MetaMap 2011 Release Notes

June 6, 2011

MetaMap2011 includes some significant enhancements, most notably algorithmic improvements that enable MetaMap to very quickly process input text that had previously been computationally intractable.

1 Algorithmic Improvements

MetaMap has always emphasized thoroughness over efficiency; recently, however, processing efficiency has become a significant concern for many members of the MetaMap user community, who have provided feedback about pieces of text that caused MetaMap to run for an extremely long time (many hours or even days) and/or run out of memory

A brief explanation of the computational issues: MetaMap first identifies candidates (UMLS concepts) mentioned in the input text, and then creates its final mappings by choosing appropriate candidates that cover as much of the input text as possible. Because each mapping is a subset of the set of candidate concepts, the set of mappings is a subset of the powerset of the candidate set. Given N candidates, this computationally intensive process can in the worst case generate 2^N mappings, although in actual practice, the number of mappings is far smaller (although in some cases still in the millions).

To explain the algorithmic improvements, we first introduce the notion of *duplicate candidates*; we next present some information about MetaMap's mapping-construction algorithm (more details can be found here); and finally we explain how identifying duplicate candidates leads to a dramatic improvement in the efficiency of mapping construction.

1.1 Duplicate Candidates

Duplicate candidates are candidate concepts with **identical phrase coverage** and **candidate scores**. For example, from the text **inferior vena caval filter**, MetaMap identifies the following twenty-one candidates:

```
    976 Filter, Inferior Vena Cava (Vena Cava Filters) [Medical Device]
    Cava Filter, Vena
    812 Filter (Filters) [Manufactured Object]
    812 Filter (Optical filter) [Medical Device]
    812 Filter (filter information process) [Intellectual Product]
    812 Filter (Filter (function)) [Conceptual Entity]
```

7. 812 Filter (Filter Device Component) [Medical Device] 812 FILTER (Filter - medical device) [Medical Device] 8. 756 Inferior vena caval [Body Location or Region] 9. 733 Inferior Vena Cavas (Inferior vena cava structure) [Body Part, Organ, or Organ Con 10. 721 Inferior vena cava (Entire inferior vena cava) [Body Part, Organ, or Organ Componed 11. 12. 694 Vena caval (Vena cava structure) [Body Part, Organ, or Organ Component] 645 Vena (Structure of vein of trunk) [Body Part, Organ, or Organ Component] 13. 645 Inferior [Spatial Concept] 14. 15. 645 inferior (inferiority) [Social Behavior] 623 Vena cava (Entire vena cava) [Body Part, Organ, or Organ Component] 16. 612 Venae (Veins) [Body Part, Organ, or Organ Component] 17. 579 Kava [Plant] 18. 579 KAVA (Kava preparation) [Organic Chemical, Pharmacologic Substance] 19. 20. 579 CAVA (CA5A gene) [Gene or Genome] 579 Kava (Kava Use Code) [Intellectual Product] 21.

This list of candidates includes several sets of of duplicate candidates:

1. two candidates identified from inferior:

645 Inferior [Spatial Concept]
 645 inferior (inferiority) [Social Behavior]

2. four from cava:

18.	579 Kava	[Plant]
19.	579 KAVA	(Kava preparation) [Organic Chemical, Pharmacologic Substance]
20.	579 CAVA	(CA5A gene) [Gene or Genome]
21.	579 Kava	(Kava Use Code) [Intellectual Product]

3. and finally six from filter:

812 Filter (Filters) [Manufactured Object]
 812 Filter (Optical filter) [Medical Device]
 812 Filter (filter information process) [Intellectual Product]
 812 Filter (Filter (function)) [Conceptual Entity]
 812 Filter (Filter Device Component) [Medical Device]
 812 FILTER (Filter - medical device) [Medical Device]

The candidates in each of the groupings above are duplicate concepts because they have the same phrase coverage and received the same candidate score.

1.2 Mapping Construction

MetaMap's mappings are sets of candidates that maximize the coverage of the input phrase being analyzed. MetaMap has in the past created mappings from the full candidate set, and then deleted a mapping M1 if it is subsumed by another mapping M2, i.e., if M2 has broader phrase coverage than M1. Subsumption checking is quadratic in the number of mappings, because each of n mappings must be checked, on average, against n/2 other mappings, which makes subsumption checking $O(n^2)$.

1.3 Efficiency Improvement

Mappings that differ only by duplicate candidates need not be checked for subsumption, because they will have equivalent phrase coverage, so in MetaMap2011, we reduce the number of mappings that must be checked for subsumption by temporarily ignoring all but one candidate from each set of duplicates before constructing the mappings that are checked for subsumption. In the above example, mappings are constructed from only twelve candidates instead of the full set of twenty-one because we temporarily ignore

- one of the candidates mapped from inferior,
- three mapped from cava, and
- five mapped from filter.

Mappings surviving the subsumption check are then duplicated using the full set of duplicate candidates. The subsumption algorithm is unchanged and still quadratic, but it is now based on a far smaller n, resulting in substantial efficiency gains observed while analyzing texts that generate large number of candidates.

1.4 Results

When analyzing text that generates such a small number of mappings as the above example, the efficiency improvements will not be noticeable; however, while processing the entire 2011 MEDLINE baseline with MetaMap2010, we encountered 116 citations that each ran for over six hours on a 3GHz Linux platform before processing was manually terminated. With our algorithmic improvements, 115 of these 116 citations now run in approximately 15 seconds—a speedup of over 1400 fold, or about 140,000%, for such extremely long-running citations. This speedup will be far more modest, if it is observable at all, for most well-behaved citations, but citations that generate a large number of candidates can now be processed far more efficiently. This algorithmic improvement is built into MetaMap2011, invoked automatically, and not subject to user control.

2 Pruning the Candidate Set

In spite of the efficiency improvements described above, certain pathological cases remain computationally challenging. For example, the following text (from PMID 10931555) protein-4 FN3 fibronectin type III domain GSH lutathione GST glutathione S-transferase hIL-6 human interleukin-6 HSA human serum albumin IC(50) half-maximal inhibitory concentration Ig immunoglobulin IMAC immobilized metal affinity chromatography K(D) equilibrium constant

parses to a single phrase that generates 98 candidates. Creating mappings from 98 candidates will exceed most users' computational resources—not to mention their patience. In order to enable MetaMap to generate (perhaps suboptimal) mappings from text such as the above in a reasonable amount of time, we have implemented a mechanism of candidate pruning, which reduces the number of candidates used to construct mappings.

The candidate-pruning mechanism makes up to five passes through the candidate list; each pass examines candidates from highest to lowest scoring, and employs increasingly stringent exclusion criteria. If one pass prunes out enough candidates, the remaining passes are are not made. Suppose we want to limit the number of candidates to N:

Pass 1: Exclude all candidates whose phrase coverage is narrower than any previous examined candidate's. If N or fewer candidates remain, stop.

Pass 2: Exclude all candidates whose phrase coverage is narrower than the aggregate phrase coverage of all previously examined candidates If N or fewer candidates remain, stop.

Pass 3: Exclude all candidates whose phrase coverage is narrower or the same as the aggregate phrase coverage of all previously examined candidates If N or fewer candidates remain, stop.

Pass 4: Exclude all candidates whose phrase coverage overlaps the aggregate phrase coverage of all previously examined candidates If a candidate's phrase coverage overlaps any previously examined candidate's, exclude it. If N or fewer candidates remain, stop.

Pass 5: Finally, simply exclude all but the first N candidates, as well as any subsequent candidates whose score is equal to that of the Nth candidate.

Our experience has revealed that allowing MetaMap to construct mappings from more than 35–40 candidates can be extremely time consuming, even with the aforementioned efficiency improvements; conversely, restricting the candidate set to fewer than 30 is likely to exclude some useful candidates. MetaMap by default will therefore automatically prune the candidate list to 35 candidates; however, this default behavior can be overridden in two ways:

- 1. To set a pruning threshold different from the default 35, use the option --prune N with any positive integer N.
- 2. To disable candidate pruning altogether, use the option --no_prune; be aware, however, that using this option can cause MetaMap to run for many hours and/or run out of memory.

Finally, note that if candidate pruning is used, all original candidates will still appear in the Candidates portion of MetaMap's output.

3 Additional Data Models

MetaMap has historically made available two data models (Strict and Relaxed) with each UMLS Metathesaurus release; the Filtering Report on the SKR website

http://skr.nlm.nih.gov/papers/references/filtering10.pdf.

explains how we construct these models via extensive filtering of the raw UMLS data.¹

In order to accommodate the UMLS source-vocabulary licensing permissions and processing requirements of as many users as possible, MetaMap releases beginning in 2011 will include three distinct versions of the data that are based mostly on the Restriction Categories of Metathesaurus source vocabularies. (See the *Restriction Categories* tab on the UMLS Source Release Documentation page for all UMLS sources' Restriction Categories.) Each data version includes a Strict and Relaxed model; listed from smallest to largest, the three versions are:

- 1. Base: The Base data version includes those source vocabularies with no associated licensing restrictions beyond those of the UMLS license; in the 2011AA release, this version includes all and only sources of Restriction Category 0.
- 2. USAbase: The USAbase data version includes those source vocabularies with no associated restrictions beyond a UMLS license, and free for use for US-based projects; in the 2011AA release, this version includes the Base vocabularies (those with Restriction Category 0), plus the five Category-4 sources and the four Category-9 sources (including, most notably, SNOMEDCT). The USAbase version is a proper superset of the Base version, and might be the most appropriate version for users with a SNOMEDCT license. To repeat: This data version is MetaMap2011's default, but the default can be overridden using the -V flag.
- 3. NLM: The NLM data version includes the full Metathesaurus other than the CPT, CPTSP, HCPT, and MTHCH vocabularies from the CPT family, and the HCDT, HCPCS, and MTHHH vocabularies from the HCPCS family.

The table below shows the number of distinct CUIs and CUI-LUI-SUI combinations in each of the three data versions' strict and relaxed models:

	Str	rict	Relaxed		
	CUI	C-L-S	CUI	C-L-S	
Base	1,171,126	$1,\!990,\!193$	1,704,719	3,309,606	
USAbase	1,332,076	2,301,691	2,006,271	4,266,921	
NLM	1,557,385	2,683,726	$2,\!394,\!524$	5,448,114	

For comparison testing of the three data versions, we ran MTI on over 72,000 MEDLINE citations, and achieved best overall results with the USAbase data version. Our experiments showed that including vocabularies of Restriction Categories 1–3 is not necessary to achieve optimal results; however, users should decide which of these data versions best suits their specific analytical and processing requirements and is consistent with their UMLS licensing privileges. We encourage users to consult the UMLS Metathesaurus License, available at https://uts.nlm.nih.gov/license.html.

¹The moderate model mentioned in the report is no longer created.

4 Single-Character Alphabetic Tokens

MetaMap2011 does not attempt to identify candidates from single-character alphabetic tokens appearing in a phrase

- 1. containing at least 10 tokens, and
- 2. more than three-quarter of whose tokens are single-character tokens.

This strategy is designed to reduce false-positive candidates that would otherwise be generated from text such as

The sequence was (in the standard one-letter code) A-N-S-F-L-X-X-L-R-P-G-N-V-X-R-X-C-S-X-X-V-C-X-F-X-X-A-R-X-I-F-Q-N-T-X-D-T-M-A-F-W-S-K-Y-S-D-G-D-Q-C-E-D-R-P-S-G-S-P-C-D-L-P-C-C-G-R-G-K-C-I-H-G-L-G-G-F-R-C-D-C-A-E-G-W-E-G-R-F-C-L-H-E-V-R-F-S-N-C-S-A-E-B-G-G-C-A-H-Y-C-M-E-E-E-G-R-R-H-C-S-C-A-P-G-Y-R-L-E-D-D-H-Q-L-C-V-S-K-V-T-F-P-C-G-R-L-G-K-R-M-

from PMID 282610 and

Upon sequencing the peptides by the automated Edman method, the following sequence was obtained: A D T N A P L C L C D E P G I L G R N Q L V T P E V K E K I E K A V E A V A E E S G V S G R G F S L F S H H P V F R E C G K Y E C R T V R P E H T R C Y N F P P F V H F T S E C P V S T R D C E P V F G Y T V A G E F R V I V Q A P R A G F R Q C V W Q H K C R Y G S N N C G F S G R C T Q Q R S V V R L V T Y N L E K D G F L C E S F R T C C G C P C R N Y Carcinoscorpius coagulogen consists of a single polypeptide chain with a total of 175 amino acid residues and a calculated molecular weight of 19,675.

from PMID 3905780.

5 Improved Treatment of Apostrophe-s

Previous versions of MetaMap have analyzed "'s" (apostrophe + s) as a contraction for the verb is; MetaMap2011 by default treats "'s" as a possessive, except when following $he \ she \ or \ it$. The previous contraction treatment of "'s" can be restored by specifying the --apostrophe_s_contraction command-line option.

6 New XML Command-Line Options

In previous versions of MetaMap, the XML options have been

• --XML format,

- --XML format1,
- --XML noformat, and
- --XML noformat1

Moreover, the short version "-%" could be used instead of "--XML". These options were first explained here.

We have changed these four options to

- --XMLf,
- --XMLf1,
- \bullet --XMLn, and
- --XMLn1

There is no longer a short form such as -% for any of the new XML options.

7 Composite Phrases

Previous versions of MetaMap have included an option called --quick_composite_phrases, which caused MetaMap to construct longer, composite phrases from the simple phrases produced by the parser. A composite phrase consists of

- a noun followed by
- any prepositional phrase, optionally followed by
- one or more prepositional phrases introduced by of.

Our canonical example is *pain on the left side of the chest*, which will map to Left sided chest pain with the composite phrases option on, but to separate concepts without.

This option is now named simply --composite_phrases, and can be invoked with -Q; it also automatically turns on --term_processing and --ignore_word_order, but only during the analysis of any constructed composite phrase (i.e., a phrase created by glomming at least one prepositional phrase onto a preceding noun). The maximum number of prepositional phrases that will be added to a noun is under user control, and can be specified by providing a mandatory integer argument to the -Q flag; our experiments suggest that 3 or 4 might be reasonable values to try. Examples of text that would by default be divided into multiple phrases, but analyzed as a single phrase by specifying the -Q 4 option are

```
Limits for the Number of Solutions of Certain General Types of Equations
findings from the examination of the oral cavity of pupils of the Amaleion Orphanage
Points in the Technique of the Treatment of Fracture of the Patella
Institute of Anatomy of the Faculty of Medicine of Oporto
```

Composite phrases are necessarily longer than non-composite phrases, and the --term_processing and --ignore_word_order options will invoke more computation; consequently, an observable slowdown will result from using --composite_phrases. If processing with this option turned on proves to be too slow, pruning the candidate set (as described in Section 2 above) might be a worthwhile option to explore.

Much to our surprise, our internal testing of composite phrases with MTI resulted in virtually identical recall, but slightly worse precision. However, this option might prove useful for users analyzing clinical text who wish to increase recall.

8 Numbered Mappings

MetaMap has long provided the ability to number the candidates in its default human-readable output by using the --number_the_candidates (short form -n) command-line option. When called with -n, the Candidates portion of MetaMap's human-readable output is displayed as

```
Phrase: "stent"
Meta Candidates (2):
    1. 1000 Stent (Stent, device) [Medical Device]
    2. 1000 Stent (Stent Device Component) [Medical Device]
instead of
Phrase: "stent"
Meta Candidates (2):
    1000 Stent (Stent, device) [Medical Device]
```

1000 Stent (Stent Device Component) [Medical Device]

MetaMap2011 includes the ability to number the mappings using the --number_the_mappings (short form -f) command-line option. When called with -f, the Mappings portion of MetaMap's human-readable output is displayed as

```
1. Meta Mapping (1000):
  1000 Stent (Stent Device Component) [Medical Device]
2. Meta Mapping (1000):
  1000 Stent (Stent, device) [Medical Device]
instead of
Meta Mapping (1000):
  1000 Stent (Stent Device Component) [Medical Device]
Meta Mapping (1000):
  1000 Stent (Stent, device) [Medical Device]
```

Invoking the --number_the_mappings option will not modify MetaMap Machine (MMO) or XML output.

9 User-Defined Acronyms and Abbreviations

The biomedical literature is replete with acronyms and abbreviations $(AAs)^2$ defined by the author, for example

```
Trimethyl cetyl ammonium pentachlorphenate (TCAP)
Reticulo-endothelial immune serum (REIS)
isonicotinic acid hydrazid (INAH)
```

MetaMap has long handled such text by interpreting appearances of the AA (TCAP, REIS, INAH) later in the text as if the expansion had been used instead.

In MetaMap2011, we introduce user-defined AAs (UDAs),³ which enable MetaMap users to better handle AAs and other idiosyncratic expressions that either are not in the UMLS or exhibit unwanted spurious ambiguity. For example, defining Positron Emitting Tomography to be an AA for PET and Computerized Axial Tomography for CAT could be useful in analyzing radiology reports, because doing so would suppress the identification of UMLS concepts referring to certain companion animals.

To take advantage of this functionality, simply create a plain text file in which UDAs and their expansions are separated by a vertical bar:

```
PET|Positron Emitting Tomography
CAT|Computerized Axial Tomography
DRSP|drug-resistant streptococcus pneumoniae
NIDR|national infectious disease register
```

After creating such a file, e.g., UDAFile, simply call MetaMap with the --UDA option as follows:

metamap --UDA UDAFile

and the AA expansions will be analyzed by MetaMap. The AA and the expansion can appear in the line in either order, e.g.,

Positron Emission Tomography|PET CAT|Computerized Axial Tomography DRSP|drug-resistant streptococcus pneumoniae national infectious disease register|NIDR

Indeed consistency of order within the file is not necessary: MetaMap will consider the shorter string to be the AA, and the longer one the expansion, regardless of which appears first in a given line. Some formatting trivia:

• UDAs should consist of one alphanumeric token only.

 $^{^{2}}$ Of which this is an example.

³UDA is a UDA!

- Lines whose first non-blank character is "#" are treated as comments and are ignored.
- Multiple consecutive whitespace characters are treated as a single one.
- Whitespace is ignored
 - before the first nonblank character in a line,
 - after the last nonblank character in a line, and
 - immediately before and after the "|" character.
- MetaMap will stop reading the UDA file when it encounters a line containing only whitespace.

Several points to note:

- In order to respect the primacy of the text and not subvert the intentions of the original author, author-defined AAs take precedence over any defined by the user. More specifically, if both the author and the user provide expansions for the same AA, MetaMap will use the author's and not the user's; moreover, if the user provides an AA expansion, and the AA itself is part of an author-defined AA expansion, the user's expansion will be ignored. Such conflicts between author- and user-defined AAs should be uncommon, because UDAs will probably be most applicable in analyzing clinical text, which does not generally contain author-defined AAs, but does typically include idiosyncratic domain-specific AAs that are defined in neither the text nor the UMLS.
- UDA expansions should map to some Metathesaurus concept(s) in order to be useful.
- Metathesaurus concepts mapped to by UDA expansions override (not supplement) concepts that MetaMap would have identified absent any UDAs. To illustrate potential dangers of ignoring this point, we present a number of multiword Metathesaurus strings along with completely invented acronyms that are themselves Metathesaurus strings:

```
ACHE|acute constitutional hand eczema

CYST|childhood yolk sac tumor

IRIS|inner retinal ischemic spots

LUCITE|left upper central incisor tooth enamel

SCAR|sodium clodronate adverse reaction

TEAR|topical estradiol adverse reaction

UMLS|undecylenate medicated liquid soap (!!)

UREA|uridylyl removing enzyme activity

WART|WHO Adverse reaction terminology
```

Defining any of the above UDAs will block the identification of any Metathesaurus concepts derived from the AAs themselves, which is probably not the desired behavior.

• UDAs are case sensitive: If WART is defined as above, and the input text contains wart, the UDA will not be expanded.

• A UDA will be expanded only if it appears as a discrete token in the input, and not as a substring of a longer word. For example, if WART is defined as above, it will not be expanded from, say, WARTS or WARTHOG.

Base/strict		USAbase/strict		NLM/strict	
NCBI	539,685	NCBI	539,333	NCBI	539,312
MSH	482,182	MSH	480,673	MSH	476,577
LNC	133,652	SNOMEDCT	224,714	MEDCIN	222,445
FMA	127,251	LNC	133,178	LNC	132,915
HUGO	107,179	FMA	127,177	RCD	127,983
NCI	101,407	HUGO	107,178	FMA	125,953
OMIM	83,077	NCI	97,012	SNOMEDCT	116,691
CHV	73,648	OMIM	82,493	HUGO	107,178
GO	67,353	SNMI	78,375	NCI	94,460
RXNORM	64,981	RXNORM	67,616	OMIM	81,972
MTH	63,998	GO	67,328	SNMI	71,983
NDFRT	21,352	MTH	65,203	RXNORM	70,364
MTHFDA	17,932	CHV	55,919	GO	67,323
MTHSPL	11,396	ICD10CM	25,842	MTH	62,607
AOD	11,017	NDFRT	21,095	CHV	50,100
ICD9CM	10,590	MTHFDA	17,922	MMSL	38,171
ICD10PCS	10,527	MTHSPL	11,340	MDR	30,209
MTHICD9	10,254	SNM	10,766	NDFRT	21,217
CSP	7,327	ICD10PCS	10,512	ICD10CM	20,443
UWDA	6,785	AOD	10,251	UMD	18,237
PDQ	5,933	MTHICD9	8,386	MTHFDA	17,729
DXP	5,832	ICD9CM	8,095	ICD10AM	11,727
HL7V3.0	4,943	CSP	6,946	GS	11527
LCH	3,448	UWDA	6,624	MTHSPL	11,334
SPN	3,168	PDQ	5,869	NDDF	10,749
CST	2,720	DXP	5,018	ICD10PCS	10,506
HL7V2.5	2,673	HL7V3.0	4,917	AOD	10,085
COSTAR	1,764	LCH	$3,\!394$	SNM	9,971
MTHMST	1,414	SPN	$3,\!057$	MTHICD9	7,656
VANDF	1,289	HL7V2.5	$2,\!648$	MDDB	7,586
MEDLINEPLUS	1,194	CST	2,326	RCDAE	7,561
HCPCS	1,078	COSTAR	$1,\!437$	CCPSS	7,372
CCS	526	MTHMST	1,418	ICD9CM	7,317
MTHCH	519	VANDF	1,264	CSP	6,897
AOT	427	MEDLINEPLUS	$1,\!150$	UWDA	6,622
ICPC	319	HCPCS	$1,\!075$	PDQ	5,736
QMR	303	ICF-CY	760	HL7V3.0	4,904
AIR	279	CCS	532	DXP	4,621
SRC	229	MTHCH	511	ICNP	4,454
RAM	178	LNC_MDS20	473	MMX	3,812
USPMG	173	AOT	298	ICPC2P	3,506
МТННН	170	ICPC	295	LCH	3,058
MCM	20	AIR	264	SPN	3,022
MTHHL7V2.5	1	SRC	264	HL7V2.5	2,634

Base/relaxed		USAbase/relaxed		NLM/relaxed	
NCBI	654,158	SNOMEDCT	771,970	MEDCIN	706,782
MSH	624,855	NCBI	653,765	NCBI	653,744
RXNORM	417,134	MSH	623,200	MSH	619,037
LNC	312,547	RXNORM	416,132	SNOMEDCT	601,411
ICD10PCS	249,861	LNC	312,080	RXNORM	398,862
FMA	137,568	ICD10PCS	249,845	LNC	311,809
NCI	134,086	FMA	137,498	RCD	293,367
HUGO	120,949	NCI	129,508	ICD10PCS	249,839
OMIM	108,599	HUGO	120,948	FMA	136,208
CHV	91,468	OMIM	108,030	NCI	126,716
GO	89,206	SNMI	104,739	HUGO	120,948
MTH	81,098	ICD10CM	98,774	OMIM	107,486
NDFRT	72,547	GO	89,180	SNMI	97,729
ICD9CM	36,170	MTH	80,492	ICD10CM	90,629
MTHFDA	31,769	CHV	73,187	GO	89,174
MTHSPL	26,640	NDFRT	72,270	ICPC2ICD10ENG	78,499
MTHICD9	17,444	ICD9CM	$33,\!165$	MTH	73,035
AOD	13,734	MTHFDA	31,759	NDFRT	72,193
PDQ	12,340	MTHSPL	26,584	CHV	66,919
HCPCS	11,083	MTHICD9	15,258	NDDF	60,855
CSP	8,408	SNM	13,986	MMSL	58,166
VANDF	8,383	AOD	12,961	MDR	48,009
UWDA	7,928	PDQ	12,273	ICD9CM	31,996
HL7V,3.0	7,033	HCPCS	11,080	MTHFDA	31556
DXP	6,387	VANDF	8,365	MTHSPL	26,563
SPN	4,730	CSP	8,025	ICD10AM	23,983
HL7V2.5	4,595	UWDA	7,764	UMD	22,185
CST	4,562	HL7V3.0	7,001	GS	18,131
LCH	3,652	DXP	5,568	MTHICD9	14,437
COSTAR	1,852	SPN	4,630	RCDAE	13,850
MTHMST	1,801	HL7V,2.5	4,570	SNM	13175
MEDLINEPLUS	1,348	CST	4,242	AOD	12,790
MTHCH	1,015	LCH	3,599	MDDB	12,347
CCS	971	LNC_MDS20	2,540	PDQ	12,149
ICPC	933	MTHMST	1,806	CCPSS	11,387
AIR	600	ICF-CY	1,642	ICPC2P	11,251
QMR	588	COSTAR	1,525	NIC	10,813
AOT	452	MEDLINEPLUS	1,302	MMX	9,008
МТННН	318	MTHCH	1,008	ALT	8,845
USPMG	282	CCS	979	VANDF	8,361
SRC	259	ICPC	918	CSP	7,973
RAM	228	AIR	588	UWDA	7,762
MCM	23	QMR	534	HL7V3.0	6,987
MTHHL7V2.5	2	AOT	318	RCDSY	6,590