NICARBAZIN IN POULTRY TISSUES

Conte	ents
-------	------

I. Determinative Method

A.	Introduction
В.	Equipment 2
C.	Reagents and Solutions
D.	Standards
E.	Extraction Procedure
F.	Analytical Quantitation
G.	Calculations
H.	Hazard Analysis15
١.	Worksheet
J.	Quality Assurance Plan19

II. Confirmatory Method

Α.	Introduction
В.	Equipment
C.	Reagents and Solutions21
D.	Standards
E.	Sample Preparation and Cleanup22
F.	Analytical Confirmation Procedure
G.	[Reserved]
Η.	Hazard Analysis24
I.	Worksheet
J.	Quality Assurance Plan

A. INTRODUCTION

1. Theory	Nicarbazin is a 1:1 molar mixture of HDP and DNC. HDP is 4,6-Dimethyl-2- pyrimidinol and DNC is 4,4-Dinitrocarbanilide. Nicarbazin is used in chickens to prevent coccidiosis, an infectious disease caused by intestinal protozoan parasites.		
	Nicarbazin is extracted from chicken tissue with ethyl acetate. After filtration and evaporation of the extract, the residue is purified by liquid-liquid partitioning and alumina column chromatography. Analytical separation and measurement are accomplished by high performance liquid chromatography (HPLC) with UV detection of the DNC portion of the nicarbazin complex at 340 nm.		
2. Applicability	This method is applicable for chicken muscle and liver.		
2. Applicability	detection of the DNC portion of the nicarbazin complex at 340 nm. This method is applicable for chicken muscle and liver.		

B. EQUIPMENT

1. Apparatus	NOTE: Equivalent apparatus may be substituted for that specified if necessary.					
	a.	Platform shaker, Eberbach Model 6010.				
	b.	Cieria homogenizer, Sorvall Omni-Mixer, Type OM. NOTE: A Tissuem or equivalent <i>cannot</i> be used.				
	c.	Virtis flask (100 mL).				
	d.	Du Pont homogenizing cups, part no. 17047.				
	e.	Rinco rotary vacuum evaporator with temperature-controlled water bath.				
	f.	Waters Sep-Pak alumina B cartridges, part no. 51820.				
	g.	Filter paper, Schleicher and Schuell 588.				
	h.	50 mL polypropylene tubes, Falcon 2098.				
	i.	Waring blender, with 1 quart jar.				
	j.	Hobart food chopper, equipped with 5/32" hole plate.				
2. Instrumentation	HP	LC system consisting of the following components, or equivalent:				
	a.	Waters Model M-6000 high pressure pump.				
	b.	Waters Wisp Model 710B autosampler and autoinjector.				
	C.	Waters Model 450 UV-visible detector, set at 340 nm.				
	d.	Chromatographic data system, HP 1000, integrator, or chart recorder.				
	e.	IBM C ₁₈ column, 4.6 \times 100 mm, 3 μ m particles.				

4

C. REAGENTS AND SOLUTIONS

1. Reagent List	a. Ethyl acetate, HPLC grade.
	b. Hexane, HPLC grade.
	c. Acetonitrile, HPLC grade.
	d. Dimethylformamide (DMF), HPLC grade.
	e. Methanol, HPLC grade.
	f. Water, deionized using Millipore system.
2. Solution List	Methanol/water, 3: 1 (v/v).

D. STANDARDS

1. Source	Eli Lilly and Company Indianapolis, IN 46285					
	NOTE: Each new lot of standard reference material should be prepared as stated below and compared to the current standard.					
	NOTE: Information as to the exact ratio of DNC to HDP for that lot should be provided and will be needed for calculations.					
2. Preparation of Standards	a. Stock standard (1000 μ g/mL): Weigh 100 mg of nicarbazin reference standard. Transfer to a 100 mL volumetric flask and dissolve in 75 mL of dimethylformamide (DMF) by heating at 75-80° C. Cool, dilute to volume with DMF, and mix well.					
	b. Working standard (20 μ g/mL): Pipet 2.0 mL of stock standard solution into a clean 100 mL volumetric flask. Dilute to volume with ethyl acetate.					
	c. HPLC standards:					
	i. 6 μ g/mL spiking solution. Pipet 3.0 mL of working standard into a 10 mL volumetric flask and dilute to volume with methanol.					
	ii. 4 μ g/mL spiking solution. Pipet 2.0 mL of working standard into a 10 mL volumetric flask and dilute to volume with methanol.					
	iii. 2 μ g/mL spiking solution. Pipet 1.0 mL of working standard into a 10 mL volumetric flask and dilute to volume with methanol.					
3. Storage Conditions	All standard solutions should be stored at room temperature.					
4. Shelf Life Stability	a. Stock standard-stable for one month.					
	b. Working standard—stable for one month.					
	c. HPLC standard-stable for three days.					

E. EXTRACTION PROCEDURE

1. Sample Preparation	a.	Liver. Blend approximately 1 lb of tissue in a 1-qt Waring blender jar until a consistent homogenate is obtained.
	b.	Muscle. Pass approximately 1 lb of tissue through a Hobart food chopper equipped with a 5/32" hole plate. Mix thoroughly by hand-kneading to produce a uniform homogenate.
	NC <i>cai</i> ana	TE: <i>Do not</i> homogenize tissues completely. A Tissuemizer or equivalent <i>nnot</i> be used since the homogenate produces interferences in recovery of alyte and filters slowly as a consequence of high efficiency blending.
2. Sample Extraction	a.	If using:
		 Eberbach platform shaker: Weigh 10.0 g of a representative sample of ground or minced tissue into a 50 mL polypropylene centrifuge tube.
		 ii. Virtis homogenizer: Weigh 10.0 g of a representative sample of ground or minced tissue into a 100 mL Virtis flask.
	b.	Prepare a recovery sample at 2 ppm by fortifying a 10.0 g sample of untreated control tissue with 1.0 mL of working standard. Include an untreated control tissue sample with each set of samples.
	C.	If using:
		 Eberbach platform shaker: Add 25 mL of ethyl acetate to the sample and shake by hand vigorously for 10 sec. Place on the platform shaker and shake for 3 min at high speed. Centrifuge the sample at 2000 rpm for 2 min.
		ii. Virtis homogenizer: Add 25 mL of ethyl acetate to the sample and homogenize at low speed for 3 min.
	d.	Being careful to avoid transferring tissue, decant the ethyl acetate supernatant from either step c.i or c.ii into a 250 mL round-bottom flask or other suitable container.
		NOTE: When blending sample in a Virtis homogenizer, decant supernatant through a filter paper. Any tissue that is decanted with the supernatant should be scraped off the filter paper and placed back into the Virtis flask.
	e.	Repeat steps c.i to d or c.ii to d twice more, using the same filter paper and flask to collect the extract from each sample. After the three extracts have been collected, rinse the filter paper with three 2 mL portions of ethyl acetate.
	f.	Evaporate the ethyl acetate using a rotary vacuum evaporator with a temperature-controlled water bath at 45-50° C.
		NOTE: For liver and muscle tissue, there will be about 1-2 mL of oil left in the residue.

E. EXTRACTION PROCEDURE (Continued)

- g. Add 50 mL of hexane to the round-bottom flask and quantitatively transfer to a 125 mL separatory funnel.
- h. Rinse the round-bottom flask with 10 mL acetonitrile and transfer to the separatory funnel. Shake the separatory funnel vigorously for approximately 1 min. Let the separatory funnel sit until the phases are sufficiently separated.
- i. Carefully drain the acetonitrile layer (lower phase) into the same roundbottom flask previously used, ensuring that all of the acetonitrile layer is recovered.
- j. Re-extract the hexane phase with two 10 mL portions of acetonitrile and add these acetonitrile extracts to the same round-bottom flask for each sample. Discard the hexane phase.
- k. Evaporate the acetonitrile extract completely to dryness with a rotary vacuum evaporator. Reconstitute the dried extract by adding 2 mL of dimethylformamide to the flask.
- I. Attach a 10 mL syringe barrel or similar apparatus to the alumina B cartridge as a solvent reservoir. Rinse the alumina B cartridge with 4 mL of DMF. *Do not allow the column to go dry at this step.*

NOTE: All elution steps are performed as an open column procedure without vacuum. It may be necessary to apply gentle pressure with a rubber bulb or other similar device to initiate flow.

- m. Quantitatively transfer the solubilized sample to the alumina B cartridge by rinsing the sample flask with two 2 mL portions of DMF and by adding these rinses to the cartridge. Discard eluate.
- n. Wash the cartridge with one 5 mL portion of DMF and discard eluate. It is important to eliminate any DMF with pressure from a rubber bulb.
- o. Elute the compound of interest into a 10 mL volumetric flask by adding 10 mL of methanol to the cartridge. A rubber bulb can be used to increase the flow rate to approximately 2 mL/min and to drain all of the DNC from the column. Adjust final volume in volumetric flask to mark, using methanol.
- p. Inject 10 µL of sample into HPLC for quantitation.

E. EXTRACTION PROCEDURE (Continued)

3. Flow Chart Summary

NIC July, 1991

I. DETERMINATIVE METHOD

E. EXTRACTION PROCEDURE (Continued)

F. ANALYTICAL QUANTITATION

1. Instrumental Settings	a. Guard column	C_{18} , 3 μ m particles (optional)				
and Conditions	b. Analytical column	IBM C ₁₈ column, 4.6 \times 150 mm, 3 μ m particles.				
	c. Mobile phase	Methanol/Water 75/25 (v/v).				
	d. Flow rate	0.8 mL/min.				
	e. Injection volume	10 μL.				
	f. Column temperature	40° C.				
	g. Retention time	Approximately 5-6 min.				
	h. Detector setting	UV 340 nm (0.1 AUFS for samples \leq 0.5 ppm, and 0.2 AUFS for samples > 0.5 ppm).				
2. General Operation	a. The baseline should be stable responses should be sufficie noise ratio). DNC should be retention time of DNC should	. The baseline should be stable before beginning a run. Reference standard responses should be sufficient for reliable measurement (> 2 × signal to noise ratio). DNC should be separated from impurities in the sample. The retention time of DNC should not vary more than 20 sec in a particular run.				
	b. Record the daily operating conditions on the chromatograms and measure the peak area of DNC. If necessary, dilute sample extract with mobile phase to yield peak responses within the range of the standard curve.					
3. Interferences	None known.	lone known.				
-						

F. ANALYTICAL QUANTITATION (Continued)

4. Sample Chromatograms

AMPLITUDE/1000 Force Normalized (5.00, 8.00)

FSIS

I. DETERMINATIVE METHOD

F. ANALYTICAL QUANTITATION (Continued)

AMPLITUDE/1000 Force Normalized (5.00, 8.00)

NIC July, 1991

I. DETERMINATIVE METHOD

F. ANALYTICAL QUANTITATION (Continued)

AMPLITUDE/1000 Force Normalized (5.00, 8.00)

FSIS

I. DETERMINATIVE METHOD

F. ANALYTICAL QUANTITATION (Continued)

G. CALCULATIONS

Procedure	a.	By an acceptable means, measure the peak area of the 0, 2, 4, and 6 μ g/mL HPLC standards (section D.2.c). Using the peak area and associated μ g/mL values, construct a standard calibration curve by least squares computation, as indicated in the Chemistry Quality Assurance Handbook, Volume I, 1.5.67.
	b.	According to the following equation, calculate percent recovery (R,) in the 2 $\mu g/mL$ fortified control tissue.
		$R_i = \frac{C_r \times V \times AF \times 100}{\mu g \text{ fortified}}$
		where:
		C_r = concentration of nicarbazin recovery sample as determined from the standard curve $\mu g/mL.$
		V = final volume in mL (normally 10 mL).
		AF = aliquot factor (normally 1.0).
	c.	Determination of the concentration (ppm) of nicarbazin tissue samples is accomplished by comparison with the standard peak areas and adjustment for the mean percent recovery of the fortified untreated control samples, if less than 100%, as shown below.
		ppm nicarbazin = $\frac{C_s \times V \times AF \times Fdnc \times 100}{W \times R_a \times 0.7089}$
		where:
		W = weight (g) of tissue extracted.
		R_{α} = last 10 running average percent recovery.
		$C_{\rm s}$ = concentration of nicarbazin sample as determined from standard curve ($\mu g/mL$).
		Fdnc = actual fraction of DNC in the nicarbazin reference standard (0.674 to 0.730).
		0.7089 = theoretical fraction of DNC in the nicarbazin reference standard.

H. HAZARD ANALYSIS

1. Method Title	Analysis of Nicarbazin in Poultry Tissues Safety glasses, plastic gloves, lab coat.			
2. Required Protective Equipment				
3. Procedure Steps		Hazards	Recommended Safe Procedures	
	C. Reagents			
	Acetonitrile Hexane Ethyl acetate Methanol DMF	Flammable. Vapors are irritating and may be absorbed through the skin, producing toxic effects.	Work in an efficient fume hood. Use plastic gloves when adding solvent and shaking the funnels.	
4. Disposal Procedures	Organic solvents	(see above)	Store in the nonchlori- nated solvent waste container until disposed of by contractor or in- house specialist.	

I. WORKSHEET

The worksheet on the facing page, *Nicarbazin Analysis*, can be removed from this book for photocopying whenever necessary, but do not forget to replace it.

WORKSHEET FOR NICARBAZIN ANALYSIS

Analyst:_____

SAMPLE IDENTIFICATION:

Analyst Code:

CONDITION 15 cm x 4.6 mm ID Zorbax ODS-C-18 Column Mobile Phase: 25% H $_{\mathcal{O}}$ in CH $_{\mathcal{O}}$ H (V/V)

> Column temperature: 40°C Flow: 0.8 ml/min (usual pressure 1000 psi, 500 – 2500 psi acceptable) Injection volume 10 μ l

NOTE: Evaporation Step – DO NOT ALLOW SAMPLE TO GO TO DRYNESS

CRITICAL CONTROL POINTS

PROCEDURE KEY:	Sample	Spiking	Shaking	Final	Peak Hght	PPM found	Comments
	Weight	Volume	Time in	Volume	or	or	
	Grams	ml	Min	ml	Area	% Recovery	
STANDARD 0 PPM			1				
STANDARD 2 PPM			1	-	·		
STANDARD 4 PPM		1	1	·			
STANDARD 6 PPM							
BLANK	10.0 gms	1	3 min	10 ml	1		
RECOVERY 2 PPM		2 ml					
1 Sample #							
2 Sample #							
3 Sample #							
4 Sample #		-					
5 Sample #		-					
6 Sample #		-	1				
7 Sample #		-					
8 Sample #							
9 Sample #							
10 Sample #		-	[
11 Sample #							
12 Sample #							
13 Sample #		-					
14 Sample #							
15 Sample #	v		V	v			

Date: _____

J. QUALITY ASSURANCE PLAN

1. Peformance Standards	Compound	Analytical Range (ppm)	Acceptable Recovery (%)	Repeatbility %CV	Reproducibility %CV			
	Nicarbazin†	0-6.0 ppm	80-110	10	15‡			
	† DNC componer ‡ Reproducibility	nt. is estimated value; a	actual value to be de	termined after va	lidation study.			
2. Critical Control		Record		Acceptable (Control			
Specifications	a. Sample we	eight	10.0 ± 0.1 g					
	b. Volume of	DMF	2.0 ± 0	2.0 ± 0.1 mL				
	c. Volume of	residual solution	10.0 <u>+</u>	0.2 mL				
3. Readiness To	a. Familiariza	ation.		·				
Perform	 Phase I: Duplicate sets of standard curves on each of three days at 0, 2.0, 4.0, and 6.0 ppm. 							
	 Phase II: Duplicate self-fortified recovery samples using chicken liver tissue spiked at 0, 2.0, 4.0, and 6.0 on three days. 							
	NOTE: Phase I and Phase II may be performed concurrently.							
	iii. Phase III: Check samples for analyst accreditation. Twelve chicken live tissue samples, ranging from 0.4 to 6 ppm, including blanks, submitted by supervisor or Laboratory QA Officer.							
	b. Acceptability criteria.							
	Refer to section J.1 above.							
4. Intralaboratory	a. System, n	ninimum contents	S.					
Check Samples	i. Freq	uency: At least c	one check sampl	e biweekly pe	r analyst.			
	ii. Ranc or La	lom replicates or aboratory QA Off	blind samples ma icer.	ay be chosen b	by the supervisor			
	iii. Recc supe	ords are to be m rvisor and Labor	aintained by the atory QA Officer	e analyst and for:	reviewed by the			
	(a)	All replicate find	ings.					
	(b)	CUSUM charts.						
	(c)	All recovery valu	Ies.					
	(d)	Running average	e, standard devia	ition, and CV f	or all recoveries.			

J. QUALITY ASSURANCE PLAN (Continued)

-					
	b.	Acceptability criteria.			
		If unacceptable values are obtained, then:			
		i. Stop all official analyses for that analyst.			
		ii. Investigate and identify probable cause.			
		iii. Take corrective action.			
		iv. Repeat Phase III of section J.3 if cause was analyst-related.			
5. Sample Acceptability	a.	Matrix: Liver.			
and Stability	b.	Sample receipt size: Sufficient for all quantitative analyses and sample reserved for confirmation (at least 500 g).			
	c.	Condition upon receipt: Chilled or frozen.			
	d.	Sample storage:			
		i. Time: Not determined; stability study required.			
		ii. Condition: Not determined; stability study required.			
6. Sample Set	a.	Blank.			
	b.	Fortification at 2 ppm.			
	c.	Samples.			
7. Sensitivity	a.	Lowest detectable level (LDL): 0.1 ppm.			
	b.	Lowest reliable quantitation (LRQ): 0.4 ppm.			

NICARBAZIN

II. CONFIRMATORY METHOD

A. INTRODUCTION

1. Theory	Extracts from the determinative method are separated from interferences by reverse phase gradient HPLC. A diode array detector is used to determine the UV spectra of the suspected nicarbazin peak, which are compared to those of a standard.
2. Applicability	This method is applicable to all tissues referenced in the determinative method, section A.2, NIC-1.
2. Applicability	This method is applicable to all tissues referenced in the determinative n section A.2, NIC-1.

B. EQUIPMENT

1. Apparatus	Refer to determinative method, section B.1, NIC-2.			
2. Instrumentation	 Liquid chromatograph: Hewlett-Packard Model 1090M, equipped with autoinjector, binary gradient option, and diode array detector (DAD), controlled by a Hewlett-Packard Model 79994 HPLC Chemstation. 			
	b. Analytical column: 25 cm \times 4.6 mm id, containing 5 μ m Econosphere C ₁₈ spherical particles (Alltech Associates).			
	NOTE: Equivalent instrumentation may be substituted for that specified if necessary.			

C. REAGENTS AND SOLUTIONS

Refer to determinative method, section C, NIC-3.

D. STANDARDS

Refer to determinative method, section D, NIC-4.

NIC July, 1991

II. CONFIRMATORY METHOD

E. SAMPLE PREPARATION AND CLEANUP

Refer to determinative method, section E, NIC-5 through NIC-8.

F. ANALYTICAL CONFIRMATION PROCEDURE

1. Data Acquisition	a.	HPL	LC parameters.		
		i.	Flow rate: 1.0 mL/min.		
		ii.	Injection volume: 25 μ L.		
		iii.	HPLC gradient.		
			NOTE: Since the system varies depending upon the matrix, it is recommended that the gradient system be used only if interfering peaks were observed when running the analysis with the isocratic system. If the isocratic system is the choice, use 75:25 methanol/water as the eluent. Otherwise the following conditions could be used as guidelines for a gradient system.		
			(a) Initial mixture: 60:40 methanol/water.		
			(b) Initial hold: 7 minutes.		
			(c) Gradient 1: Ramp to 80:20 in 4 minutes.		
			(d) Hold 1: 5 minutes.		
			(e) Gradient 2: Ramp to 60:40 in 4 minutes.		
			(f) Hold 2: 3 minutes.		
	b.	DAE	parameters.		
		i.	Signal A: 345 \pm 2 nm (4 nm bandwith).		
		ii.	Signal B: 223 \pm 2 nm.		
		iii.	Signal C: 258 ± 2 nm.		
		iv.	Signal D: 313 ± 2 nm.		
		۷.	Signal E: 373 \pm 2 nm.		

II. CONFIRMATORY METHOD

F. ANALYTICAL CONFI	RMAT	ION PROCEDURE			
		vi. Reference signal for s	ignals A-E: 550 ± 50 nm.		
		vii. Spectrum range: 210-	450 nm.		
		viii. Store spectrum: Peak	controlled, threshhold 1 mAU.		
		ix. Stop time: 16 min (pe	ak elutes at 14 min).		
	C.	Instructions for data acquis	sition.		
		Set up instrument operating to warm up at least 30 min is complete, use Chemstatic generated by signals A-E at a background-corrected s generated and printed out	parameters as described above. Allow the DAD before attempting analysis. After sample run in software to integrate chromatographic peaks ad produce a report of the results. In addition, pectrum of the peak of interest should be to allow a visual comparison of spectra.		
2. Required Samples	A c an ex (<u>+</u>	confirmation set consists of a d the presumptive positive ternal standard and recovery 50%) to those found in the	n external standard, a recovery, a tissue blank, sample from the determinative method. The should be prepared at concentrations similar sample.		
3. Criteria for Confirmation	a.	Retention time specificiation match that of the standard	n. Retention time of the sample peak should and recovery within a 1% tolerance.		
	b.	Wavelength ratio specification. All ratios of signals B-E to A for the sample must match those of the standard or recovery within 10%.			
		Absorbance Ratios for Nicarbazin			
		Wavelength*	Absorbance (Normalized)		
		345 225 260 315 375	1.00 0.58 0.070 0.53 0.48		
		*Specified wavelength ± 2 nm.			
	C.	Spectral comparison specif corrected spectrum of the s or recovery with respect to addition, the overall shape of standard or recovery.	ication (visual confirmation). The background- ample peak must match those of the standard location of absorbance minima and maxima. In of the sample spectrum must match that of the		

II. CONFIRMATORY METHOD

F. ANALYTICAL CONFIRMATION PROCEDURE (Continued)

4. Interferences Some extracts from the determinative procedure may contain a number of compounds that can interefere in the absorbance range of 220-260 nm when isocratic (75:25 methanol:water) conditions are used for eluting. The gradient used has proven adequate for separating these interferences when using the specified column. Substitution of a different column may require development of a different gradient for adequate separation.

H. HAZARD ANALYSIS

Refer to Determinative Method, section H.

I. WORKSHEET

The worksheet on the facing page, *Nicarbazin HPLC-DAD Confirmation Data Form,* can be removed from this book for photocopying whenever necessary, but do not forget to replace it.

NICARBAZIN HPLC-DAD CONFIRMATION DATA FORM

Sample Number:	Tiss	Je:
Analyst:	Date Run:	

		Peak ht/area					
Sample	Ret. Time	345	22	5	260	315	375
Blank							
Standard							
Recovery							
	Pł	k ht/Area Ratio	o (relative to	345)			
	225	260	315	375		Spectrum sh	ape OK?
Blank							
Standard							
Recovery							

II. CONFIRMATORY METHOD

J. QUALITY ASSURANCE PLAN

1. Performance Standarde	a. No false positives at 4 pp	om.			
Standarus	b. No false negatives at 4 ppm.				
2. Critical Control Points and	NOTE: Sample cleanup and preparation follow the same criteria described in the determinative method.				
Specifications	Record	Acceptable Control			
	DAD warmup	> 30 minutes			
	DAD zero	Prior to start of each injection (automatic with Chemstation software)			
3. Readiness To	a. Familiarization.				
Perform	 Phase I: Standards—Inject standard (4 μg/mL) to verify HPLC, DAD, and integration software operating parameters. 				
	ii. Phase II (Optional—at discretion of supervisor): Analyze two sets of validation samples on separate days. Each set consists of a standard at 4 μ g/mL, a reagent blank, 1 blank poultry liver, and 3 poultry liver blanks fortified at 4 ppm.				
	iii. Phase III: Analyze a liver fortified at 4 pp ppm.	standard at 4 ppm, a blank poultry liver, a blank m, and 3 unknowns fortified at approximately 4			
	b. Acceptability criteria.				
	The analyst must demor specified in sections F.3	strate the ability to meet confirmation criteria and F.4 for all samples analyzed.			
4. Intralaboratory	a. System, minimum conten	ts:			
Check Samples	i. Frequency: One sample quarterly per analyst.				
	ii. Records are to be r supervisor and Labo	naintained by the analyst and reviewed by the pratory QA Officer.			
	b. Acceptability criteria.				
	Ability to confirm samples	using criteria specified in sections F.3 and F.4.			
5. Sample Acceptability	a. Sample storage stability:	Not determined.			
and Stability	b. Condition upon receipt: Cold.				

II. CONFIRMATORY METHOD

J. QUALITY ASSURANCE PLAN (Continued)

6. Sample Set	Refer to section F.2.		
7. Sensitivity	a. Lowest detectable level (LDL): Not applicable.		
	b. Lowest reliable confirmation (LRC): < 4 ppm.		