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Introduction 
 
Policy makers, educators, and the general public have long been interested in measuring the ability of 
schools and districts to reduce secondary school drop-out rates and to graduate their students on-time (i.e. 
in four years from the beginning of ninth grade). Recently, sparked by the decision of Congress to mandate 
the reporting of an on-time graduation rate by the states as part of the requirements of the No Child Left 
Behind (NCLB) Act, concerns about the methodology of computing this rate has led to a sometimes heated 
debate among stakeholders and analysts of education policy (Swanson 2004; Warren 2005; National 
Governors Association 2005; American Federation of Teachers 2006; Greene and Winters 2006; Mishel 
and Roy 2006; Seastrom, Hoffman et al. 2006). 
 
Although virtually all participants in the debate have voiced support for its eventual resolution by the 
adoption of state longitudinal data systems (National Governors Association 2005), which will allow the 
computation of a true cohort graduation rate by observing the behavior of all individual students throughout 
their academic careers, most of the proposed approaches currently use cross-sectional enrollment and 
diploma data as reported by the National Center for Education Statistics (NCES) as part of the Common 
Core of Data (CCD). Among these methods is the Averaged Freshman Graduation Rate (AFGR), the 
measure adopted by the U.S. Department of Education in 2005, which will be discussed in the next section. 
 
Calculation of the AFGR requires four data elements, each collected in a different academic year (details of 
the AFGR will be discussed in the next section). This makes the measure particularly susceptible to missing 
data concerns. Although the CCD is an important source of information about the K-12 public education 
system and is of generally high quality and completeness, it is a complex universe survey, and NCES relies 
on state cooperation in timely and accurate reporting of the many data elements. As a result, many school 
                                                 
1 This paper is part of an ongoing research and development effort and it does not reflect the positions or 
views of the National Center for Education Statistics, the Institute of Education Sciences, or the U. S. 
Department of Education. Please contact the lead author for the most recent version prior to citation. 
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districts or local educational authorities (LEA’s) are missing at least one data element required for the 
calculation of the AFGR, particularly by gender and race/ethnicity.2 This paper explores the causes and 
consequences of these missing data on the estimation of the AFGR, and proposes and explores several 
imputation or adjustment models for correcting this issue. 
 
The Averaged Freshman Graduation Rate 
 
The AFGR provides an estimate of the percentage of high school students who graduate on-time (i.e. in 
four years from the start of ninth grade) by dividing the number of graduates with regular diplomas by the 
size of the incoming freshman class four years earlier, expressed as a percent. The rate uses aggregate 
student enrollment data to estimate the size of an incoming freshman class and aggregate counts of the 
number of diplomas awarded to that cohort  four years later. The size of the incoming freshman class is 
estimated by a simple mean—the sum of the enrollment in eighth grade in one year, ninth grade for the 
next year, and tenth grade for the year after, divided by three.  This averaging is intended to account for 
prior year retentions in the ninth grade. Although not as accurate as an on-time graduation rate computed 
from a cohort of students using longitudinal student record data, the AFGR can be computed with currently 
available data and compares favorably to other methods given validity tests against a true longitudinal rate 
(Seastrom, Chapman et al. 2006). 
 
More formally, for a given LEA (or state), the AFGR is computed as: 
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where y denotes the graduation year of the cohort of interest (e.g. the class of 2003), D denotes the diploma 
count reported for that year, and Eg

,g ! 8,9,10{ } , is the enrollment count for that cohort when they 
were in grade g.3  
 
At present, NCES is computing and reporting the AFGR at the state level and only for the entire state 
population (Seastrom et al. 2006). However, since NCLB requires that states report the graduation rates of 
all disaggregated subgroups, there is increasing interest on the part of policy makers and analysts in the 
annual reporting of the AFGR for these subgroups (e.g. the AFGR for white, Hispanic males as compared 
to white, non-Hispanic males) and possibly for lower levels of aggregation (e.g. the 100 largest school 
districts). Given the four quantities in equation (1), the diploma count and the three enrollments, computing 
the AFGR is a simple matter of arithmetic. 
 
If however, one or more of these quantities is missing for a given subgroup at the desired level of 
aggregation, computing the AFGR requires some sort of imputation, several methods of which are 
described below. 

 
The Direct and Component Approaches to Imputation for the AFGR 
 
One straightforward approach to imputing the missing data is to employ a method of multiple imputation 
(Little and Rubin 2002) using the various subgroup AFGR’s and a vector of other predictor variables as 
covariates. In the most basic approach, the AFGR is first computed via equation (1) for each LEA (and thus 
will be missing if any of the components of (1) are missing). The AFGR and any other missing predictor 
covariates are then jointly imputed. 
                                                 
2 Note that at the time of this writing NCLB does not require such disaggregate reporting, but that it has 
been discussed as one of the possible changes in the forthcoming reauthorization of the legislation. 
3 Note that due to differential rates of migration, it is possible to observe an AFGR > 100%, although the 
lower bound is 0%. Indeed, for a subgroup with very small population in a given school district, a net 
change of a handful of students can theoretically (and empirically) lead to an observed AFGR of many 
times 100% or to an unusually low estimated AFGR. 
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Here we employ a “switching regression” or chained equations (van Buuren et al. 1999; Royston 2004; 
2005) approach to imputation process. Missing values are assumed to be missing at random (MAR) in 
Rubin’s (1976) terminology; that is their “missingness” is assumed to be ignorable conditional on the 
observed covariates. The switching regression procedure is fairly straightforward. Let XCC  denote the 
matrix of observed, complete case, covariates including the AFGR in total and for various subgroups of 
interest and let x

k

CC  denote the complete case observations on the kth covariate and x
k

MIS  denote the 

missing observations on that covariate. If x
k

CC is a continuous and approximately normal (perhaps after 
transformation) random variable, the first step of the procedure is to estimate the model: 
 x

k

CC
= X

(k )
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via least-squares regression (where X(k )

CC denotes the matrix of covariates with the kth vector deleted) and 
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of the estimated residual standard deviation (the square root of any element of the main diagonal of !̂ ). We 

then draw a random value, !*  from the posterior distribution of ˆ! , using ! *  to account for estimation 
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For missing values for nonnormal (e.g. discrete) covariates, the procedure is altered appropriately. For 
example, several of the predictors in our AFGR model are dichotomous indicator variables and for these we 
adapt (2) and (3) for logistic regression (van Buuren et al. 1999; Royston 2004). 
 
After the missing values are imputed once, the entire procedure is repeated several times and the results of 
each imputation run are retained for averaging via Rubin’s method (1976) to account for imputation 
uncertainty. In the analyses presented here, five fully imputed datasets were constructed. 
 
Example: Direct Imputation of the 2003 AFGR 
 
To illustrate the application of this first imputation method, we consider data from the several years of the 
CCD required to compute the AFGR for the 2002-3 school year. Table 1 presents the AFGR computed for 
various subgroups, averaged over all reporting school districts. The total number of LEA’s in the analytic 
sample is 11,029.4 The mean and standard deviation column of table 1 provides the simple average and 
standard deviation of the observed AFGR for each LEA (complete cases only). Note that this computation 
differs from the NCES-reported AFGR, which is based on the aggregate (state or national) enrollment 
count components of equation (1), not an average of district-level AFGR computations. 
 
In addition to the subgroup AFGR’s in table 1, the imputation model contains several covariates: 

• The LEA’s total grade 12 enrollment in 2002-3 as a measure of the district’s size, from the CCD; 
• Indicator variables for the district’s locale (urban and rural, with suburban as the reference 

category), from the CCD; 
• An indicator variable coded 1 if the district’s grade range is between 7th (or higher) grade and 12th, 

from the CCD; 
• The ratio of students to teachers in the LEA, from the CCD; 
• The per capita income in 1999, when the cohort was in the 9th grade, from the Census Bureau’s 

Current Population Survey; 

                                                 
4 There were 11,043 regular (agency type 1 or 2 per the CCD) school districts in the United States during in 
2003 that had been in operation since at least the 1998-99 school year, had a total district membership 
coded as “applicable,” had “applicable” data for either diplomas or 12th grade enrollment in 2002-3, and 
had a highest grade offered as either ungraded or 12th grade. Of these, 14 were judged to be missing so 
much data that imputation would be impracticable, yielding an analytic sample of 11,029. 
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• Six variables derived from the Census short form (2000) measuring the percent Hispanic, Black 
(non-Hispanic), Asian, AI/AN, other race, and more than one race (non-Hispanic), in the county, 
and; 

• The percentage of single-parent households, also from the Census short form.5 
 

TABLE 1 HERE 
 
The results of this multiple imputation, averaged over the five imputed datasets, are presented in the last 
column of table 1. The table provides the mean of each subgroup AFGR (computed over all LEA’s) and the 
95% confidence interval estimate of the mean given the observed variance and imputation uncertainty. 
While some of the imputation estimates for the subgroup AFGR’s seem reasonable on their face, others are 
clearly unsatisfactory due to implausibly high values or else extremely large confidence intervals (although 
these may not be unreasonable given the high number of districts with missing data on these subgroups). 
Recognizing these limitations, we now turn to a slightly different approach to imputation. 
 
Multiple Imputation of the AFGR Component Enrollments 
 
In this section, we explore a slight modification to the multiple imputation procedure described above. The 
mathematical steps, as described in equations (2) and (3) remains the same, but instead of imputing the 
subgroup AFGR’s directly, we now impute the component enrollments (the four grade level enrollments 
for the cohort) required to compute the AFGR per equation (1). Because the computations are more 
cumbersome, we limit our focus here to the total AFGR nationwide and to the AFGR’s for Black male and 
female students (which are of particular interest to those interested in the graduation rate measurement 
debate). The covariates remain the same as above, with the exception of the deletion of grade 12 
enrollment, since the total number of diplomas is now a covariate in the imputation model. We use the 
same years of data as in the previous example. 
 

TABLE 2 HERE 
 

In table 2 we present the results of the complete case analysis, the component imputation method, and the 
direct imputation method described above (we also present the hybrid method discussed below). The 
complete case and component methods use the NCES-preferred method of aggregation: the enrollment 
counts at the district level are summed for each subgroup before the AFGR is computed. To facilitate 
comparison between the component imputation method and the direct imputation method, the direct AFGR 
results presented here are weighted by the 12th grade enrollment count for each district. 
 
As is clear from table 2, the component imputation using the simple method presented above, results in 
lower (perhaps implausibly low in the case of the Black male and female subgroups) estimates of the 
AFGR, in contrast to the direct imputation method which yields higher estimates than the complete case 
results in column 1. These trends suggest bias in the imputation methods and that an alternate method of 
imputation for the AFGR components is preferable. We now turn to such an approach. 

 
A Hybrid Approach to Imputation for the AFGR 
 
The underlying philosophy of the hybrid approach to imputing the AFGR is that, whenever possible, 
observed enrollment counts for a given district should be used to impute the missing counts for that district. 
Only when the component counts for a given subgroup are missing over all years should auxiliary 
information from other districts be included in a model. The argument is that the best source of information 
about missing data is the observed data for that district (note that this is possible in many cases because we 
require and have in hand panels of enrollment data for multiple cohorts). However, when the entire time 

                                                 
5 These covariates were chosen as likely predictors of AFGR to illustrate the imputation procedure. They 
were chosen a priori and no attempt at iterative model fitting was made. A simple linear regression of the 
total AFGR on all of them jointly (using the complete cases) results in an adjusted R2 of .22, suggesting 
that other covariates might capture additional variation and improve the imputation quality. 
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series of enrollment data is missing for a district, then it is necessary to impute using information from 
other districts (chosen by a model we discuss below). This hybrid method, then, incorporates two distinct 
imputation strategies, which we term internal and external. 
 
Internal Imputation 
 
We use internal imputation—imputation using data specific to a given district—whenever possible. Our 
method is essentially a ratio adjustment based on a hot deck imputation using observed within-district 
grade-cohort data. The mechanism is simple. Let Ey

g  denote an enrollment count for grade g and cohort y 
(e.g. the enrollment in the 8th grade for the cohort graduating in 2002-3). The internally imputed estimate is 
given by: 

)(
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g
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where the function )(!s  is a search function that identifies the closest (in terms of grade level or cohort) 
grade-cohort in that district with an observed enrollment count. Within the cohort, the search function 
locates first the nearest non-missing grade and privileges more recent data over less recent (i.e. to impute 
10th grade, the function first searches for 11th grade data, then 9th grade, then 12th grade, then 8th grade). It 
searches the grades before and after the grade of interest when data within cohort are available, iterating 
between one grade after and one grade prior until an appropriate imputation ratio could be computed or 
terminating upon reaching the end of grades in the analysis dataset. When searching across years rather 
than grades, the function searches the school years before and after the school year of interest year of 
interest, iterating between one year after and one year prior until an appropriate imputation ratio could be 
computed or terminating as above. 
 
For example, we first determined whether 11th grade enrollment in the target cohort of interest (students 
who were in 11th grade in 2001-02) was available. If so, we looked for the presence of 10th grade 
enrollment in 2001-02 and 11th grade enrollment in 2002-03. If these were available, per equation (4), we 
calculated the ratio of 10th grade enrollment in 2001-02 to 11th grade enrollment in 2002-03 and multiplied 
the ratio times 11th grade enrollment in 2001-02 to impute 10th grade enrollment in the cohort, 2000-01. If 
the pairing of 11th grade enrollment in 2002-03 and 10th grade enrollment in 2001-02 was not available, we 
looked for another 11th and 10th grade pairing in a different cohort within the district. If no pairings were 
available or the 11th grade enrollment in 2001-02 was not available, we looked for 9th grade enrollment 
1999-2000 as the base for an alternative ratio adjustment. 
 
During our initial design of the hybrid method, we considered whether to impute data in the form of raw 
counts or to impute ratios of counts on the missing variable to a non-missing variable in the recipient 
district and cohort. We decided to use ratio adjustments, because they have important benefits relative to 
raw counts.   
 
First, ratios help to preserve shifts in enrollments that occur across grades and across years. For example, 
enrollments typically drop between 9th grade and 12th grade. Therefore, 9th grade enrollment in a year y 
would not be an effective direct imputation for 10th grade enrollment in year y+1. However, application of a 
known ratio of 9th grade to 10th grade enrollment for a district or similar districts could be effective in 
adjusting a non-missing 9th grade enrollment to impute 10th grade enrollment.  
 
Second, using donors to create a ratio that was applied to existing data enabled us to use within-district 
information to the greatest possible extent in both the internal and the external imputations (see below). We 
believe that ratios are preferable to raw counts because they can be applied to existing data (where 
available) within the year of interest, thus anchoring the imputation, at least in part, to year-specific data for 
the district.   
 
Third, the use of ratio adjustments applied to existing data enabled us to create imputed values that were 
internally consistent with the already existing data for the district. For example, they provided a level of 
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logical consistency between totals and subtotals that reduced the need to conduct additional edits of the 
data.  
 
Finally, for internal imputations, we applied specific ratios computed from individual adjacent years rather 
than average counts for other years within the district, because we felt that average counts would ‘smooth’ 
any enrollment trends. For example, if enrollments were declining for a district, we would expect that data 
from immediately adjacent years would be a better estimate of the missing enrollment, than would an 
estimate of the average enrollment for a range of surrounding years, particularly given the truncated nature 
of future data.   
 
External Imputation 
 
When equation (4) could not be estimated—that is, pertinent information about a district requiring 
imputation was not available—we turned to the external imputation procedure. This procedure attempts to 
impute the required enrollments via a hot deck imputation by associating the district with a set of similar 
districts (i.e., donor districts) that had valid diploma and/or enrollment counts and then imputing the mean 
of the ratios of the donor districts’ enrollment or diploma count to that of the district with missing data.  
 
The general procedure for external imputations began by assigning a district with missing data to an 
imputation class (described below). Within each imputation class, a series of ratios, similar to those used in 
internal imputations (e.g., the ratio of 10th to 11th grade enrollment, and the ratio of 10th grade to total 
enrollment) were computed for each district in the cluster with non-missing data. Then, the mean of the 
ratios was applied to non-missing data within the district to impute the missing data. The priority of ratios 
to be used was analogous to the priority described above for the internal imputations.  
 
After the 10th grade enrollment variables were imputed, either internally or externally, we imputed the 9th 
grade enrollment variables, using a similar set of procedures. Eighth grade enrollment and diploma counts 
were then imputed. A total of 717 districts (6.5%) required at least one external imputation. Note that even 
though an externally-imputed count sometimes enabled the remaining missing values for a district to be 
imputed internally via equation (4), all subsequent imputations were considered external imputations. 
 
We created imputation classes to associate a district with missing data with similar districts (i.e., donor 
districts) that have actual (i.e., not imputed) data. Then we imputed using the mean of the donors belonging 
to the imputation class. To help stabilize the imputed means, we required that a donor imputation class have 
at least 30 donors. 
 
To form imputation classes, we first estimated linear regression models to predict enrollment and diploma 
counts based on variables available on the CCD fiscal and non-fiscal files, the Census Short Form, and the 
decennial Census Long Form6 shown in table 5. In order to account for variation attributable to states, we 
also included a vector of state indicator variables as covariates in the regression models. We modeled each 
of the diploma and enrollment counts by gender and race/ethnicity combinations of the variables available 
from CCD and Census, and found a series of variables that provided consistent associations with the 
counts.  We identified three variables with consistent associations with the counts and for which we had 
complete data for all districts (enabling our analysis dataset to include all 11,043 regular districts).  We 
found that parsing the models to the following variables with states as covariates resulted in minimal loss of 
explanatory power:  

• Average district membership per grade 
• Percent students eligible for free/reduced price lunch 
• Percent minority 

 

                                                 
6 Data from the Census long form were considered, but ultimately not used due to suppression of small 
values, which would have created significant problems for small districts. 
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Having identified the three variables with the greatest consistent explanatory power and complete-case data 
for all observations, we used the k-means clustering method to combine districts with similar values of 
these three variables into homogeneous clusters.7  
 
Our initial attempts at creating homogeneous clusters of districts were complicated by the extreme 
variability of the mean membership variable which has a coefficient of variation of 413 and ranges from a 
value of 1 to 74,835 (for the New York City School District). To reduce its effect on the least-squares 
criterion, we standardized the membership variable and then estimated the clusters in two runs. The first 
run created 16 clusters. Six of the clusters accounted for 23 extremely large districts, which we combined 
into one cluster and then excluded from the second run which created eight more clusters. The nine 
imputation clusters, shown in table 3 and graphically in figure 1, appear to have reasonably good 
discrimination with respect to the three variables as evidenced by the disparate means across the clusters.  
 

Table 3/Figure 1 HERE 
 
As a final step, we created 44 sets of imputation classes (1 set for each enrollment/diploma count for each 
subpopulation of interest). Having a separate set of imputation classes for each variable enabled us to 
maximize the number of classes created for each of the 44 variables. First we attempted to create an 
imputation class for each of the nine clusters in a state. In states with fewer than 30 donors in a cluster we 
collapsed first to Census Division, then to Census Region, and finally nationwide.8 Each imputation class 
contained districts from the same cluster. 
 
Results 
 
The results of the hybrid imputation method for the national total AFGR and the AFGR for black male and 
female students (chosen for comparison with the methods described above) are presented in the last column 
of table 2. As the table clearly illustrates, the hybrid method’s results are much closer to the complete case 
AFGR than are those of the chained equations component imputation method described above. While it is 
impossible to know if these results are more accurate, a variety of simulation studies that we conducted 
(details available in Appendix A) suggest strongly that the hybrid method is very effective at imputing 
missing-at-random blanked enrollment counts and recovering the true AFGR. We should note that we have 
not considered here the possibility that the component enrollments are not missing-at-random (NMAR). 
That is, that there are systematic reasons why some counts are missing and that these reasons are not 
included in our model). The sensitivity of these imputation methods to a NMAR data-generating process is 
a subject for future research.

                                                 
7 We used the SAS FasClus procedure, which uses a Euclidean distance function to form cluster centers 
based on least-squares estimation. 
8 The requirement of 30 donors was not applied to the four large districts in Cluster 9 that required at least 
one external imputation. 
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Table 1: The 2002-3 Averaged Freshman Graduation Rate, Complete Case Data and Direct Multiple 
Imputation Results, 2002-3 

 
Subgroup Number of 

Complete 
Cases 
 

Mean (Standard 
Deviation), Complete 
Cases 

Mean [95% Confidence 
Interval], Multiple Imputation 

Total 10480 80.85 (17.29) 81.21 [80.84 , 81.57] 
Male 9450 79.35 (51.33) 90.62 [89.79 , 91.45] 
Female 9449 83.72 (49.63) 95.83 [95.08 , 96.58] 
AI/AN 3137 75.07 (96.11) 77.77 [72.19 , 83.35] 
Asian 3558 101.92 (101.65) 103.16 [100.44 , 105.88] 
Hispanic 5049 82.94 (83.10) 86.74 [84.72 , 88.77] 
Black 4450 75.98 (98.69) 77.24 [74.83 , 79.65] 
White 7123 81.17 (20.70) 81.05 [80.29 , 81.81] 
AI/AN, Male 2268 68.50 (94.10) 96.30 [76.74 , 115.86] 
AI/AN, Female 2227 74.37 (94.64) 80.35 [73.24 , 87.45] 
Asian, Male 2517 94.79  (92.68) 122.29 [106.56 , 138.03] 
Asian, Female 2481 99.43 (100.05) 100.66 [80.51 , 120.82] 
Hispanic, Male 4023 77.17 (80.46) 83.04 [77.97 , 88.12] 
Hispanic, Female 3861 81.52 (86.91) 107.52 [97.94 , 117.11] 
Black, Male 3593 72.02 (93.35) 76.41 [58.50 , 94.32] 
Black, Female 3441 74.82 (78.37) 102.97 [77.68 , 128.26] 
White, Male 6631 79.88 (25.12) 91.09 [88.69 , 93.49] 
White, Female 6623 83.65 (23.72) 90.65 [88.97 , 92.33] 
Note: Total number of LEA’s in analytic sample = 11029. The mean and standard deviation column 
provides the simple average and standard deviation of the observed Averaged Freshman Graduation Rates 
for each LEA (missing values listwise deleted). The Mean and 95% confidence interval column provides 
the results of a multiple imputation of missing values (including direct imputation of the subgroup 
AFGR’s), averaged over five imputed datasets. Note that these AFGR computations differ from the 
NCES reported AFGR’s, which are based on the aggregate (state or national) enrollment count 
components of equation (1), not the arithmetic average of district-level AFGR computations. 
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Table 2: Comparing Direct and Component Imputation of AFGR, 2002-3 
 
Subgroup Complete Case, 

Component 
Method* 

Component 
Imputation 
Results 

Direct  
Imputation Results 
(Weighted) 

Hybrid Imputation 

Total 73.59 73.95 76.96 73.96 
Black Males 53.07 41.90 63.95 52.62 
Black Females 66.10 51.92 102.22 64.98 
Note: The component imputation results are the averages over five imputation datasets of the AFGR 
computed by imputing all the necessary component enrollments. The direct imputation results are based on 
the same model reported in Table 1, above, but are weighted by the 12th grade enrollment size for better 
comparability to the component results. The hybrid imputation results are based on the internal/external 
hybrid imputation approach. Number of observations = 11,029; 11,043 for the hybrid model. 
 
*Reported AFGR’s in this table differ from the NCES published AFGR’s. For example, the U.S. total 
rate published by NCES for 2002-3 was 73.9%. 
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Table 3.  Distribution of Districts by External Imputation Cluster, 2002-3 
 

 
 

Imputation 
Cluster 

 
 

Total # 
Districts 

Total # 
Districts with 
an External 
Imputation 

 
Variables used 

 to define 
imputation clusters 

 
 
 

Mean 

 
 
 

Minimum 

 
 
 

Maximum 

Mean Members/Grd 
 

4,127 
 

2,228 
 

8,161 
%Free/Red Lunch 48 6 81 

 
1 

 
133 

 
15 

%Minority 51 10 95 

Mean Members/Grd 340 4 3,028 

%Free/Red Lunch 75 15 100 
2 600 58 

%Minority 82 57 100 

Mean Members/Grd 223 1 2,354 

%Free/Red Lunch 45 28 63 
3 1136 71 

%Minority 29 14 56 
69 Mean Members/Grd 277 4 2,405 
  %Free/Red Lunch 63 32 98 

4 1066 

  %Minority 49 28 80 
328 Mean Members/Grd 118 4 1,452 

  %Free/Red Lunch 34 23 47 
5 3348 

  %Minority 6 0 23 
78 Mean Members/Grd 974 6 3,371 
  %Free/Red Lunch 23 0 51 

6 521 

  %Minority 34 8 98 
80 Mean Members/Grd 94 1 926 
  %Free/Red Lunch 59 46 99 

7 1272 

  %Minority 9 0 29 
505 Mean Members/Grd 234 3 2,084 

  %Free/Red Lunch 13 0 25 
8 2944 

  %Minority 7 0 28 

9 23 4 Mean Members/Grd 18,995 8,755 74,825 

      %Free/Red Lunch 52 18 95 

      %Minority 61 28 93 

Overall 11,043 1,208 Mean Members/Grd 312 1 74,825 
      %Free/Red Lunch 37 0 100 
      %Minority 17 0 100 

Note: The clusters identified in the table are the result of a two-stage k-means clustering analysis that first 
identified cluster 9 (extremely large districts) which was then removed prior to the subsequent analysis 
identifying the other 8 clusters. 
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Figure 1: Location of External Imputation Cluster Means 
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Note:  The clusters plotted are the results presented in table 3 of the two-stage k-means cluster analysis. The 

top figure shows the means of clusters 1-8; the bottom includes cluster 9, the large school district cluster. 
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Appendix A: Results of Simulation Tests of the Hybrid Imputation Method 
 
 

We evaluated the accuracy of the hybrid imputation procedure with simulations that randomly set known 

enrollment and diploma counts to missing and then filled in the (simulated) missing counts with imputed 

counts. We then compared the imputed values to the actual values over repeated simulations of missing 

data. The objective of the simulations was to evaluate whether the imputation procedure can produce 

accurate enrollment and diploma counts in a variety of missing-data situations that exist among districts in 

the target population. 

 

Our initial simulation focused on matching Alabama, a state whose 128 districts provided complete data for 

all 44 count variables with Arizona, a state whose missing data ranged from missing Grade 8 gender by 

race enrollments in all of its 150 districts to completely non-missing diploma counts in all districts. We 

matched Alabama with Arizona because they have a similar number of districts, and because they are in 

different Census Regions. The geographic separation of the states ensured that the creation of imputation 

classes would not be affected by the setting of actual counts in Alabama to missing. 

 

We randomly paired districts in Arizona with districts in Alabama and then imposed the distribution of 

missing data in the Arizona district on the paired Alabama district. As table A2 shows (the key to the 

variable names is provided in table A1), the imputed values for districts in Alabama matched the 

corresponding actual values quite well even when the Grade 8 gender by race enrollment counts were 

blanked out for every district in Alabama. Across three simulations, the maximum average bias (i.e., the 

average difference per district between actual values and those derived from the simulations) was only 2.0 

students per district, for the imputed count of white female eighth graders.  

 

The primary drawback of imposing one state’s distribution on another state is that none of the states has a 

pattern of missingness that includes all the types of missing data present nationally. For example, Arizona 

had missing data for all 10 8th grade enrollment counts for race/ethnicity by gender, and no missing data for 

diploma counts. Thus we could not assess the accuracy of diploma count imputation in this simulation.   



 14 

 

To increase the variation in the simulations, we randomly selected 100 ‘complete’ districts from the sub-

population of districts with complete data for all 44 variables and then randomly selected 100 ‘incomplete’ 

districts from the remaining sub-population of districts with missing data for 1 or more of the 44 variables. 

The idea was to impose the missing distribution of the 100 incomplete districts on the 100 completes and 

then run the imputation procedure on the (formerly) complete districts to see how well the imputations 

approximate the actual data. This had the advantage of creating simulations where data for a given grade 

enrollment or diploma count is not either all missing or complete, but with rates of missingness distributed 

across the spectrum. We replicated the simulation 250 times to evaluate how well the imputations perform 

across a range of possible distributions of missing data. 

 

We began the simulations by classifying eligible districts into two categories:  

 

1. Complete Districts included the 6,687 districts with non-missing data for all of the 44 

count variables; and, 

2. Incomplete Districts included the 4,356 districts with one or more missing counts. 

We excluded the 23 largest districts from the simulations because of the limited variability in the possible 

imputations for these districts. 

 

Next we randomly selected 250 replicated samples of 100 complete districts and 100 incomplete districts 

and then paired each selected complete district with an incomplete district. To ensure similarity between 

pairs of districts, we explicitly stratified the samples by cluster. To help spread the samples of incomplete 

districts across a range of missing values, we implicitly stratified districts by the number of missing values 

within each cluster and then used Chromy’s probability minimum replacement (PMR) procedure (Chromy 

1979) to sequentially select the samples. We used PMR sampling instead of systematic sampling to induce 

more randomization in the samples and still achieve the benefits of implicit stratification. 
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For each pair of selected districts, we imposed the pattern of missing data of the incomplete district on its 

paired complete district. Then we applied the imputation procedure to the missing data and compared the 

imputed counts to the actual counts over repeated simulations. Each simulation can be thought of as an 

imaginary state that consists of 100 districts that exhibit patterns of missing data that exist in the target 

population. As table A3 shows, the amount of imputed data in the simulations mirrors the distribution of 

missing data in the population by ranging from a high of 80 imputations (out of 100) per simulation for 8th 

grade gender by race/ethnicity enrollments to a low of 5 imputations per simulation for gender by 

race/ethnicity diploma counts.  

 

We calculated the relative bias associated with each simulated total as the difference between the actual 

total across the 100 districts and the corresponding simulated total divided by the actual total. Relative 

biases were used to facilitate comparisons across the 44 enrollment and diploma counts. As table A3 

shows, the median relative biases associated with the count variables were close to zero except for the 

grade 8 gender by race/ethnicity enrollments which tended to have negative bias.  

 

The distribution of absolute biases associated with the simulated AFGRs is shown in table A4. Despite an 

average of 85 imputed values per simulation, the inter-quartile range of the absolute biases of the ten 

simulated gender by race/ethnicity AFGRs ranged from a minimum of 0.8 for White males to a maximum 

of only 5.7 for Native American females. 
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Table A1. Names of variables subject to imputation for computation of 2002-3 AFGR 

Variable Names 
Enrollment 

Count 
Diplomas 
2002-03  

Grade 10 
(2000-01) 

Grade 9  
(1999-2000) 

Grade 8 
(1998-99) 

Overall district  TOTDPL03 G1000 G0999 G0898 
Gender by Race/Ethnicity within district :     
Male Hispanics  HIDPLM03 HI10M00 HI09M99 HI08M98 
Male Non-Hispanic Whites WHDPLM03 WH10M00 WH09M99 WH08M98 
Male Non-Hispanic Blacks BLDPLM03 BL10M00 BL09M99 BL08M98 
Male Non-Hispanic Asians1  ASDPLM03 AS10M00 AS09M99 AS08M98 
Male Non-Hispanic Native Americans2 AMDPLM03 AM10M00 AM09M99 AM08M98 
Female Hispanics  HIDPLF03 HI10F00 HI09F99 HI08F98 
Female Non-Hispanic Whites WHDPLF03 WH10F00 WH09F99 WH08F98 
Female Non-Hispanic Blacks BLDPLF03 BL10F00 BL09F99 BL08F98 
Female Non-Hispanic Asians1  ASDPLF03 AS10F00 AS09F99 AS08F98 
Female Non-Hispanic Native Americans2  AMDPLF03 AM10F00 AM09F99 AM08F98 
1 Includes Pacific Islanders 
2 Includes native Alaskans 
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Table A2.  Comparison of simulated enrollment and diploma counts to actual values for Alabama districts 

Counts 
Number of AL districts set to 

missing 
 Simulation Simulation 

Variable 
Actual 

1 2 3 Average 

Actual 
- 

Simulation 
Average 

Average 
difference 

per 
district 1 2 3 

G0898 56,983 56,771 56,889 56,676 56,830 153 1.2 24 25 24 
AM08M98 250 245 248 188 246 4 0.0 128 128 128 
AM08F98 262 257 260 209 259 3 0.0 128 128 128 
AS08M98 185 209 212 214 210 -25 -0.2 128 128 128 
AS08F98 203 206 201 209 203 0 0.0 128 128 128 
HI08M98 246 233 246 232 239 6 0.0 128 128 128 
HI08F98 235 190 191 195 191 45 0.3 128 128 128 
BL08M98 10,167 10,138 10,383 10,356 10,261 -93 -0.7 128 128 128 
BL08F98 9,882 9,961 10,042 10,042 10,002 -119 -0.9 128 128 128 
WH08M98 18,371 18,310 18,223 18,125 18,266 105 0.8 128 128 128 
WH08F98 17,210 17,022 16,884 16,907 16,953 257 2.0 128 128 128 
G0999 61,137 61,201 61,145 61,128 61,173 -36 -0.3 11 10 10 
AM09M99 248 248 247 247 248 0 0.0 11 10 10 
AM09F99 256 256 256 256 256 0 0.0 11 10 10 
AS09M99 236 236 237 236 237 0 0.0 11 10 10 
AS09F99 239 240 235 239 238 2 0.0 11 10 10 
HI09M99 270 275 285 278 280 -10 -0.1 11 10 10 
HI09F99 233 236 231 234 234 0 0.0 11 10 10 
BL09M99 11,821 11,831 11,838 11,833 11,834 -14 -0.1 11 10 10 
BL09F99 10,985 11,003 11,003 10,996 11,003 -18 -0.1 11 10 10 
WH09M99 19,202 19,261 19,237 19,227 19,249 -48 -0.4 11 10 10 
WH09F99 17,640 17,609 17,571 17,576 17,590 50 0.4 11 10 10 
G1000 51,863 51,978 51,947 51,872 51,962 -99 -0.8 9 8 7 
AM10M00 227 227 227 227 227 0 0.0 9 8 7 
AM10F00 246 246 247 246 246 0 0.0 9 8 7 
AS10M00 213 212 214 213 213 0 0.0 9 8 7 
AS10F00 234 234 230 233 232 2 0.0 9 8 7 
HI10M00 235 232 238 233 235 0 0.0 9 8 7 
HI10F00 240 240 238 239 239 1 0.0 9 8 7 
BL10M00 9,276 9,278 9,290 9,286 9,284 -8 -0.1 9 8 7 
BL10F00 9,343 9,336 9,348 9,342 9,342 1 0.0 9 8 7 
WH10M00 16,259 16,313 16,289 16,243 16,301 -42 -0.3 9 8 7 
WH10F00 15,597 15,667 15,633 15,617 15,650 -53 -0.4 9 8 7 
TOTDPL03 36,741 36,741 36,741 36,741 36,741 0 0.0 0 0 0 
AMDPLM03 190 190 190 190 190 0 0.0 0 0 0 
AMDPLF03 227 227 227 227 227 0 0.0 0 0 0 
ASDPLM03 179 179 179 179 179 0 0.0 0 0 0 
ASDPLF03 205 205 205 205 205 0 0.0 0 0 0 
HIDPLM03 146 146 146 146 146 0 0.0 0 0 0 
HIDPLF03 167 167 167 167 167 0 0.0 0 0 0 
BLDPLM03 5,087 5,087 5,087 5,087 5,087 0 0.0 0 0 0 
BLDPLF03 6,413 6,413 6,413 6,413 6,413 0 0.0 0 0 0 
WHDPLM03 11,844 11,844 11,844 11,844 11,844 0 0.0 0 0 0 
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WHDPLF03 12,283 12,283 12,283 12,283 12,283 0 0.0 0 0 0 
Table A3. Comparison of actual enrollment and diploma counts to simulated values for 250 
simulations 

G0898 1.4 7.9 29,918 30,171 -0.1004 -0.0146 -0.0051 0.0002 0.0208

AM08M98 70.2 10.2 171 174 -0.3691 -0.1011 -0.0104 0.0632 0.2793

AM08F98 70.2 10.2 163 172 -0.8764 -0.1260 -0.0450 0.0367 0.3309

AS08M98 70.2 10.2 567 573 -0.5545 -0.0569 -0.0112 0.0302 0.2051

AS08F98 70.2 10.2 534 537 -0.3962 -0.0395 -0.0012 0.0323 0.2453

HI08M98 70.2 10.2 2,024 2,089 -0.6352 -0.0610 -0.0290 -0.0027 0.1192

HI08F98 70.2 10.2 1,922 1,974 -0.8318 -0.0532 -0.0237 -0.0010 0.0797

BL08M98 70.2 10.2 2,334 2,364 -0.1406 -0.0292 -0.0096 0.0102 0.0915

BL08F98 70.2 10.2 2,289 2,329 -0.1707 -0.0340 -0.0129 0.0038 0.0735

WH08M98 70.2 10.2 10,272 10,251 -0.0702 -0.0073 0.0022 0.0112 0.0582

WH08F98 70.2 10.2 9,666 9,713 -0.0938 -0.0140 -0.0019 0.0094 0.0508

G0999 1.6 0.2 33,670 33,667 -0.0057 -0.0002 0.0000 0.0003 0.0048

AM09M99 27.2 2.6 199 201 -0.3412 -0.0434 -0.0016 0.0358 0.1667

AM09F99 27.2 2.6 188 189 -0.4907 -0.0449 0.0008 0.0318 0.2641

AS09M99 27.2 2.6 642 643 -0.1406 -0.0206 0.0002 0.0123 0.2352

AS09F99 27.2 2.6 598 600 -0.2213 -0.0180 -0.0020 0.0129 0.2431

HI09M99 27.2 2.6 2,516 2,506 -0.0683 -0.0089 0.0008 0.0105 0.1440

HI09F99 27.2 2.6 2,320 2,312 -0.0693 -0.0081 0.0007 0.0094 0.4067

BL09M99 27.2 2.6 2,926 2,922 -0.1132 -0.0094 0.0003 0.0102 0.0591

BL09F99 27.2 2.6 2,707 2,706 -0.1235 -0.0060 0.0011 0.0101 0.0503

WH09M99 27.2 2.6 11,198 11,202 -0.0815 -0.0034 0.0001 0.0039 0.0238

WH09F99 27.2 2.6 10,402 10,404 -0.0920 -0.0049 0.0000 0.0050 0.0196

G1000 0.8 0.2 29,743 29,745 -0.0036 -0.0001 0.0000 0.0001 0.0019

AM10M00 23.5 2.6 167 168 -0.3436 -0.0282 0.0017 0.0278 0.1448

AM10F00 23.5 2.6 165 166 -0.4353 -0.0287 0.0047 0.0276 0.2111

AS10M00 23.5 2.6 637 637 -0.1002 -0.0123 -0.0008 0.0092 0.2421

AS10F00 23.5 2.6 598 597 -0.1800 -0.0113 -0.0014 0.0111 0.2293

HI10M00 23.5 2.6 2,084 2,083 -0.0488 -0.0069 -0.0010 0.0061 0.0515

HI10F00 23.5 2.6 1,989 1,988 -0.0459 -0.0065 0.0000 0.0060 0.0475

BL10M00 23.5 2.6 2,193 2,192 -0.0577 -0.0080 -0.0009 0.0070 0.0621

BL10F00 23.5 2.6 2,212 2,211 -0.0787 -0.0051 0.0011 0.0086 0.0468

WH10M00 23.5 2.6 10,108 10,103 -0.0135 -0.0028 0.0008 0.0037 0.0241

WH10F00 23.5 2.6 9,606 9,613 -0.0186 -0.0039 -0.0007 0.0026 0.0177

TOTDPL03 0.5 0.1 23,521 23,554 -0.0200 -0.0006 0.0000 0.0000 0.0009

AMDPLM03 1.5 3.7 117 117 -0.1334 -0.0003 0.0000 0.0055 0.1407

AMDPLF03 1.5 3.7 126 125 -0.0467 -0.0002 0.0000 0.0067 0.1186

ASDPLM03 1.5 3.7 554 554 -0.0241 -0.0008 0.0001 0.0022 0.0388

ASDPLF03 1.5 3.7 561 560 -0.0204 -0.0011 0.0002 0.0025 0.0467

HIDPLM03 1.5 3.7 1,420 1,422 -0.0546 -0.0025 0.0000 0.0015 0.0414

HIDPLF03 1.5 3.7 1,554 1,553 -0.0455 -0.0010 0.0001 0.0017 0.0211

BLDPLM03 1.5 3.7 1,339 1,339 -0.0260 -0.0027 0.0000 0.0020 0.0370

BLDPLF03 1.5 3.7 1,609 1,609 -0.0296 -0.0017 0.0000 0.0015 0.0319

WHDPLM03 1.5 3.7 8,075 8,093 -0.0281 -0.0027 -0.0006 0.0003 0.0110

WHDPLF03 1.5 3.7 8,119 8,136 -0.0258 -0.0027 -0.0004 0.0004 0.0076

2 The box plots show the overall range (thin line) and the interquartile range (thick line) of the relative bias for each variable.

1 The relative bias is the difference between the actual count and the simulated count divided by the actual count.

Relative bias 1 Box plot 2

-              Box plot 2             +
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Table A4. Comparison of actual AFGRs to simulated values for 250 simulations 

2.7 8.0 75.6 75.5 -1.4 -0.1 0.1 0.3 2.1

69.7 13.8 67.4 67.0 -14.1 -2.3 0.7 3.0 12.5

69.7 13.8 75.3 73.9 -19.9 -1.6 1.4 4.1 28.8

69.7 13.8 91.0 90.4 -17.2 -1.2 0.6 2.5 11.6

69.7 13.8 98.0 97.6 -18.6 -1.2 0.2 2.1 15.5

69.7 13.8 64.8 64.3 -4.9 -0.3 0.5 1.5 9.2

69.7 13.8 75.1 74.6 -19.1 -0.2 0.6 1.3 12.6

69.7 13.8 55.1 54.9 -3.9 -0.5 0.1 0.8 6.2

69.7 13.8 67.8 67.5 -4.4 -0.4 0.2 1.0 6.0

69.7 13.8 76.7 76.9 -2.9 -0.6 -0.2 0.2 2.1

69.7 13.8 82.0 82.1 -2.4 -0.5 0.0 0.5 3.3
1 The box plots show the overall range (thin line) and the interquartile range (thick line) of the relative bias for each variable.
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