CLG-CHC3.04		Page 1 of 29
Title: Determination of Chlorinat Hydrocarbons (COPs) with Gel	nlorinated Organophosphate PC).	
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

Contents

Part I: Fat Matrix

	A.	INTRODUCTION	3
	В.	EQUIPMENT	4
	C.	REAGENTS AND SOLUTIONS	4
	D.	STANDARDS	5
	E.	SAMPLE PREPARATION	8
	F.	ANALYTICAL PROCEDURE	8
	G.	CALCULATIONS 1	3
	Н.	SAFETY INFORMATION AND PRECAUTIONS 1	5
	I.	QUALITY ASSURANCE PLAN 1	6
	J.	WORKSHEET2	1
	K.	APPENDIX2	2
Part I	I: Egg	products matrix	
	A.	INTRODUCTION	3

CLG-CHC3.04		Page 2 of 29		
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).				
Revision: 04		Replaces: CLG-CHC3.03	Effective: 6/01/2010	
B.	EQUIPMENT		23	
C.	REAGENTS AND	SOLUTIONS	24	
D.	STANDARDS		24	
E.	SAMPLE PREPA	RATION	24	
F.	ANALYTICAL PR	OCEDURE	24	
G.	CALCULATIONS		25	
H.	SAFETY INFORM	IATION AND PRECAUTIONS	27	
I.	QUALITY ASSUR	ANCE PLAN	27	
J.	WORKSHEET			
K.	APPENDIX			
L.	APPROVALS AN	D AUTHORITIES		

CLG-CHC3.04		Page 3 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).			
Revision: 04	Effective: 6/01/2010		

Part I: Fat Matrix

A. INTRODUCTION

1. Theory

Melted animal fat is dissolved in cyclopentane. Residues are purified by gel permeation chromatography (GPC), identified and measured by gas chromatography using an electron capture detector.

2. Applicability

This method is applicable to fat and extracted fat from adipose tissue.

a. Compounds for which method applies for quantitation:

Aldrin	p,p'-DDT	Heptachlor Epoxide B	Polychlorinated biphenyls (PCB) such as 1254 or 1260
alpha-BHC	Dieldrin	Hexachlorobenzene (HCB)	Ronnel
Chlorfenvinphos	Endosulfan II	2,2',4,4',5,5'- Hexabromobiphenyl	Stirofos
Chlorpyriphos	Endosulfan Sulfate	Lindane	p,p'-TDE
(cis) or alpha- Chlordane	Endrin	Methoxychlor	Toxaphene
trans-Chlordane	Endrin Ketone	Mirex	
Coumaphos-S	Heptachlor	trans-Nonachlor	
p,p'-DDE	Heptachlor Epoxide A	Oxychlordane	

b. Coumpounds for which method applies for identification only.

			Polybrominated
beta-BHC	Coumaphos-O	Endosulfan I	biphenyls(PBB)
delta-BHC	Chlorpyriphos methyl	Halowaxes	op-TDE
Captan	o,p'-DDT	Kepone	
Carbophenothion	o,p'-DDE	Linuron	
Chlordene	Dichlorofenthion	Phosalone	

CLG-CHC3.04		Page 4 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophospha Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

B. EQUIPMENT

Note: Equivalent instrumentation or apparatus may be substituted.

1. Apparatus

- a. Oven, able to maintain a temperature of $100 \pm 5^{\circ}$ C
- b. Class A volumetric flasks
- c. Filters, 0.45 µm pore size (Gelman, Acrodisc CR PTFE)
- d. Syringe, 10 mL, Luer lock
- e. Disposable glass culture tubes, 16 x 125 mm
- f. GPC sample input tubes
- g. Eppendorf pipettors, 10-100 μL, 50 μL, 200 μL, 100-1000 μL
- 2. Instrumentation
 - a. GPC system, AS2000 (O.I. Analytical Sample Preparation Products Division)
 - b. Optima GPC column (O.I. Analytical Sample Preparation Product Division, # 624-123)
 - c. Gas chromatograph (GC): Hewlett Packard 6890 equipped with an electron capture detector (ECD, 63Ni) and a split/splitless injection port
 - d. GC column, DB608 fused silica, 30 m, 0.45 mm ID, 0.7 µm film thickness, megabore column (J&W Scientific, Inc.)

C. REAGENTS AND SOLUTIONS

Equivalent reagents and solutions may be substituted.

- 1. Reagents
 - a. Ethyl acetate, Honeywell, B&J Brand
 - b. Cyclopentane, Honeywell, B&J Brand
 - c. Iso-octane, Honeywell, B&J Brand
- 2. Solutions

GPC mobile phase 70:30 v/v ethyl acetate/cyclopentane

To prepare 4 L of mobile phase, measure separately 2.8 L of ethyl acetate and 1.2 L of cyclopentane in class A graduated cylinders. Combine and mix well.

CLG-CHC3.04		Page 5 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).			
Revision: 04	Effective: 6/01/2010		

D. STANDARDS

Equivalent standards may be substituted.

1. Source

Dibutyl chlorendate (DBC), aldrin, and all pesticide standards can be ordered from Ultrascientific or ChemService.

- a. DBC stock solution $100 \mu g/mL$ in iso-octane.
- b. Aldrin stock solution $100 \mu g/mL$ in iso-octane.
- c. PCB 1254 stock solution 1000 μ g/mL in iso-octane.
- d. PCB 1260 stock solution 1000 µg/mL in iso-octane.
- e. Toxaphene stock solution 100 µg/mL in iso-octane.

CLG-CHC3.04		Page 6 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

f. Custom mix solution of CHC/COP compounds can be ordered with the following concentrations as an example

Analytes in order of elution	CAS #	Concentration (µg/mL in isooctane)
Hexachlorobenzene	000118-74-1	50
α-BHC	000319-84-6	50
Lindane	000058-89-9	50
Heptachlor	000076-44-8	50
Ronnel	000299-84-3	50
Linuron	000330-55-2	150
Chlorpyriphos	002921-88-2	50
Heptachlor Epoxide B	001024-57-3	50
Heptachlor Epoxide A	001024-57-3	50
trans-Nonachlor	039765-80-5	50
α-Chlordane	005103-71-9	50
Chlorfenvinphos	000470-90-6	150
Dieldrin	000060-57-1	50
p,p'-DDE	000072-55-9	50
Stirofos	000961-11-5	50
Endrin	000072-20-8	50
Endosulfan II	033213-65-9	50
p,p'-TDE	000072-54-8	50
p,p'-DDT	000050-29-3	50
Carbophenothion	000786-19-6	50
Endosulfan Sulfate	001031-07-8	50
Mirex	002385-85-5	50
Endrin Ketone	053494-70-5	50
Methoxychlor	000072-43-5	50
Phosalone	002310-17-0	50
Coumaphos-O	000321-54-0	150
Coumaphos-S	000056-72-4	150
2,2',4,4',5,5'-Hexabromobiphenyl	059080-40-9	50

CLG-CHC3.04		Page 7 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).			
Revision: 04	Effective: 6/01/2010		

2. Preparation:

a. Fortification standards

Equivalent volumes/concentrations may be used.

i. CHC/COP fortification solution (1.5 μg/mL linuron, chlorfenvinphos, coumaphos-O, and coumaphos-S; 0.5 μg/mL for the remaining CHC/COPs)

Pipet 1.0 mL of the custom mix solution (D.1.f) into a class A 100 mL volumetric flask, dilute to volume with iso-octane and mix well.

ii. PCB 1254 fortification solution(10 µg/mL)

Pipet 100 μL of the 1000 $\mu g/mL$ PCB 1254 stock solution into a 10 mL class A volumetric flask and dilute to volume with iso-octane. Mix well.

iii. PCB 1260 fortification solution (10 µg/mL)

Pipet 100 μL of the 1000 $\mu g/mL$ PCB 1260 stock solution into a 10 mL class A volumetric flask and dilute to volume with iso-octane. Mix well.

iv. Toxaphene fortification solution (10 µg/mL)

Pipet 1.0 mL of the 100 μ g/mL toxaphene stock solution into a 10 mL class A volumetric flask and dilute to volume with iso-octane. Mix well.

v. Aldrin fortification solution (2.0 µg/mL)

Pipet 2.0 mL of the 100 μ g/mL Aldrin stock solution (D.1) into a class A 100 mL volumetric flask and dilute to volume with iso-octane. Mix well.

b. GPC Diluent: 0.025 µg/mL DBC solution

Pipet 250 μ L of the DBC stock solution (D.1.a) into a class A 1000 mL volumetric flask, dilute to volume with iso-octane and shake well.

c. GC Injection Standard (varied concentrations 0.20 ppm & 0.60 ppm)

Fill a class-A 5 mL volumetric flask with GPC diluent (D.2.b.) Evaporate under nitrogen until approximately 1 mL has evaporated. Pipet 250 μ L of the CHC/COP fortification solution (D.2.a.i) and 62.5 μ L of the Aldrin fortification solution (D.2.a.v), dilute to volume with Iso-octane, and mix well.

d. PCB 1254 GC Injection Standard (0.50 ppm)

Fill a 5 mL class A volumetric flask with GPC diluent (D.2.b). Evaporate under nitrogen until approximately 1 mL has evaporated. Pipet 31.25 μ L of the PCB 1254 fortification solution (D.2.a.ii) and 62.5 μ L of the Aldrin fortification solution (D.2.a.v) and dilute to volume with Iso-octane. Mix well.

CLG-CHC3.04		Page 8 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).			
Revision: 04 Replaces: CLG-CHC3.03		Effective: 6/01/2010	

e. PCB 1260 GC Injection Standard (0.50 ppm)

Fill a 5 mL class A volumetric flask with GPC diluent (D.2.b). Evaporate under nitrogen until approximately 1 mL has evaporated. Pipet 31.25 μ L of the PCB 1260 fortification solution (D.2.a.iii) and 62.5 μ L of the Aldrin fortification solution (D.2.a.v) and dilute to volume with Iso-octane. Mix well.

f. Toxaphene GC Injection Standard (1.00 ppm)

Fill a 5 mL class A volumetric flask with GPC diluent (D.2.b). Evaporate under nitrogen until approximately 1 mL has evaporated. Pipet 62.5 μ L of the toxaphene fortification solution (D.2.a.iv) and 62.5 μ L of the Aldrin fortification solution (D.2.a.v) and dilute to volume with Iso-octane. Mix well.

- 3. Storage and Stability
 - a. Stock standards

Storage conditions and expiration dates are listed in the certificates of analysis (COA).

b. Fortification standards

Fortification standards are stable for one year if stored at < -10 °C. The fortification standards can be stored at $2-8^{\circ}$ C for up to 3 months.

c. Injection standards

Injection standards may be stored at room temperature for three months.

E. SAMPLE PREPARATION

Place animal fat sample into a glass bottle or beaker and render sample in an oven at 100 ± 5 °C until an adequate amount of fat has been rendered.

F. ANALYTICAL PROCEDURE

- 1. Extraction
 - a. Weigh 0.5 ± 0.03 g of the liquid fat samples, including a blank fat and recovery samples, into 5 mL volumetric flasks or disposable/graduated glass culture tubes. Fortify all samples and recoveries with 50 μ L of the 2.0 μ g/mL Aldrin fortification solution (D.2.a.v),dilute to 5 mL with cyclopentane and mix well.
 - b. Fortify two recovery samples at the (1X) level with 200 µL of the CHC/COP fortification solution (D.2.a.i), equivalent to 0.20 ppm of each compound and 0.60 ppm for linuron, chlorfenvinphos, coumaphos-O, and coumaphos-S.

CLG-CHC3.04	Page 9 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosph Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

- c. Separate recoveries for residues not in the regular fortification solution will need to be prepared if these compounds are being quantitated. Examples are PCBs and toxaphene. Two recovery samples for a violative sample have to be prepared at the level close to the finding.
- d. Filter each sample through a 0.45 µm PTFE filter into GPC input tubes.
- 2. Load samples onto the GPC.

GPC Conditions:

Note: Conditions can be optimized as necessary.

Mobile phase flow rate	4.5 - 5.0 mL/min
Sample loop size	2.5 mL
Dump time	8.5 to 9.5 min
Evaporation time	9-10 min
Evaporation temperature	56 - 65 °C
High pressure sensor setting	1
Ultra Sonic Sensor (USS) preload time	03 (for 2.5-mL loop)
Keeper time	0 sec
Diluent addition	1 addition, 2 sec at 1 mL/sec
Mixing time	10 sec
Chamber transfer time	5 sec
Chamber rinse time	20 sec
Chamber wash temperature	55-57 °C
Vacuum pressure	250 Torr
Final reconstituted volume	2 mL in iso-octane

3. GC/ECD Conditions

Conditions can be modified to optimize the operation.

Injector temperature	250 °C
Detector temperature	325 °C
Carrier gas	Ultra High Purity Helium
Carrier gas flow rate	12-18 mL/min, constant flow
Make-up gas	Nitrogen 99.9% purity or better.
Make-up gas flow rate	25-40 mL/min
Injection mode	Splitless with 1 minute purge time

Oven Temperature Program:

Initial temperature	100 °C
Initial time	1 minute
Ramp #1	30 °C/min to 170 °C, hold for 10 minutes

CLG-CHC3.04	Page 10 of 29	
Title: Determination of Chlorinat Hydrocarbons (COPs) with Gel	nlorinated Organophosphate PC).	
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

Ramp #2 Total run time Post run time 3.5 °C/min to 280 °C, hold for 10 minutes 50-55 minutes 10-15 minutes

4. General Operation

Typical retention times, relative to aldrin (minutes):

Analyte	Retention Time	Analyte	Retention Time	Analyte	Retention Time
Hexachlorobenzene	0.47	α or cis- Chlordane	1.59	Endosulfan sulfate	2.31
Alpha BHC	0.53	Chlorfenvinphos	1.65	DBC	2.54
Lindane	0.67	Dieldrin	1.76	Mirex	2.59
Heptachlor	0.82	p,p'-DDE	1.79	Endrin ketone	2.65
Aldrin	1.00	Stirofos	1.85	Methoxychlor	lor 2.71
Ronnel	1.05	Captan	1.85	Phosalone	2.80
Linuron	1.24	Endrin	1.95	Coumaphos-O	3.08
Chlorpyrifos	1.30	Endosulfan II	2.06	Coumaphos-S	3.17
Oxychlordane	1.31	<i>p,p'</i> -TDE	2.10	2,2',4,4',5,5'- Hexabromo- biphenyl	3.59
Heptachlor ep B	1.39	o,p'-DDT	2.10	Toxaphene	NA
Heptachlor ep A	1.45	<i>p,p'</i> -DDT	2.24	PCB 1254	NA
trans-Nonachlor	1.51	Carbophenothion	2.27	PCB 1260	NA

Examples of co-eluting compounds are oxychlordane/chlorpyrifos; captan/stirofos; p,p'-TDE/o,p'-DDT; trans-Nonachlor/trans-chlordane; α-chlordane/Endosulfan I; Chlorfenvinphos/o,p'-DDE; Endosulfan II/o,p'-DDT; heptachlor/dichlofenthion; ronnel/chlorpyrifos; and mirex/phenylbutazone.

5. Identification and Quantitation

GC operators should use the appropriate calculating function depending on the peak type so that the software could identify the peak by retention time and calculating the amount. The results should be corrected for percent recovery by using the fortified recovery sample (fat) that has been carried through the entire procedure.

CLG-CHC3.04	Page 11 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophospl Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

* Toxaphene is quantitated by summing the instrument response (using area) of peaks attributable to toxaphene in the sample and comparing them to the sum of the peaks of the standard.

* PCB residues (weathered or otherwise) are quantitated by summing the instrument responses of three to seven peaks common to the sample and to the PCB reference recovery. Use only those peaks from the sample that can be attributed to the Aroclor of interest. External standard quantitation is acceptable. The concentration of the recovery should approximate that found in the sample.

CLG-CHC3.04	Page 12 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophos Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

6. Sample Chromatograms

a. Figure 1: Chromatogram of theThirty-Compound Standard

Chromatographic Peak Numbers

- 1. hexachlorobenzene 11. trans-nonachlor 2
- 2. α-BHC
- 12. $cis(\alpha)$ chlordane 22. end
- lindane 13. chlorfenvinphos

14. dieldrin

16. stirofos

17. endrin

15. p,p'-DDE

18. endosulfan II

19. p,p'-TDE

- lindane
 heptachlor
- 5. aldrin
- 6. ronnel
- 0. TOTILE
- 7. linuron
- 8. chlorpyrifos
- β-heptachlor epoxide
- 10. α-heptachlor 20. p,p'-DDT epoxide

- 21. carbophenothion
- 22. endosulfan sulfate
- 23. DBC (internal standard)
- 24. mirex
- 25. endrin ketone
- 26. methoxychlor
- 27. phosalone
- 28. coumaphos-O
- 29. coumaphos-S
 - 30. 2,2',4,4',5,5'- hexabromobiphenyl

CLG-CHC3.04	Page 13 of 29	
Title: Determination of Chlorinat Hydrocarbons (COPs) with Gel	nlorinated Organophosphate PC).	
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

a. Figure 2: Chromatogram of a Tissue Blank

G. CALCULATIONS

1. Injection Standard in D.2.c

The ppm concentration of the CHCs/COPs in the injection standard (C_{INJ}) is determined on the basis of the sample weight equivalent (SEq) in the final extract according to the following equations:

Final extract, SEq = $\frac{\text{SMP wt.}}{\text{Initial Dil. Vol.}}$ X $\frac{\text{GPC SMP Loop Vol.}}{\text{Final Ext. Vol.}}$ = $\frac{0.5 \text{ g}}{5 \text{ ml}}$ X $\frac{2.5 \text{ mL}}{2 \text{ mL}}$ = 0.125 g SMP/mL

where SMP wt. = 0.5 g sample weight Initial Dil. Vol. = 5 mL, initial dilution volume GPC SMP Loop Vol. = 2.5 mL Final Ext. Vol. = 2 mL, final extract volume

CLG-CHC3.04	Page 14 of 29	
Title: Determination of Chlorinat Hydrocarbons (COPs) with Gel	nlorinated Organophosphate PC).	
Revision: 04	Effective: 6/01/2010	

where C_{STD} = concentration of the fortification standard, D.2.a.i. Vol. STD = 0.250 mL volume of the fortification standard Dil. Vol. = 5 mL, dilution volume

If a different dilution volume is desired, adjust the fortification standard amount proportionally. For example, use 0.5 mL fortification standard to prepare 10 mL of the injection standard. GC injection volume does not appear in the calculations because it is the same for quality samples as well as for test samples.

			Aldrin solution		Aldrin	
					Amount in	
		(1)	(2)	(3)	Each Soln (µg)	Concentration
		Weight of fat	Volume	Concentration		
		(g)	(μL)	(µg/mL)	(2)x(3)	(µg Aldrin/g fat)
Before loading on						(2)x(3)/(1) = 0.2
GPC	5 mL of fat soln *	0.5	50	2	0.1	μg/g
Loading onto GPC						
column	2.5 mL fat soln *	0.25	25	2	0.05	
After GPC clean-up	2mL final extract **	0.25	25	2	0.05	
Per mL of inj. std	1mL final extract **	0.125	12.5	2	0.025	

					СНС	
			CHC for	tification soln	Compounds	
					Amount in	
		(1)	(2)	(3)	Each Soln (µg)	Concentration
		Weight of fat	Volume	Concentration		
		(g)	(μL)	(µg/mL)	(2)x(3)	(µg CHC/g fat)
Before loading on						(2)x(3)/(1) = 0.2
GPC	5 mL of fat soln *	0.5	200	0.5	0.1	μg/g
Loading onto GPC						
column	2.5 mL fat soln *	0.25	100	0.5	0.05	
After GPC clean-up	2mL final extract **	0.25	100	0.5	0.05	
Per mL of inj. std	1mL final extract **	0.125	50	0.5	0.025	

* in cyclopentane

** in diluent (Iso-octane and DBC) the same calculation

applied to CHC compounds with 1.5ug/mL or 0.60 ppm.

CLG-CHC3.04		Page 15 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

2. Calculating Results Using Recovery Correction

All CHC results are recovery corrected.

For each CHC/COP, the percent recovery (% Rec.), ppm amount in the sample, and recovery corrected ppm amount in the sample are calculated by using the following equations:

% Rec. CHC/COP =	R _{SPK} / R _{STD} X 100
ppm CHC/COP _{IS} =	R _{SMP} / R _{STD} X C _{INJ}
ppm (Rec. Corrected) =	(ppm CHC/COP _{IS}) / (% Rec. CHC/COP) X 100

where R_{SMP} , R_{STD} , and R_{SPK} are the ratios of the analyte GC/ECD responses (peak area or height) obtained for the sample, injection standard (C_{INJ}), and spiked 1X recovery (F.1.b), respectively, to the internal standard (DBC) response. C_{INJ} is the ppm concentration of the analyte in the injection standard.

3. External Standard (ES) Quantitation

For each CHC/COP, the percent recovery (% Rec.), ppm amount in the sample, and recovery corrected ppm amount in the sample are calculated by using the following equations:

% Rec. CHC/COP	=	Р _{SPK} / Р _{STD} X 100
ppm CHC/COP _{ES}	=	P _{SMP} / P _{STD} X C _{INJ}
ppm (Rec. Corrected)	=	(ppm CHC/COP _{ES}) / (% Rec. CHC/COP) X 100

where P_{SMP} , P_{STD} , and P_{SPK} are the GC/ECD area/height responses for each analyte obtained for the sample, injection standard (C_{INJ}), and spiked recovery. C_{INJ} is the ppm concentration of the analyte in the injection standard

H. SAFETY INFORMATION AND PRECAUTIONS

- 1. Required Protective Equipment safety glasses, laboratory coat, and nitrile gloves.
- 2. Hazards

Procedure Step	Hazard	Recommended Safe Procedures
Ethyl acetate/ Cyclopentane mixture	Highly flammable; Irritating to skin and mucous tissue	Prepare mixture in fume hood. Vent GPC vapors to a fume hood.

CLG-CHC3.04		Page 16 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphat Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

3. Disposal Procedures

Procedure Step	Hazard	Recommended Safe Procedures
Ethyl acetate/ Cyclopentane mixture	See above	This mixture should be temporarily stored with the flammable waste solvents until disposal by the waste disposal contractor or in-house specialist. Observe all Federal, state, and local environmental laws.

I. QUALITY ASSURANCE PLAN

1. Performance Standards

a. Fortified recovery requirements

Analyte	% Recovery	Repeatability (% CV)	Reproducibility* (% CV)
HCB	70 - 120	17	20
alpha BHC	70 - 120	17	20
Lindane	70 - 120	17	20
Heptachlor	70 - 120	17	20
Aldrin	70 - 120	17	20
Ronnel	70 - 120	17	ND
Oxychlordane	70 - 120	17	20
Chlorpyrifos	50 - 120	17	20
Nonachlor	70 - 120	17	20
Heptachlor epoxide	70 - 120	17	20
trans-Chlordane	70 - 120	17	20
cis-Chlordane	70 - 120	17	20
Chlorfenvinphos	70 - 120	17	ND
Dieldrin	70 - 120	17	20
p,p'-DDE	70 - 120	17	20
Captan	50 - 120	17	ND

CLG-CHC3.04		Page 17 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

Analyte	% Recovery	Repeatability (% CV)	Reproducibility* (% CV)
Stirofos	50 - 120	17	ND
Kepone	50 - 120	17	ND
Endrin	70 - 120	17	20
<i>p,p'</i> -TDE	70 - 120	17	20
Endosulfan II	70 - 120	17	20
p,p'-DDT	70 - 120	17	20
Mirex	70 - 120	17	20
Methoxychlor	70 - 120	17	20
Coumaphos-S	70 - 120	17	ND
Toxaphene	70 - 120	12	20
PCB 1254	70 - 120	12	20
PCB 1260	70 - 120	12	20

ND – Not Determined * Within-Lab reproducibility

- a. Aldrin recovery: 70-120%
- b. Chromatography: All pesticides of interest should be at least 60% resolved for quantitation
- c. Blank sample: No peaks should be present at or greater than 10% of the recovery for each compound
- 2. Critical Control Points and Specifications

Record	Acceptable Control

- a. Rendering oven 100 ± 5 °C temperature
- b. Sample weight 0.5 ± 0.03 g fat
- 3. Readiness To Perform
 - a. Familiarization
 - i. Phase I: Standards-External standard curve analyzed over three different

CLG-CHC3.04		Page 18 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphat Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

days, which will include the following:

- (a) 0 Level
- (b) At 0.5X Level
- (c) At 1X Level
- (d) At 2X Level

1X = 0.60 ppm for linuron, chlorfenvinphos, coumaphos-O, and coumaphos-S; 0.20 ppm for all other pesticides.

The correlation coefficient must be \geq 0.995, except for linuron, chlorfenvinphos, coumaphos O & S.

ii. Phase II: Fortified samples-3 replicates spiked at the levels specified below over 3 different days. Each set includes a reagent blank and a blank fat sample.

- (a) At 0.5X Level –Sample spiked with 100 μL of the fortification solution (D.2.a.i)
- (b) At 1X Level –Sample spiked with 200 µL of the fortification solution(D.2.a.i)
- At 2X Level-Sample spiked with 400 μL of the fortification solution (D.2.a.i)

The 1X level for PCBs is 0.5 ppm. Both aldrin and DBC should be at 0.2 ppm for all standards and samples.

PCB Levels

- (a) 0.5X Level-Sample spiked with 12.5 μL of the PCB fortification solution (D.2.a.ii or D.2.a.iii)
- (b) 1X Level-Sample spiked with 25 µL of the PCB fortification solution (D.2.a.ii or D.2.a.iii)
- (c) 2X Level-Sample spiked with 50 µL of the PCB fortification solution (D.2.a.ii or D.2.a.iii)

Phase I and Phase II may be performed concurrently.

- iii. Phase III: Check samples for analyst accreditation.
 - (a) A total of 6 samples unknown to the analyst. At least one must be blank and the remainder must be fortified at or above the MPL (Section I.7).
 - (b) Report analytical findings to Quality Assurance Manager (QAM) and supervisor.

CLG-CHC3.04		Page 19 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

(c) Authorization by the QAM and Supervisor is required to commence official analysis.

Analyst accreditation for PCB analysis must be performed separately following the accreditation plan provided above.

b. Acceptability criteria

Refer to I. 1.

- 4. Intralaboratory Check Samples
 - a. System, minimum contents.
 - i. Frequency: Once per week per analyst when samples are analyzed.
 - i. Composition: Each intralaboratory check sample should contain three compounds: an early eluter, a late eluter and one in between. For example, alpha-BHC (early eluter), Mirex (late eluter) and p,p'-DDE (eluting in between).
 - ii. Records are to be maintained.
 - b. Acceptability criteria.

Refer to I. 1.

If unacceptable values are obtained, then:

- i. Stop all official analyses by that analyst with this method.
- ii. Take corrective action.
- 5. Sample Acceptability and Stability
 - a. Matrix: Fat, extracted fat from adipose tissue
 - b. Sample receipt size: Enough sample to obtain 0.5 g of rendered fat.
 - c. Condition upon receipt: Not spoiled or rancid.
 - d. Sample storage:
 - i. Time: CHCs, indefinite; organophosphates, approximately 1 month.
 - ii. Condition: refrigerated or frozen.
- 6. Sample Set
 - a. Blank fat
 - b. Standard(s)

CLG-CHC3.04	Page 20 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

- c. Recovery:
 - i. Routine samples: at least two recoveries at the 1X level.
 - ii. Special samples (e.g. violation): two recoveries of the pesticide of interest at the level close to the finding or its tolerance level.
- d. Samples
- 7. Sensitivity
 - a. Minimum proficiency level (MPL):

Pesticide Name	MPL (ppm)	Pesticide Name	MPL (ppm)
HCB	0.10	Captan	0.04
alpha BHC	0.10	Stirofos	0.06
Lindane	0.10	Kepone	0.06
Heptachlor	0.10	Endrin	0.10
Aldrin	0.10	<i>p,p'</i> -TDE	0.15
Ronnel	0.03	o,p'-DDT	0.15
Linuron	0.50	Endosulfan II	0.04
Oxychlordane	0.04	p,p'-DDT	0.15
Chlorpyrifos	0.10	Carbophenthion	0.06
Nonachlor	0.15	Mirex	0.10
Heptachlor epoxide	0.10	Methoxychlor	0.50
Endosulfan I	0.02	Phosalone	0.02
trans-Chlordane	0.30	Coumaphos-O	0.20
cis-Chlordane	0.30	Coumaphos-S	0.20
Chlorfenvinphos	0.05	Toxaphene	1.00
Dieldrin	0.10	PCB 1254	0.50
p,p'-DDE	0.10	PCB 1260	0.50

CLG-CHC3.04	Page 21 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04 Replaces: CLG-CHC3.03		Effective: 6/01/2010

J. WORKSHEET

REGULA					
REGULA		GPC WORKSHEET			
	TORY CHEMISTRY	SECTION, USDA-	SIS WESTERN LAB 620 CENTRAL	AVE., BLDG. 1, ALA	MEDA, CA 94501
dual sample size :	= 0.5 g weighed, 0.2	5 g processed by GF	°C	Start date:	
volume of GPC e	stract = 2.0 mL		Cor	npleted date:	
n and DBC at 200	ppb for CHC and 10	00 ppb for HEC			
	ALDRIN				
	FOUND				
SAMPLE#	(ppb)		RESULTS (ppm) AN	D COMMENTS	
BLANK					
	1 1				
SAMPLES WE			GPC:		GC:
SAMPLES WE			GPC: PAGES:	Date processed	GC: I by GPC:
SAMPLES WE WEIGHT I			GPC: PAGES: GPC MO	Date processed BILE PHASE:	GC: I by GPC:
SAMPLES WE WEIGHT I REFRI	IGHED BY: OGBOOK: BALANCE: GERATOR:		GPC: PAGES: GPC MC	Date processed BILE PHASE: DILUENT:	GC: I by GPC:
SAMPLES WE WEIGHT I REFRI EPPE	IGHED BY: 		GPC: PAGES: GPC MC	Date processed BILE PHASE: DILUENT: CATION STD:	GC: I by GPC:
SAMPLES WE WEIGHT I REFRI EPPE	IGHED BY: OGBOOK: BALANCE: ERATOR: INDORF(S): ENSETTE:		GPC: PAGES: GPC MO ALDRIN FORTIFI HC of HEC FORTIFI	Date processed BILE PHASE: DILUENT: CATION STD: CATION STD:	GC: I by GPC:
SAMPLES WE WEIGHT I REFRI EPPE DISF			GPC: PAGES: GPC MC ALDRIN FORTIFI HC or HEC FORTIFI CHC or HEC IN J	Date processed BILE PHASE: DILUENT: CATION STD: CATION STD: ECTION STD:	GC: I by GPC:
SAMPLES WE WEIGHT I REFRI EPPE DISF	IGHED BY: OGBOOK: BALANCE: GERATOR: PENSETTE: OVEN: UTURE ("C):		GPC: PAGES: GPC MC ALDRIN FORTIFI HC or HEC FORTIFI CHC or HEC INJ	Date processed BILE PHASE: DILUENT: CATION STD: CATION STD: ECTION STD: I OPENTANE-	GC: I by GPC:
SAMPLES WE WEIGHT I REFRI EPPE DISF TEMPERA	IGHED BY: OGBOOK: BALANCE: GERATOR: NDORF(S): PENSETTE: OVEN: TURE (°C): TURE (°C):		GPC: PAGES: GPC MC ALDRIN FORTIFI HC or HEC FORTIFI CHC or HEC INJ CYC	Date processed BILE PHASE: DILUENT: CATION STD: CATION STD: ECTION STD: LOPENTANE:	GC: I by GPC:

HEC – Halogenated Environmental Contaminates

CLG-CHC3.04		Page 22 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04 Replaces: CLG-CHC3.03		Effective: 6/01/2010

K. APPENDIX

1. Reference: Structures of CHC compounds

Br 2,2,4,4,5,5-Hexabromobiphenyl

CHC Pesticides in Standard

CLG-CHC3.04	Page 23 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04 Replaces: CLG-CHC3.03		Effective: 6/01/2010

Part II: Egg Products Matrix

A. INTRODUCTION

1. Theory

This procedure describes the extraction and quantitation of CHC-COP compounds in egg products. The GPC and GC parameters used are the same as those used for determination of CHC-COP compounds in fat. Pesticides are extracted from egg products into acetonitrile. The residues are then partitioned into cyclopentane. The cyclopentane is then diluted to 10 mL and cleaned up by GPC. Analytical determination is done by GLC-EC detection.

2. Applicability

Compounds for which this method applies for quantitation:

Aldrin	Endrin	Methoxychlor
Alpha BHC	Endrin ketone	Mirex
α or cis- chlordane	Heptachlor	trans-Nonachlor
Chlorpyrifos	Heptachlor epoxide a	Ronnel
<i>p,p</i> '-DDE	Heptachlor epoxide b	Stirophos
<i>p,p</i> '-DDT	2,2',4,4',5,5'-Hexabromobiphenyl	<i>p,p</i> '-TDE
Dieldrin	Hexachlorobenzene (HCB)	
Endosulfan II	Lindane	

B. EQUIPMENT

Note: Equivalent apparatus and instrumentation may be substituted

1. Apparatus

- a. Centrifuge IEC-Damon CU5000
- b. Homogenizer Polytron 10/35.
- c. Volumetric flasks Class A, 10 mL.
- d. Graduated cylinders Class A glass, 10 mL or 25 mL.
- e. Graduated centrifuge tubes Class A glass, 15 mL.

CLG-CHC3.04	Page 24 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04 Replaces: CLG-CHC3.03		Effective: 6/01/2010

- f. Separatory funnels 125 mL or 250 mL.
- g. Centrifuge tubes glass or disposable polypropylene, 50 mL.

C. REAGENTS AND SOLUTIONS

Note: Equivalent reagents and solutions may be substituted.

1. Reagents

- a. Acetonitrile, Honeywell, B&J Brand,
- b. Distilled/deionized water.
- c. Cyclopentane, Honeywell, B&J Brand,
- d. Sodium sulfate (Na₂SO₄) anhydrous, Fisher
- 2. Solutions
 - a. $4\% \text{ Na}_2 \text{SO}_4$ solution:

Dissolve 160 \pm 10 g anhydrous Na₂SO₄ in 4 liters of distilled water.

D. STANDARDS

Refer to Part I, Section D.

E. SAMPLE PREPARATION

Process sample until homogeneous.

F. ANALYTICAL PROCEDURE

Note: Rinse all glassware used in the analysis with cyclopentane prior to use.

- 1. Weigh 4.0 g of liquid whole egg product into a 50 mL centrifuge tube. For products other than liquid whole eggs, weigh 4.0 g liquid whole egg equivalent (see Section K, Table 1).
- 2. Fortify each sample (samples, blank and recovery) with 100 μL of 2.0 μg/mL Aldrin fortification standard (Part I, Section D.2.a.v.).
- 3. Fortify the two recovery samples with 400 μL of 0.5 μg/mL CHC-COP fortification solution (Part I, Section D.2.a.i.).
- 4. Add 20 mL of acetonitrile to each sample.

CLG-CHC3.04	Page 25 of 29	
Title: Determination of Chlorinat Hydrocarbons (COPs) with Gel	ed Hydrocarbons (CHCs) and Ch Permeation Chromatography (GF	nlorinated Organophosphate PC).
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

- 5. Blend all the samples for one minute with a homogenizer. Rinse the homogenizer with acetonitrile and add rinsings to centrifuge tube. Dried egg samples and salted egg yolks may be vortexed for one minute instead of using the homogenizer.
- 6. Shake or vortex samples briefly to remove material adhering to the side of the tubes, and centrifuge for 15 minutes.
- Transfer the supernatant (liquid only, avoid solids or particulate matter) from the centrifuge tube to a separatory funnel containing 80 100 mL 4% Na₂SO₄ solution and 6 10 mL cyclopentane.
- 8. Shake the separatory funnels vigorously for at least one minute. Allow the mixture to stand undisturbed at least one hour to ensure adequate separation of the two phases, upper = cyclopentane/pesticides. The upper layer should be clear yellow.

If phases are not separated, add additional Na₂SO₄ solution and repeat step 8.

Stopping point: The samples may be stored overnight at room temperature.

- 9. Drain the lower aqueous phase containing the acetonitrile and Na_2SO_4 and discard. Do not drain cyclopentane phase or any material near the solvent interface.
- 10. Add 20 mL distilled water to separatory funnels and shake 5 10 seconds. Drain off as much aqueous phase / particulate matter as possible without losing any cyclopentane phase. Repeat if upper layer is cloudy.
- 11. Transfer cyclopentane phase to clean 10 mL class A volumetric flask. Glass graduated cylinders or centrifuge tubes are acceptable for screening. Remove as much of remaining aqueous phase as possible with Pasteur pipet. There should be ~0.2 mL aqueous solution present.
- 12. Bring liquid in volumetric flask to 10 mL with cyclopentane and mix well. If extract is excessively cloudy, centrifuge in a glass centrifuge tube and discard extraneous material before continuing.
- 13. Filter approximately 5 mL of extract through a 0.45 µm filter, avoiding aqueous or solid materials if any are present.
- 14. Process by GPC following instructions in Part I, section F.2

G. CALCULATIONS

The same injection standards and GC temperature programs are used as found in Part I, Section F.2. The final GPC extract represents 1 g of tissue compared with 0.25 g tissue

CLG-CHC3.04	Page 26 of 29	
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphat Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04 Replaces: CLG-CHC3.03		Effective: 6/01/2010

for fat analysis. The GC calibration table values should be adjusted to $\ensuremath{^{1\!\!\!/}}$ the values in Section I. Fat Matrix.

Analytes in order of elution	Concentration in 0.25 g fat sample (ppm)	Concentration in one gram of egg sample (ppm)
Hexachlorobenzene	0.20	0.05
α-ΒΗϹ	0.20	0.05
Lindane	0.20	0.05
Heptachlor	0.20	0.05
Ronnel	0.20	0.05
Linuron	0.60	0.15
Chlorpyriphos	0.20	0.05
Heptachlor Epoxide B	0.20	0.05
Heptachlor Epoxide A	0.20	0.05
trans-Nonachlor	0.20	0.05
α -Chlordane	0.20	0.05
Chlorfenvinphos	0.60	0.15
Dieldrin	0.20	0.05
p,p'-DDE	0.20	0.05
Stirofos	0.20	0.05
Endrin	0.20	0.05
Endosulfan II	0.20	0.05
p,p'-TDE	0.20	0.05
p,p'-DDT	0.20	0.05
Carbophenothion	0.20	0.05
Endosulfan Sulfate	0.20	0.05
Mirex	0.20	0.05
Endrin Ketone	0.20	0.05
Methoxychlor	0.20	0.05
Phosalone	0.20	0.05
Coumaphos-O	0.60	0.15
Coumaphos-S	0.60	0.15
2,2',4,4',5,5'-Hexabromobiphenyl	0.20	0.05
Aldrin	0.20	0.05
DBC	0.20	0.05

CLG-CHC3.04	Page 27 of 29		
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).			
Revision: 04 Replaces: CLG-CHC3.03		Effective: 6/01/2010	

H. SAFETY INFORMATION AND PRECAUTIONS

1. Required Protective Equipment — safety glasses, laboratory coat, and nitrile gloves.

2. Hazards

Procedure Step	Hazard	Recommended Safe Procedures
Cyclopentane Acetonitrile	Highly flammable; Irritating to skin and mucous tissue	Perform extraction under well ventilated fume hood.
	Flammable, absorbed through skin; Irritating mucous tissue	

3. Disposal Procedures

Procedure Step	Hazard	Recommended Safe Procedures
Acetonitrile / Na ₂ SO ₄ solution	See above	This mixture should be temporarily stored with the flammable waste solvents until disposal by the waste disposal contractor or in-house specialist. Observe all Federal, state, and local environmental laws.

I. QUALITY ASSURANCE PLAN

1. Performance Standards

Analyte	% Recovery
Aldrin	60 - 120
alpha BHC	60 - 120
a-Chlordane	50 - 120
Chlorpyrifos	50 - 120
p,p'-DDE	60 - 120
p,p'-DDT	60 - 120
Dieldrin	60 - 120
Endosulfan II	60 - 120
Endrin	60 - 120

CLG-CHC3.04		Page 28 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

Analyte	% Recovery
Endrin ketone	60 - 120
Heptachlor	50 - 120
Heptachlor epoxide a	60 - 120
Heptachlor epoxide b	60 - 120
2,2',4,4',5,5'- Hexabromobiphenyl	50 - 120
Hexachlorobenzene	50 - 120
Lindane	50 - 120
Methoxychlor	60 - 120
Mirex	60 - 120
trans-Nonachlor	50 - 120
Ronnel	60 - 120
Stirofos	50 - 120
p,p'-TDE	60 - 120

J. WORKSHEET

Use GPC Worksheet in Part 1, Section G.

CLG-CHC3.04		Page 29 of 29
Title: Determination of Chlorinated Hydrocarbons (CHCs) and Chlorinated Organophosphate Hydrocarbons (COPs) with Gel Permeation Chromatography (GPC).		
Revision: 04	Replaces: CLG-CHC3.03	Effective: 6/01/2010

K. APPENDIX

TABLE 1: LIQUID WHOLE	E EGG EQUIVALENTS (Products of Known Composition)
Adapted from AMS Laboratory Guidebook for Egg Products	
Product	Weight in grams
Liquid Whole Eggs	4.00 ± 0.20
Dried Whole Eggs	1.04 ± 0.04
Liquid Egg Yolks	1.60 ± 0.08
Dried Egg Yolks	0.72 ± 0.04
This table is used to determine the amount of egg product to weigh for products other than liquid whole eggs. For example, 4.00 g liquid whole eggs is equivalent to 1.04 g dried whole eggs.	

Note: The analyst performing the above calculations must remember that everywhere the percent sign appears, the percentage must be converted to its decimal equivalent. For example, 25% becomes 0.25 in the above formulas.

L. APPROVALS AND AUTHORITIES

- 1. Approvals on file.
- 2. Issuing Authority: Director, Laboratory Quality Assurance Division.