driver genes are expressed SAS genes
- 19 / 33 had antisense-correlated splicing
- 17 / 19 cancer-specific splicing, 13 / 19 GBM-specific
- 6 of these genes have exons found within the set of 1,000 exons used to generate the patient clusters

Identifying prognostic splicing events using driver genes

PLCL2: phospholipase C-like 2

- intronic probeset associated with survival (corrected $P=0.038$)
- inclusion: 484 days median survival (109 patients)
- exclusion: 682 days median survival (136 patients)

The Cancer Genome Atlas

Antisense-correlated splicing events in cancer

- Antisense transcription is highly correlated to the alternative processing of sense genes in both normal and disease states
- Probesets with antisense-correlated splicing can be used to find clinically-relevant groups of GBM patients, differing in median survival and in response to therapy
- this is a new approach to addressing the molecular heterogeneity of human cancers

Goal: Identify signature of antisense-correlated events prognostic of survival or chemotherapy response

- these events represent a shortlist of genes whose alternative expression is relevant to cancer biology, and which have putative antisense-mediated regulation
- the focus on cancer-specific events is designed to identify novel putative targets for therapeutics or diagnostics

Clinical features of GBM subtypes

	Number of patients	Median survival (days)	Median age	1-Year Survival 2-Year Survival	5-Year conditional survival*	
Cluster 1	13	1,024	33	84.6	61.5	50.0
Cluster 2A	71	447	56	56.3	21.1	20.0
Cluster 2B1	48	551	58.5	68.8	39.6	21.0
Cluster 2B2	113	345	57	47.8	15.0	5.9

* 5-year survival rate was calculated for the subset of patients still alive at 2 years

Treatment differences?

- Temozolomide: 100 / 249 patients

Survival (years)

BC Cancer Agency

Antisense transcription: a model of alternative splicing regulation

$\boldsymbol{\uparrow}$ Exons : $\boldsymbol{\uparrow}$ Nucleosomes : $\boldsymbol{\downarrow}$ Polll speed $: \boldsymbol{\uparrow}$ alternative splicing

Morrissy, Griffith, and Marra, 2010, Genome Research, in revision

Data browsing and acces

Summary page for comparison: 'Mip5FuR_vs_Mip101' (HS04401_vs_HS04391) - Project: 5FU

Download complete candidate list as tab delimited text file: Mip5FuR vs Mip101.txt
Summary of Differential (DE) and Alternative Expression (AE) for all gene loci:
Total Candidate Genes: 1,724 (of 36,953 possible genes)
DE Genes: 253
AE Genes: 1,498
Alternative Exon Usage (EU) Genes: 865
Alernative Exon Skipping (ES) Genes: 320
Alternative Exon Boundary (AB) Genes: 295
Intron Retention (IR) Genes: 37
Cryptic Exon (CE) Genes: 127

Rank	Overall Rank	Score	Name	Gene Type	Trans. Count	Exon Count	Event Type	Direction	FC	\# AE Events	AE Codes	Top Feature	Adjacency $\%$
1	1	10.07	OCIAD1	'protein_coding'	3	13	AE	Gain	55.21	5	EU ES	E4a_E6a	100.00
2	2	8.64	EIF4A2	'protein_coding'	2	12	AE	Loss	-45.83	1	ES	E9a_E11a	0
3	3	8.00	UBE2M	'protein_coding'	1	6	AE	Gain	40.20	1	ES	E4a_E6a	0
4	4	7.71	BUD31	'protein_coding'	2	8	AE	Gain	31.36	2	ES	E1a_E3a	0.00
5	5	7.41	AP2B1	'protein_coding'	2	22	AE	Gain	30.68	1	ES	E20a_E22a	0
6	6	7.15	UBE2K	'protein_coding'	2	9	AE	Loss	-23.27	1	ES	E2a_E4a	0
7	7	6.65	FAU	'protein_coding'	2	7	AE	Loss	-18.48	1	ES	E4a_E6a	0
8	8	6.50	$\underline{\mathrm{H} 19}$	'protein_coding'	1	6	DE	Loss	-90.71	0	N/A	H19	N/A
9	9	6.12	C1orf2	'protein_coding'	8	22	AE	Loss	-35.35	2	EU	E7b_E8a	100.00
10	10	6.00	RAB22A	'protein_coding'	1	7	AE	Loss	-13.44	3	EU ES	E3a_E5a	50.00

Transcriptome library construction

Automated size-selection

- Individual channel voltage control
- In-channel band sizing
- Optimized for miRNA

Exon-level differential expression in CRC

MSI/CIMP

invasive
CIN

- Exons differentially spliced between MSI and CIN expression subtypes ($\mathrm{P}<0.0001$)
- Out of $\sim 155 \mathrm{~K}$ probe, detected more differences among the tumors over chance expected (found: 629, chance est ~ 15 at $\mathrm{P}<0.0001$)

Chad Creighton, BCM

Nonsense mutations have reduced mutant allelic fraction

Alternative first exons of INPP4B

www.AlexaPlatform.org/alexa sea/

Gene model for 'INPP4B'

Detecting PTDs \& ITDs

-1	2	3	2	3	4	5

assemble reads

align contig
to genome
read pairs

- Partial (gene) tandem duplications (PTDs):
- 10/173 pts (5.8\%) harbour duplication of MLL exons (210)
- 181 other PTDs identified
- Internal tandem duplications (ITDs)
- 29/173 (17\%) harbour partial FLT3 exon 14 duplication
- 6/173 (3.5\%) harbour partial WT1 exon 7 duplication

Detecting PTDs \& ITDs

- Partial (gene) tandem duplications (PTDs):
- 10/173 (5.8\%) harbour duplication of MLL exons (210)
- 181 other PTDs identified
- Internal tandem duplications (ITDs)
- 29/173 pts (17\%) harbour partial FLT3 exon 14 duplication
- 6/173 (3.5\%) harbour partial WT1 exon 7 duplication

Verification of novel fusion events

Chr 19p13.2

DNA directed RNA polymerase II polypeptide A (POLR2A)

[^0]: GTTTTCOTAATGATCCGCA
 AAGGGCGTTCOAGOGGACACAOTATC
 G月GGATCGATTTGACGG月GGCG月GGGTGC月GG
 GTGGCGORAGOAGGAGA日G日エ

 हGCTCCATTAAGTGAFA月GCTCACAGCAGAGATGAT
 CAGTTAGTTCTAAAGTACTACAATAGATATG
 atgagggeatctegettgattafge

[^1]: भGTTTTCOTARTGATCCGQA
 FAGGGCGTTCOAGCGGACACACTATC
 G月GGATCGATTTGAcGGAGGCGAGGGTGCAGG

 ATTC Tr

 f月ACGGG用时用
 TGGATTCC日m

 －GOTCCATTAAGTGAFARGCTCACAGCAGAGATGAT
 CAGTTAGTTCTAARGTAOTACARTAGATAT
 नTGAGGGOATOTCGOTTGATTARGA

