| CLG-MAL1.02                                                                     |                       | Page 1 of 20           |
|---------------------------------------------------------------------------------|-----------------------|------------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       | by Ion Trap HPLC/MS/MS |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007  |

## Contents

| A. |                                | 2  |
|----|--------------------------------|----|
| В. | EQUIPMENT                      | 2  |
| C. | REAGENTS AND SOLUTIONS         | 3  |
| D. | STANDARDS                      | 4  |
| E. | SAMPLE PREPARATION AND CLEANUP | 5  |
| F. | ANALYTICAL PROCEDURE           | 6  |
| G. | CONFIRMATION                   | 8  |
| Н. | HAZARD ANALYSIS                | 10 |
| I. | QUALITY ASSURANCE PLAN         | 11 |
| J. | WORKSHEET                      | 13 |
| K. | APPENDIX                       | 15 |
| L. | APPROVALS AND AUTHORITIES      |    |

| CLG-MAL1.02                                                                     |                       | Page 2 of 20          |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |

#### A. INTRODUCTION

#### 1. Theory

This method utilizes the weakly basic character of macrolide and lincosamide (mac/linc) antibiotics. Sample tissue is made basic and extracted with ethyl acetate. Analytes are then partitioned into an acidic buffer and further cleaned up by extraction of the buffer solution with an organic solvent. The buffer is then made basic and analytes are re-extracted into ethyl acetate, evaporated to dryness, redissolved in mobile phase, and analyzed by ion trap HPLC/MS/MS. Confirmation is based on comparison of sample and MS/MS spectral data with that of a fortified tissue standard or external standard.

#### 2. Applicability

The method is applicable to confirmation of macrolides in liver, kidney and muscle tissues of avian, porcine, and bovine origin at levels  $\geq 0.1$  ppm for Lincomycin, Clindamycin, Erythromycin, Tylosin, Tilmicosin, and Pirlimycin. The method is also applicable to confirmation of Tulathromycin at levels  $\geq 1$  ppm in liver and kidney of porcine and bovine origin.

#### B. EQUIPMENT

Equivalent apparatus may be substituted for those listed below.

#### 1. Apparatus

- a. Centrifuge IEC-HN-S11.
- b. Waring Blender Cat. No. 33BL79 equipped with a 40 mL blending jar.
- c. Vortex mixer Genie 2, Fisher Scientific.
- d. pH Electrode Cat. No. 215 with a Accumet micro combination electrode, Cat. No.13-620-95, Denver Instrument Co.
- e. pH meter Cat. No 370 with ATC probe, Orion.
- f. Balance accurate to 0.01 g, Cat. No. PB 302, Mettler Toledo.
- g. Balance accurate to 0.001 mg, Cat. No. MT 5, Mettler Toledo.
- h. Nitrogen evaporator TurboVap LV, Zymark.
- i. Volumetric flasks 100 mL and 10 mL class A volumetric flasks.
- j. 15 mL glass centrifuge tubes for Zymark TurboVap Cat. No. 73790, Kimble.
- k. 15 mL glass centrifuge tubes Cat. No. 73785, Kimble.
- I. Autosampler vials 1.8 mL wide mouth glass, Cat. No. 5182-0543, Agilent.
- m. Micropipetters capable of delivering 100 µL, 400 µL, 500 µL, 1000 µL.

| CLG-MAL1.02                                                                     |                       | Page 3 of 20          |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |

n. Pasteur pipettes 5 3/4 in - Cat. No. 53283-910; Lab Depot.

#### 2. Instrumentation

- a. Ion trap mass spectrometer Finnigan LCQ-deca equipped with an APCI LC interface and LCQ Xcalibur data system, or equivalent.
- b. LC system Quaternary pump equipped with degassing capability and autosampler. Thermo-Finnigan Surveyor HPLC and autosampler.
- c. LC column Zorbax SB-C18 2.1 x 150 mm containing 5  $\mu m$  particles, preceded by a 0.2  $\mu m$  frit filter.

#### C. REAGENTS AND SOLUTIONS

Equivalent reagents and solutions may be substituted for the following unless otherwise indicated:

#### 1. Reagents

- a. Methanol (MeOH), LC grade Mallinckrodt UltimAR grade.
- b. Water, LC grade House distilled water passed through Waters MilliQ deionization system.
- c. Acetonitrile UV grade, Cat. No. 015-4, Burdick & Jackson.
- d. Phosphoric acid ACS grade, Cat. No. P6560, Sigma.
- e. Ethyl acetate UltimAr grade, Cat. No. U-553-10, Mallinckrodt.
- f. Hexane Cat. No. HX0296-1, EM OmniSolv.
- g. Potassium phosphate monobasic (KH<sub>2</sub>PO<sub>4</sub>) HPLC grade, Cat. No. P286-1, Fisher.
- h. Formic acid ACS grade, Cat. No. F-4636, Sigma.
- i. Potassium carbonate ACS grade, Cat. No. P6037, Sigma.

#### 2. Solutions

Note: Solutions may be stored at room temperature unless otherwise noted.

a. 50:50 (v/v) methanol/water:

Mix 50 mL methanol with 50 mL of water. Stable for 6 months.

b. 5:95 (v/v) acetonitrile/water + 0.1% formic acid:

Mix 50 mL acetonitrile, 950 mL water and 1.0 mL formic acid in a 1 liter graduated cylinder. Filter. Stable for 6 months.

c. 95:5 (v/v) acetonitrile/water + 0.1% formic acid:

| CLG-MAL1.02                                                                     |                       | Page 4 of 20          |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |

Mix 950 mL acetonitrile, 50 mL water and 1.0 mL formic acid in a 1 liter graduated cylinder. Filter. Stable for 6 months.

d. 0.2 M potassium phosphate monobasic, pH 4.00:

Weigh 13.6 g of  $KH_2PO_4$  into a 500 mL volumetric flask and dilute to volume with water. Adjust the pH to 4.00 with 1:20 phosphoric acid. Store refrigerated. Stable for 3 months. Warm to room temperature before use.

e. 1:20 (v/v) phosphoric acid/water:

Dilute 5 mL of conc. phosphoric acid to 100 mL with water in a volumetric flask.

f. 1:1 (v/v) ethyl acetate:hexane:

Mix equal volumes of ethyl acetate and hexane.

g. 2 M potassium carbonate:

Weigh 27.64 g of  $K_2CO_3$  into a 100 mL volumetric flask and dilute to mark with water.

#### D. STANDARDS

1. Names & Sources

| Name             | Cat. No. | Source              |
|------------------|----------|---------------------|
| Lincomycin       | L6004    | Sigma               |
| hydrochloride    |          |                     |
| Clindamycin      | C5269    | Sigma               |
| hydrochloride    |          |                     |
| Erythromycin     | E0774    | Sigma-USP           |
| Tylosin tartrate | T6134    | Sigma               |
| Tilmicosin       |          | Lilly Research Labs |
| Pirlimycin       |          | Pfizer Corp.        |
| hydrochloride    |          | -                   |
| Tulathromycin    |          | Pfizer Corp.        |

2. Preparation of Standard Solutions

Note: Equivalent standards and solutions may be substituted for any of the following.

a. Individual drug stock standard solutions (100 µg/mL):

Using vendor's stated purity, or water and salt content, calculate the amount of material which contains 10 mg drug base. Weigh out approximately this amount for each drug, accurately recording weight to nearest 0.1 mg. Transfer to 100 mL glass volumetric flask and dilute to volume with methanol. Calculate exact concentration based on purity and actual weight. This solution is stable for 6 months at <  $-10^{\circ}$ C.

| CLG-MAL1.02                                                                     |                       | Page 5 of 20          |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |

b. Mixed standard fortification solution (5 μg/mL Lincomycin, Clindamycin, Erythromycin, Tylosin, Tilmicosin, and Pirlimycin; 50 μg/mL Tulathromycin):

Add 500  $\mu$ L of each of the above 100  $\mu$ g/mL Lincomycin, Clindamycin, Erythromycin, Tylosin, Tilmicosin, and Pirlimycin drug stock solutions to a 10 mL volumetric flask. Add 5 mL of the Tulathromycin stock solution (100  $\mu$ g/mL) to this flask and dilute to volume with methanol. This solution is stable for 6 months at < -10 °C.

c. Preparation of mixed external standard solution (1 µg/mL Lincomycin, Clindamycin, Erythromycin, Tylosin, Tilmicosin, and Pirlimycin; 10 µg/mL Tulathromycin):

Using a micropipettor, transfer 2 mL of mixed fortification solution (D.2.b) to a 10 mL volumetric flask. Dilute to volume with 50% methanol in water (C.2.a) and mix by vortexing. This solution is stable for 3 months at < -10 °C.

#### E. SAMPLE PREPARATION AND CLEANUP

1. Blend sufficient whole liver, muscle or kidney tissue for each sample in a 40 mL blending jar. A separate sample holding/receiving section may homogenize sample using their equipment.

Note - After each blending and weighing, rinse the blending jar with hot tap water, D.I. water, methanol, hexane and finally with methanol.

2. Weigh  $5.00 \pm 0.10$  g tissue into a 50 mL disposable polypropylene centrifuge tube. If muscle tissue is to be analyzed, add approximately 3.0 mL of water and mix well with a microspatula.

Note: Prepare Controls (to be included as part of each sample batch) at this time:

- a. Negative controls are tissues from animals known to be free of drugs. If these are not available, tissue from an unknown source may be used provided it is first tested and shown to be free of contaminants. Store tissue frozen, preferably at < -10 °C prior to analysis.
- b. Positive controls are negative tissues that have been fortified with mac/linc's before extraction. To prepare a fortified sample, add 100 μL mixed fortification solution (D.2.b.), then vortex 10 to 20 seconds (If muscle tissue, stir with a microspatula instead).
- 3. Prepare an aqueous tissue suspension having a pH of 9.8 10.2 by adding aliquots of 2M K<sub>2</sub>CO<sub>3</sub> and mixing until a stable pH in that range is obtained (usually requires 300-500 µL of 2M K<sub>2</sub>CO<sub>3</sub>). Vortex or stir with a microspatula (muscle) after each addition. Measure pH using a micro pH electrode just touching the surface of the solution.
- 4. Add 30 mL of ethyl acetate, cap and shake 3 min. Centrifuge for 10 min at approximately 2000 rpm. (~800 g rcf). Pour the supernatant into a second 50 mL polypropylene centrifuge tube.
- 5. Repeat the above step with 15 mL of ethyl acetate and add to the polypropylene centrifuge tube. Remove any oily residue at the bottom of the tube of the combined ethyl acetate extracts with a Pasteur pipette (occasionally seen with muscle samples).

| CLG-MAL1.02                                                                     |                       | Page 6 of 20          |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |

- 6. To the approximately 45 mL of combined organic phase, add 2.0 mL of  $0.2M \text{ KH}_2\text{PO}_4$ . Shake 3 min. and centrifuge at approximately 2000 rpm for 6 min. Transfer the bottom aqueous layer with a Pasteur pipette and bulb to a 15 mL glass centrifuge tube.
- 7. Repeat step 6 twice. Retain each sample's Pasteur pipette and use for all three transfers and then discard.
- 8. To the approximately 6 mL of combined aqueous solution, add 5 mL of a 1:1 ethyl acetate: hexane solution and invert the tube to mix 10 times. Centrifuge at 2000 rpm for 4 min. Discard the top organic layer. Note: Be sure to remove the entire top organic layer.
- 9. Adjust the pH of the aqueous solution to 9.8-10.2 by adding approximately 900 to 1200  $\mu$ L of 2M K<sub>2</sub>CO<sub>3</sub> (check the pH using a micro pH electrode just touching the surface of the solution)
- 10. Add 4.0 mL of ethyl acetate to the aqueous solution and shake 3 min. Centrifuge at 2000 rpm for 4 min. Transfer the upper organic layer to a 15 mL disposable glass centrifuge tube (Zymark tube) with a Pasteur pipette.
- 11. Repeat step 10 twice. Retain each sample's Pasteur pipette and use for all three transfers and then discard.
- 12. Evaporate the combined organic solution to near dryness (approximately 200 μL) in a TurboVap maintained at approximately 40 °C. Take the remainder of the solution to dryness at room temperature.
- 13. Dissolve the residue in 500 μL of 50:50 (v/v) methanol/water. Mix for a total of 30 seconds prior to filtering through a 0.2 μm PTFE syringe filter into a 1.8 mL autosampler vial.

#### F. ANALYTICAL PROCEDURE

Note: Instrumental parameters yielding equivalent analytical results may be used.

- 1. Instrument Operating Parameters LC System
  - a. Install and degas mobile phases and install column and guard cartridge per manufacturers' instructions. Set initial composition to flow 5/95 acetonitrile/water+0.1% formic acid at 300 µL/min.
  - b. Set-up the HPLC to run the following linear gradients:

| Time in min. | Flow in<br>mL/min. | A (5/95 A/W+0.1%fa) | B (95/5 A/W+0.1%fa) |
|--------------|--------------------|---------------------|---------------------|
| 0.00         | 0.30               | 100%                | 0%                  |
| 15.00        | 0.30               | 0%                  | 100%                |
| 15.10        | 0.30               | 100%                | 0%                  |
| 25.00        | 0.30               | 100%                | 0%                  |

| CLG-MAL1.02                                                                     |                       | Page 7 of 20          |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |

- c. Set injection volume to 20 µL.
- d. Use a needle wash step with MeOH.
- 2. Instrument Operating Parameters Mass Spectrometer
  - a. Calibrate the Finnigan LCQ ion trap mass spectrometer with electrospray interface according to the manufacturer's specifications.
  - b. Set Capillary Temp to 150 °C.
  - c. Operate in Pos mode.
  - d. Flow inject the external standard through a 5 µL loop and obtain the precursor ion centroids The following settings resulted in optimal ion intensities:

| Scan range for data dependant aq. | 400-950 d |
|-----------------------------------|-----------|
| Capillary temperature             | 150 °C    |
| APCI vaporizer temperature        | 450 °C    |
| Sheath gas flow                   | 60        |
| Aux gas flow                      | 5         |
| Capillary voltage                 | 10 V      |
| Tube lens offset                  | 2 V       |
| Micro scans                       | 1         |
| Ion time                          | 100 msec  |
| Source current                    | 5.00 µA   |

- 3. Procedure for Instrumental Analysis of Samples, Controls and Standards
  - a. Turn on pump and set up mass spectrometer. Equilibrate column in mobile phase at 0.30 mL/min for at least 30 min.
  - b. Flow inject the external 100 ppb standard through a 5 µL loop and obtain the precursor centroids.
  - c. Inject the external standard through the HPLC system and acquire spectra using data dependant scanning under the following procedure:

| Scan | Event | Details                                                                        |
|------|-------|--------------------------------------------------------------------------------|
| 1    | Pos   | Full scan 400-950 D                                                            |
| 2    | Pos   | Dep MS <sup>2</sup> most intense ion from parent mass list (1)                 |
| 3    | Pos   | Dep MS <sup>2</sup> 2 <sup>nd</sup> most intense ion from parent mass list (1) |
| 4    | Pos   | Dep MS <sup>2</sup> 3 <sup>rd</sup> most intense ion from parent mass list (1) |

| CLG-MAL1.02                                              |                       | Page 8 of 20           |  |
|----------------------------------------------------------|-----------------------|------------------------|--|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics |                       | by Ion Trap HPLC/MS/MS |  |
| Revision: 02                                             | Replaces: CLG-MAL1.01 | Effective: 07/30/2007  |  |

| Dependent Data Settings        |                                                       |                                                       |                                                       |  |
|--------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--|
| Segment time:                  | 6.3 to 7.5 minutes                                    | 7.5 to 9.1 minutes                                    | 9.1 to 12.5 minutes                                   |  |
| 1. Parent mass<br>list         | 407.1, 411.1, 425.1,<br>734.2, 806.0, 869.5,<br>916.3 | 407.1, 411.1, 425.1,<br>734.2, 806.0, 869.5,<br>916.3 | 407.1, 411.1, 425.1,<br>734.2, 806.0, 869.5,<br>916.3 |  |
| 2. Charge State                | 1                                                     | 1                                                     | 1                                                     |  |
| 3. Isolation<br>Width          | 3.0                                                   | 4.0                                                   | 3.0                                                   |  |
| 4. Activation<br>Amplitude     | 34                                                    | 34                                                    | 34                                                    |  |
| 5. Activation Q                | 0.25                                                  | 0.25                                                  | 0.25                                                  |  |
| 6. Activation<br>Time          | 30                                                    | 30                                                    | 30                                                    |  |
| 7. Min. Signal<br>Required     | 5000                                                  | 1000                                                  | 5000                                                  |  |
| 8. Min. MSn<br>Signal Required | 500                                                   | 100                                                   | 100                                                   |  |

d. Inject the recovered standard and verify retention time, and divert valve switching time.

- e. Inject the negative control and the sample extracts. If necessary to control carryover, precede each sample analysis with a sample diluent injection.
- f. Column, Pump, and APCI Interface Care. At the end of set of analyses, flush the column for 30 min with acetonitrile + water (60 + 40) at 0.30 mL/min.

## G. CONFIRMATION

1. Data Processing.

View total ion current, base ion chromatogram, and/or a reconstructed ion chromatogram for each drug for each data file. Note retention time of any visible peaks in a drug window. Generate averaged spectra across the retention time window for each drug. This is usually from near the start to near the end of the peak visible in the chromatograms, though a smaller range may be used to avoid a spurious ion spike. Where no peak is visible, use the same settings as in a contemporaneous spiked or positive control extract.

| CLG-MAL1.02                                              |                       | Page 9 of 20           |  |
|----------------------------------------------------------|-----------------------|------------------------|--|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics |                       | by Ion Trap HPLC/MS/MS |  |
| Revision: 02                                             | Replaces: CLG-MAL1.01 | Effective: 07/30/2007  |  |

- 2. Confirmation Criteria.
  - a. Retention times of extract peaks must match the peak retention time in a contemporaneous (within same analysis set on same day) fortified control extract chromatogram within 0.2 min.
  - b. The mac/linc peak in the total ion chromatogram (TIC) is present at a S/N ratio of at least 3/1. This is estimated by visual inspection of the TIC.
  - c. The spectra from the extract must visually match spectra from external standards in the same data set. The base ion must be the same. The base ion, two qualifying ions and at least an additional product ion shall be present and readily distinguished from background and matrix ions. There should be a general absence of nonspecific ions. Major specific ions for each mac/linc are listed below:

| Analyte       | Approx.<br>retention<br>time (min) | Precursor<br>ion | Spectra<br>Range | Base<br>Production | Product lons         |
|---------------|------------------------------------|------------------|------------------|--------------------|----------------------|
| Lincomycin    | 7.19                               | 407.1            | 100-420          | 359                | 126*, 172, 389*      |
| Tulathromycin | 8.50                               | 805.95           | 200-820          | 577                | 420*, 703*, 576, 559 |
| Pirlimycin    | 9.15                               | 411.1            | 100-425          | 363                | 327*, 375, 393*      |
| Clindamycin   | 9.44                               | 425.1            | 105-440          | 377                | 172, 126*, 389*, 407 |
| Tilmicosin    | 10.11                              | 869.5            | 225-880          | 696                | 522*, 678*, 738      |
| Erythromycin  | 10.69                              | 734.2            | 190-745          | 576                | 522*, 558*, 698, 716 |
| Tylosin       | 11.00                              | 916.3            | 240-930          | 772                | 407*, 598*, 754      |

\*Recommended qualifying ions.

- d. The quality assurance positive and negative control samples confirm and fail to confirm, respectively, for the presence of the appropriate drug.
- 3. Criteria for Repeating an Analysis.

Sample analyses may be repeated under the following conditions:

- a. The conditions described in G.2.d are not met.
- b. The instrument is suspected to be malfunctioning, as demonstrated by: clearly aberrant

| CLG-MAL1.02                                              |                       | Page 10 of 20          |  |
|----------------------------------------------------------|-----------------------|------------------------|--|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics |                       | oy Ion Trap HPLC/MS/MS |  |
| Revision: 02                                             | Replaces: CLG-MAL1.01 | Effective: 07/30/2007  |  |

standard spectra; failure of a calibration check performed shortly after analysis of the sample set; instrumental parameters, especially vacuum readings, outside of normal operating range; or other conditions noted and documented by the analyst.

- c. There is suspected carryover from a previous high concentration sample or standard. In this case, the sample should be reanalyzed after the cause of the carryover has been identified and measures taken to prevent its recurrence.
- d. There is strong evidence of mac/linc presence, but multiple extraneous ions with relative abundance exceeding that of mac/linc's base ion prevent unambiguous confirmation. In this case, it may be appropriate to reanalyze the suspected positive sample together with a chromatographic standard, and negative and positive QA controls.

#### H. HAZARD ANALYSIS

- 1. Required Protective Equipment
  - a. Personal protective equipment (PPE) includes gloves, safety glasses, and lab coat, where applicable.
  - b. Fume hood.
- 2. Hazards

| Procedure Step                   | Hazard                                                              | Recommended Safe Procedures                                                                                             |
|----------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Mac/Linc antibiotic<br>Standards | Can cause kidney damage.                                            | Wear PPE when handling standards.                                                                                       |
| Methanol                         | Highly flammable, and may                                           | Use under a fume hood away                                                                                              |
| Hexane                           | produce toxic effects to skin,                                      | from all electric devices and                                                                                           |
| Ethyl acetate                    | eyes and the respiratory system.                                    | vapors.                                                                                                                 |
| Acetonitrile                     | Highly flammable and toxic<br>liquid. May cause skin<br>irritation. | Use under a fume hood away<br>from all electric devices and<br>open flames. Treat as cyanide.<br>Avoid breathing vapors |
| Formic acid,<br>phosphoric acid  | Corrosive. Danger of chemical burns.                                | Prepare solutions in a fume hood. Wear PPE, and avoid contact with skin.                                                |

| CLG-MAL1.02                                              |                       | Page 11 of 20          |
|----------------------------------------------------------|-----------------------|------------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics |                       | by Ion Trap HPLC/MS/MS |
| Revision: 02                                             | Replaces: CLG-MAL1.01 | Effective: 07/30/2007  |

#### 3. Disposal Procedures

| Procedure Step                                    | Hazard              | Recommended Safe Procedures                                                                                                                                                                           |
|---------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Methanol/acetonitrile<br>Hexane, Ethyl<br>acetate | See section 2 above | Collect waste in a sealed<br>container and store in a cool,<br>well ventilated, flammable liquid<br>storage area/cabinet for disposal<br>in accordance with local, state,<br>and Federal regulations. |
| Acids and acidic reagents.                        | See section 2 above | Collect waste in a sealed<br>container and store in a cool,<br>well ventilated, acid liquid<br>storage area/cabinet for disposal<br>in accordance with local, state,<br>and Federal regulations.      |

#### I. QUALITY ASSURANCE PLAN

1. Performance Standard

Refer to Section G.2 for Confirmation Criteria.

#### 2. Readiness to Perform

- a. Familiarization
  - i. Phase I: Standards Inject external standard solutions (D.2.c) in duplicate on at least three different days, and verify instrument response is adequate for confirmatory purposes.
  - ii. Phase II: Fortified samples Analyze one fortified bovine kidney, liver, and muscle and one blank bovine kidney, liver, and muscle. On a subsequent separate day analyze one fortified porcine kidney, liver, and muscle and one blank porcine kidney, liver, and muscle. On a subsequent separate day analyze one fortified poultry kidney, liver, and muscle and one blank poultry kidney, liver, and muscle. (total 18 samples)

Note: Phase I and Phase II may be performed concurrently.

- iii. Phase III: Check samples for analyst accreditation.
  - (a) 6 check samples fortified at levels between 1–2 times minimum proficiency level (MPL, see I.6 below) using analytes and concentrations unknown to the analyst. These six unknowns shall use two bovine kidney, two bovine liver, and two bovine muscle tissues. Each set must include a positive

| CLG-MAL1.02                                                |                       | Page 12 of 20          |
|------------------------------------------------------------|-----------------------|------------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics I |                       | by Ion Trap HPLC/MS/MS |
| Revision: 02                                               | Replaces: CLG-MAL1.01 | Effective: 07/30/2007  |

control and a negative control.

- (b) Report analytical findings to Supervisor and Quality Assurance Manager (QAM).
- (c) Approval from the Supervisor and the QAM is required to commence official analysis.
- b. Acceptability criteria.

Refer to section I.1 above

- 3. Intralaboratory Check Samples
  - a. System, minimum contents.
    - i. Frequency: One per week per analyst when samples analyzed.
    - ii. Records are to be maintained for review.
  - b. Acceptability criteria.

If unacceptable values are obtained, then:

- i. Stop all official analyses by that analyst.
- ii. Take corrective action.
- 4. Sample Acceptability and Stability
  - a. Matrices: Bovine, porcine and poultry liver, muscle, and kidney.
  - b. Sample receipt, minimum weight: approximately 50 grams.
  - c. Condition upon receipt: chilled or frozen.
  - d. Sample storage:
    - i. Time: 2 weeks for blended/ homogenized samples
    - ii. Condition: frozen (less than -10 °C)
- 5. Sample Set Each sample set must include the following:
  - a. Negative control sample
  - b. Positive control sample
  - c. Samples

| CLG-MAL1.02                                              |                       | Page 13 of 20          |
|----------------------------------------------------------|-----------------------|------------------------|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics |                       | by Ion Trap HPLC/MS/MS |
| Revision: 02                                             | Replaces: CLG-MAL1.01 | Effective: 07/30/2007  |

## 6. Sensitivity

Minimum proficiency levels (MPL), in ppm, by tissue.

|               | <u>Liver</u> | <u>Kidney</u> | <u>Muscle</u> |
|---------------|--------------|---------------|---------------|
| Lincomycin    | 0.1          | 0.1           | 0.1           |
| Pirlimycin    | 0.1          | 0.1           | 0.1           |
| Clindamycin   | 0.1          | 0.1           | 0.1           |
| Tilmicosin    | 0.1          | 0.1           | 0.1           |
| Erythromycin  | 0.1          | 0.1           | 0.1           |
| Tylosin       | 0.1          | 0.1           | 0.1           |
| Tulathromycin | 1.0          | 1.0           | 1.0           |

## J. WORKSHEET

The following worksheet is an example.

United States Department of Agriculture Food Safety and Inspection Service, Office of Public Health Science

| CLG-MAL1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Page 14 of 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Revision: 02 Replaces: CLG-MAL1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.01 Effective: 07/30/2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| MICROUDELINCOAMDE CONFRANTION WORKSTEET<br>MICROUDELINCOAMDE CONFRANTING<br>MICROUDELINCOAMDE CONFR | Carbon         Long         Text man lar           2         Long         Long |  |

| CLG-MAL1.02                                                                     |                       | Page 15 of 20         |  |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|--|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |  |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |  |

## K. APPENDIX

1. Mass spectra for Macrolide/Lincosamide Antibiotics are shown on the following pages.

| CLG-MAL1.02                | Page 16 of 20          |                       |
|----------------------------|------------------------|-----------------------|
| Title: Confirmation of Mac | oy Ion Trap HPLC/MS/MS |                       |
| Revision: 02               | Replaces: CLG-MAL1.01  | Effective: 07/30/2007 |

# a. Bovine Liver Recovery, 1.0 ppm tulathromycin, 0.1 ppm all other analytes (positive control)

|                            |                                      | BOVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NE LIVER I | RECOVERY                           |
|----------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------|
| 00 - 24.98                 | NU - 6 6655                          | RT: 7.35-7.81 AV: 9 NL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m/z        | Intensity Relative                 |
| 0 7.44                     | NL: 9.80E5<br>TIC E: ± c.d Eull.ms2  | F: + c d Full ms2 406.93@34.00 [ 100.00-420.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 358.8      | 83420.3 100.00                     |
|                            | 406.93@34.00 [                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 388.8      | 44652.6 53.53                      |
| 0                          | 100.00-420.00] MS                    | 2 80-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125.9      | 33398.7 40.04                      |
| 0                          |                                      | da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 316.8      | 5925.0 7.10                        |
| 7.40                       |                                      | <u> 등</u> 60 388.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 171.9      | 4877.1 5.85                        |
| 0 7,49                     |                                      | ₹ 40 125.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 359.9      | 3911.8 4.69                        |
|                            |                                      | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 340.7      | 3681.4 4.41                        |
| 7.62                       |                                      | 1 20 ATT 0 ATT 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 298.9      | 3295.0 3.95                        |
| 7.35 12.12                 |                                      | 171.9 197.7 298.9 310.0 389.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 263 6      | 2003.0 3.22                        |
| 0 5 10 15 20<br>Time (min) |                                      | 100 150 200 250 300 350 400<br>m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 370.9      | 2351.9 2.82                        |
| 00 - 24.98                 | NI : 1 44E8                          | RT: 8.23-8.87 AV: 13 NL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/z        | Intensity Relative                 |
| 0.50                       | TIC F: + c d Full ms2                | 577.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 577.0      | 210935.2 100.00                    |
| 8.48                       | 806.00@34.00 [                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 419.9      | 10020.2 4.75                       |
| 0.40                       | 210.00°020.001 M3                    | 2 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 576.4      | 8392.7 3.98                        |
| 0                          |                                      | ep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 703.0      | 4408.4 2.09                        |
|                            |                                      | ng                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 559.0      | 4018.7 1.91                        |
| 0 8,54                     |                                      | e 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 788 2      | 1493 0 0 71                        |
| 0                          |                                      | the an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 787.4      | 1393.4 0.66                        |
| 8.41 8.59                  |                                      | E 20 100 100 419.9 576.4 100.0 100.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 702.3      | 1209.4 0.57                        |
| 0                          |                                      | 0 285.8 384.1 070.4 683.6 703.0 788.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 575.2      | 982.3 0.47                         |
| 0 5 10 15 20<br>Time (min) |                                      | 300 400 500 600 700 800<br>m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 683.6      | 956.0 0.45                         |
| 00 - 24.98                 | NI · 4 99E5                          | RT: 9.19-9.55 AV: 6 NL:<br>E: + c d Euli me2 410 97/834 00 ( 100 00-425 00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | R                                  |
| 0 0.72                     | TIC F: + c d Full ms2                | 100-362.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | F: + c d   | Full ms2 410.97@34.00 [ 100.0      |
| 0                          | 410.97@34.00   100.00.425.001 MP     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m/2        | Intensity Relative                 |
| -                          | 100.00-#20.001 MS                    | G 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 362.8      | 70531.2 100.00                     |
| 0                          |                                      | pp an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 392.9      | 10580.8 15.00                      |
| 9.37                       |                                      | ngv<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 379.8      | 9001./ 13.04<br>7531 5 10 40       |
| 0                          |                                      | ê 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 363.9      | 5004 5 7 10                        |
| 9,46                       |                                      | inter contraction of the second secon | 320.6      | 4763.2 6.75                        |
| 8.32 9.51                  |                                      | 2 20 392.9<br>2 302.8 326.9 392.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 302.8      | 4741.5 6.72                        |
| 0 7.29 12.19               |                                      | 0 139.7 210.4 251.5 393.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 271.8      | 3965.2 5.62                        |
| 0 5 10 15 20<br>Time (min) |                                      | 100 150 200 250 300 350 400<br>m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 344.7      | 3162.2 4.48                        |
| 00 - 24.98                 | NI : 1.45E6                          | RT: 9.65-10.05 AV: 9 NL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/z        | Intensity Relative                 |
| 0 9.69                     | TIC F: + c d Full ms2                | 376.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 376.8      | 171388.6 100.00                    |
|                            | 424.86@34.00[                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 126.0      | 82986.1 48.42                      |
| 0                          | 105.00+435.00  MS                    | 2 eo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 388.8      | 45097.7 26.31                      |
| 0                          |                                      | da da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 406.8      | 29590.7 17.27                      |
| 9.77                       |                                      | A 60 126.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 377.9      | 13397.3 7.82                       |
| 0                          |                                      | ≪ 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 334.8      | 12982.9 /.58                       |
| 9.65                       |                                      | 388.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 172 0      | 6692 6 3 90                        |
| 9,82                       |                                      | <sup>™</sup> 172.0 000 0 334.8 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 370.9      | 5806.7 3.39                        |
| 0 6.52 8.09 8.01 12.03     |                                      | 0 407.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 390.0      | 5605.0 3.27                        |
| 0 5 10 15 20<br>Time (min) |                                      | 200 300 400<br>m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 336.8      | 5018.9 2.93                        |
| 10.37                      | NL: 2.92E6                           | RT: 10.19-10.84 AV: 15<br>F: + c d Full ms2 869.20(034.00 ( 225.00-880.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m/z        | Intensity Relative                 |
| 10.33                      | TIC F: + c d Full ms2                | 100 696.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 696.1      | 662543.7 100.00                    |
| 0                          | 859.20@34.00 [<br>225.00-880.001 MS  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 738.1      | 20783.8 3.14                       |
| 10.41                      | say or one of the                    | <u> 80</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 678.0      | 15490.2 2.34                       |
| 0                          |                                      | G0 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 869.1      | 9793 9 1 49                        |
|                            |                                      | PR I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 679.1      | 9228.3 1.39                        |
| 10.28 10.46                |                                      | e 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 522.0      | 5833.9 0.88                        |
| 0 10 50 50                 |                                      | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 504.2      | 2042.5 0.31                        |
| 10.24 10.50                |                                      | 378.2 448.2 522.0 678.0 738.1 869.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 487.9      | 1844.2 0.28                        |
| 0 5 10 15 20               |                                      | 400 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 851.2      | 1757.7 0.27                        |
| Time (min)                 |                                      | m/z 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 694.1      | 1746.0 0.26                        |
| 00 - 24.98<br>0 10.98      | NL: 3.19E5                           | RT: 10.89-11.12 AV: 6<br>F: + c d Full ms2 734.00@34.00 [ 190.00-745.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m/z        | Intensity Relative                 |
| 11.02                      | TIC F: + c d Full ms2                | 100-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 575.9      | 39569.0 100.00                     |
| 0                          | 734.00(034.00 [<br>190.00-745.00] MS | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 521.8      | 24526.9 61.99                      |
| 10.93                      | the location denses and              | 2 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2216 0     | 11205 6 20 55                      |
| 0                          |                                      | 521.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 530 7      | 9878 0 24 96                       |
| 11.07                      |                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 697.7      | 8712.5 22.02                       |
| 1.00                       |                                      | § 40 715.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 557.0      | 2147.3 5.43                        |
| 0 10.89 11.12              |                                      | E 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 575.3      | 1455.1 3.68                        |
| 9.11 11.60                 |                                      | 283.9 315.4 364.6 463.4 671.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 715.0      | 1391.4 3.52                        |
| 0 5 10 15 20               |                                      | 200 300 400 500 600 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 463.4      | 915.6 2.31<br>839.6 2.12           |
| Time (min)                 |                                      | m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                    |
| 0 11.21                    | NL: 1.92E5                           | F: + c d Full ms2 916.00@34.00 [ 240.00-930.00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F: + c d   | R<br>Full ms2 916.00034.00 [ 240.0 |
| 11.29                      | 916.00@34.00 [                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m/z        | Intensity Relative                 |
| 0                          | 240.00-930.00 MS                     | 8 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 771.9      | 50906.6100.00                      |
| 11.16                      |                                      | da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 771.2      | 5883.7 11.56                       |
|                            |                                      | 5 60 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 406.7      | 4740.6 9.31                        |
| 0 11.37                    |                                      | 2 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 597.9      | 4611.3 9.06                        |
|                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 317.5      | 2612.6 5.13                        |
| 0 11.41                    |                                      | 20- 408 7 EAT A 771.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 753.6      | 1946.4 3.82                        |
|                            |                                      | - 317.5 400.7 572.9 597.9 270.7 914.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 372.8      | 1683.4 3.31                        |
| 8.04 11.46                 |                                      | 0 112.1 014.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 370.2      | 1543 1 3 03                        |

| CLG-MAL1.02                | Page 17 of 20          |                       |
|----------------------------|------------------------|-----------------------|
| Title: Confirmation of Mac | oy Ion Trap HPLC/MS/MS |                       |
| Revision: 02               | Replaces: CLG-MAL1.01  | Effective: 07/30/2007 |

#### b. Bovine Liver Blank (negative control)



| CLG-MAL1.02                                                                     |                       | Page 18 of 20         |  |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|--|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |  |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |  |

## 2. Proposed MS fragmentation patterns

| Compound     | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mass                     | Fragment                                                                                              |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------|
| Clindamycin  | $H_3C$ $H_3$ $H_3$ $H_3C$ $H_3$ $H_$ | 425<br>389<br>377<br>126 | $[M+H]^{+}$<br>$[M+H-2H_{2}O]^{+}$<br>$[M-SCH_{3}]^{+}$<br>$[F_{a}]^{+}$                              |
| Erythromycin | $H_{3}C$ $H$ | 734<br>576<br>558<br>522 | $[M+H]^{+}$<br>$[M+H-F_{a}]^{+}$<br>$[M+H-F_{a}-$<br>$H_{2}O]^{+}$<br>$[M+H-F_{a}-$<br>$3H_{2}O]^{+}$ |
| Lincomycin   | $H_3C$    | 407<br>389<br>359<br>126 | $[M+H]^{+}$<br>$[M+H-H_{2}O]^{+}$<br>$[M-SCH_{3}]^{+}$<br>$[F_{a}]^{+}$                               |

|        | CLG-MA     | CLG-MAL1.02 Page 1                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ge 19 of 20                                                                   | 9 of 20                  |                                                                                                                                                                                                        |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Title: Cor | itle: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Tr                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | on Trap HPL                                                                   | C/MS/MS                  |                                                                                                                                                                                                        |
|        | Revision:  | : 02                                                                                                                                                | Replaces: CLG-MAL1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eff                                                                           | fective: 07/30           | /2007                                                                                                                                                                                                  |
| Pirlir | nycin      | H <sub>3</sub> C                                                                                                                                    | NH CH <sub>3</sub><br>O OH OH OH S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I<br>SCH <sub>3</sub>                                                         | 411<br>393<br>363<br>327 | $\begin{bmatrix} M+H \end{bmatrix}^{+} \\ \begin{bmatrix} M+H-H_2O \end{bmatrix}^{+} \\ \begin{bmatrix} M-SCH_3 \end{bmatrix}^{+} \\ \begin{bmatrix} M-SCH_3-\\ 2H_2O \end{bmatrix}^{+} \end{bmatrix}$ |
| Tilm   | icosin     | HO $CH_3$<br>OCH <sub>3</sub> OCH <sub>3</sub><br>$F_b$ OCH <sub>3</sub><br>$F_c$                                                                   | $H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$<br>$H_3C$                                                                                                                                                                                                                         | CH <sub>3</sub><br>CH <sub>3</sub><br>N_CH <sub>3</sub><br>CH <sub>3</sub> OH | 870<br>696<br>678<br>522 | $[M+H]^{+}$<br>$[M+H-F_a]^{+}$<br>$[M-F_c]^{+}$<br>$[M+H-F_a-F_b]^{+}$                                                                                                                                 |
| Tula   | thromycin  | Fa<br>CH <sub>3</sub> OH<br>HO<br>HITTIN<br>H <sub>3</sub> C                                                                                        | $\begin{array}{c} CH_{3} \\ O \\ \hline \\ O \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ O \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ O \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ O \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ \end{array} \begin{array}{c} O \\ H_{3}C \\ $ | H<br>····· CH <sub>3</sub><br>CH <sub>3</sub><br>CH <sub>3</sub>              | 806<br>703<br>577<br>420 | $[M+H]^{+}$<br>$[M+H-F_{a}]^{+}$<br>$[M-F_{b}+H_{2}O]^{+}$<br>$[M+H-F_{b}-F_{c}$<br>$+H_{2}O]^{+}$                                                                                                     |
| Tylo   | sin        | HO<br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>OCH <sub>3</sub><br>C | $H_{3}C$ $H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H <sub>3</sub> OH<br>O CH <sub>3</sub>                                        | 916<br>772<br>598<br>407 | $[M+H]^{+}$<br>$[M+H-F_a]^{+}$<br>$[M+H-F_b]^{+}$<br>$[M+H-F_b-F_c]^{+}$                                                                                                                               |

| CLG-MAL1.02                                                                     |                       | Page 20 of 20         |  |  |
|---------------------------------------------------------------------------------|-----------------------|-----------------------|--|--|
| Title: Confirmation of Macrolide/Lincosamide Antibiotics by Ion Trap HPLC/MS/MS |                       |                       |  |  |
| Revision: 02                                                                    | Replaces: CLG-MAL1.01 | Effective: 07/30/2007 |  |  |

## L. APPROVALS AND AUTHORITIES

Approvals on file.

Issuing Authority: Laboratory Quality Assurance Division (LQAD).