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Abstract

In sample surveys where units have unequal probabilities of inclusion, associations between
the inclusion probability and the statistic of interest can induce bias. This is true even in
regression models, where the estimates of the population slope may be biased if the underlying
mean model is misspecified or the sampling is non-ignorable. Weights equal to the inverse of the
probability of inclusion are often used to counteract this bias. Highly disproportional sample
designs have highly variable weights; weight trimming reduces large weights to a maximum
value, reducing variability but introducing bias. Most standard approaches are ad-hoc in that
they do not use the data to optimize bias-variance tradeoffs. This manuscript uses Bayesian
model averaging to create “data driven” weight trimming estimators. We develop robust models
that approximate fully-weighted estimators when bias correction is of greatest importance, and
approximate unweighted estimators when variance reduction is critical.

KEY WORDS: Sample survey, sampling weights, weight Winsorization, Bayesian population
inference, weight pooling, variable selection, fractional Bayes Factors.

1 Introduction

Population-based samples with differential probabilities of inclusion typically use case weights equal
to the inverse of the probability of inclusion to provide reduce bias in the estimators of population
quantities of interest (Horvitz and Thompson 1952). By replacing unweighted sums in statistics with
their weighted equivalents, bias can be removed from linear estimators and reduced in non-linear
estimators (Binder 1983).

This bias reduction typically comes at the cost of increased variance. This increase can
overwhelm the reduction in bias, so that the mean square error (MSE) actually increases under a
weighted analysis. This is particularly likely if a) the sample size is small, b) the difference in the
probability of inclusion is large, or c) the association between the probability of inclusion and the
data (which drives the bias) is weak. This manuscript develops an alternative approach to weight
trimming that considering the case weights as stratifying variables within strata defined by the
probability of inclusion. These “inclusion strata” may correspond to formal strata from a
disproportional stratified sample design, or may be “pseudo-strata” based on collapsed or pooled
weights derived from selection, poststratification, and/or non-response adjustments. Ordering these
weight strata by the inverse of the probability of selection and collapsing together the largest valued
strata mimics weight trimming by assuming the underlying data from these combined strata are
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exchangeable (conditional on any covariates of interest). In a regression setting, this model can be
posed as a variable selection problem, where dummy variables for the inclusion strata interact with
the regression parameters; substracting from or adding to the inclusion strata design matrix allows
for a greater or lesser degree of weight trimming. By averaging over all possible of these “weight
pooling” models, we can compute an estimator of the population parameter of interest whose
bias-variance tradeoff is data-driven. By allowing for all continguous inclusion strata to be considered
for pooling, we induce a high degree of robustness into our model, protecting against ”over-pooling”
from which models that crudely mimicked weight trimming suffered (Elliott and Little 2000).

We embed this model in a Bayesian framework, as we believe it provides a natural setting for
model averaging, as well as an proper framework for population inference. In particular, we consider
an alternative Bayesian modeling approach that focuses on population quantities of interest Q(Y ),
such as populations means Q(Y ) = Y or population least-squares regression slopes
Q(Y1, Y2) = minB0,B1

∑N
i=1(Yi1 − B0 − B1Yi2)2. Inference is made about Q(Y ) by considering the

marginal posterior predictive distribution (Ericson 1969, Holt and Smith 1979, Skinner et al. 1989,
Little 1993):

p(Q(Y ) | y) =
∫

f(Q(Y ) | θ)p(θ | y)dθ =
∫

f(Q(Y ) | θ)f(y | θ)p(θ)dθ∫
f(y | θ)p(θ)dθ

. (1)

If the sampling indicator I is independent of Y , as is the case in probability sampling design, then
the sampling mechanism is said to be unconfounded or non-informative (Rubin 1987, Little 2004),
and inference about Q(Y ) can be made using p(Q(Y ) | y) alone. However, sensible models in ( 1)
still need to account for the sample design in both the likelihood and prior model structure. For
more detail about Bayesian survey inference in the context of regression models, see Elliott (2006).

Section 2 briefly reviews standard weight trimming methods. Section 3 develops our weight
pooling models for generalized linear regression models. Section 4 provides simulation results to
consider the repeated sampling properties of the weight pooling estimators of logistic regression
parameters in a disproportional-stratified sample design and compares them with standard
design-based estimators. Section 5 summarizes the results of the simulations and considers
extensions to more complex sample designs.

2 Standard Weight Trimming Procedures

Standard weight trimming approach pick a single cutpoint w0 at which all weights greater than this
value are to be fixed, with the remaining weights are adjusted upward by a constant so that the
trimmed and untrimmed weighted sample sizes are equal. Typically w0 is chosen in an ad-hoc
manner – say 3 times or 6 times the mean weight – without regard to whether the chosen cutpoint is
optimal with respect to mean square error. Other design-based methods have been considered in the
literature. Potter (1990) discusses systematic methods for choosing w0, including the weight
distribution and MSE trimming procedures. The weight distribution technique assumes that the
weights follow an inverted and scaled beta distribution; the parameters of the inverse-beta
distribution are estimated by method-of-moment estimators, and weights from the upper tail of the
distribution, say where 1 − F (wi) < .01, are trimmed to w0 such that 1 − F (w0) = .01. The MSE
trimming procedure (Cox and McGrath 1981) determines the empirical MSE at a variety of
trimming levels t = 1, . . . , T under the assumption that the true population mean is given by the
fully weighted estimate: ˆMSEt = (θ̂t − θ̂T )2 + V̂ (θT ), where t = 1 corresponds to the unweighted
data and t = T to the fully-weighted data, and θ̂t is the value of the statistic using the trimmed
weights at level t. The trimming level is then given by the level l minimized ˆMSEt over t. More
recently, the calibration literature has developed methods for adjusting design weights so that the
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adjusted weights equal known population totals under a variety of minimizing distance constraints
between the unadjusted and adjusted weights, thus generalizing poststratification and raking
procedures (Deville and Sarndal 1992). Techniques have been developed that allow these
adjustments to be bounded to prevent the construction of extreme weights (Deville and Sarndal
1992, Folsom and Singh 2000), but these bounds involving the winsorizing of extreme weights to a
fixed cutpoint value, with the choice of this cutpoint remaining arbitrary.

3 Weight Pooling Models

Weight trimming effectively pools units with high weights by assigning them a common, trimmed
weight. Suppose the population can be divided into H weight strata by the set of ordered distinct
values of the weights wh. Let nh be the number of included units and Nh the population size in
weight stratum h, so that wh = Nh/nh for h = 1, . . . , H. We assume here that Nh is known, as when
the weight strata come from a stratified or post-stratified random sample, although this assumption
can be relaxed (Lu and Gelman 2003). The untrimmed (design-based) weighted mean estimator is

then yw =
∑

h

∑
i
whyhi∑

h

∑
i
wh

=
∑

h
Nh

N+
yh. Weight trimming typically proceeds by establishing an a priori

cutpoint, say 3 for the normalized weights, and multiplying the remaining weights by a normalizing
constant γ = (n − ∑

κiwo)/
∑

(1 − κi)wi, where κi is an indicator variable for whether or not
wi ≥ w0. The trimmed mean estimator is thus given by

ywt =
l−1∑
h=1

γNh

N+
yh +

H∑
h=l

w0nh

N+
yh =

γ

l−1∑
h=1

Nh

N+
yh +

w0

∑H
h=l nh

N+
y(l)

where γ =
N+−w0

∑H

h=l
nh∑

l−1

h=1
Nh

and y(l) = (1/
∑H

h=l nh)
∑H

h=l nhyh. Choosing w0 =
∑H

h=l
Nh∑H

h=l
nh

yields γ = 1

and ywt =
∑l−1

h=1
Nh

N+
yh +

∑H

h=l
Nh

N+
y(l), which corresponds to the estimate for a model that assumes

distinct stratum means for the smaller weight strata and a common mean for the larger weight
strata, that is:

yhi | μh ∼ N(μh, σ2) h < l

yhi | μl ∼ N(μl, σ
2) h ≥ l

μh, μl, log σ ∝ const.

Elliott and Little (2000) considered an extension of this model where we no longer assume the
cutpoint l is known:

yhi | μh ∼ N(μh, σ2) h < l

yhi | μl ∼ N(μl, σ
2) h ≥ l

p(L = l) = 1/H

p(σ2 | L = l) = σ−(l+1/2)

p(β | σ2, L = l) = (2π)−l

where μ1 = β0 + β1, . . . , μl = β0 + βl−1. This “weight pooling” model averages the estimators
obtained from all possible weight trimming cutpoints, where each estimator contributes to the final
average based on the probability that the cutpoint is “correct”. This posterior probability is
determined via Bayesian variable selection models that determine the posterior probability of each
cutpoint model conditional on the observed data.
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3.1 Weight Pooling Models for Linear and Generalized Linear Regression

This manuscript extends Elliott and Little (2000) in three ways. First, we consider the regression of
Yi on fixed covariates xi. Second, we allow for the pooling of all conterminous inclusion strata.
Third, we allow for general exponential family outcomes, not just normally-distributed outcomes.

Generalized linear regression models (Nelder and Wedderburn 1972) postulate a likelihood for
yi of the form

f(yi; θi, φ) = exp
[
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

]
where ai(φ) involves a known constant and a (nuisance) scale parameter φ, and the mean of yi is
related to a linear combination of fixed covariates xi through a link function g(·): E(yi | θi) = μi,
where g(μi) = g(b′(θi)) = ηi = xT

i β. We also have Var(yi | θi) = ai(φ)V (μi), where V (μi) = b′′(θi).
The link is canonical if θi = ηi, in which case g′(μi) = V −1(μi).

Indexing the inclusion stratum by h and allow for the pooling of all conterminous inclusion
strata, we have

g(E[yhi | βl, L = l]) = ZT
liβl

where Zli = Dhl ⊗ xhi where Dhl is a vector of dummy variables that pool the appropriate
conterminous inclusion strata based on the lth pooling pattern. We assume priors of the form

βl | L = l ∼ N(β0, Σ0)

p(L = l) = 2−(H−1)

For normally distributed outcomes where ai(φ) = σ2, we assume

σ2 | L = l ∼ Inv − χ2(a, s2)

Our population quantity of interest B is the slope that solves the population score equation
UN (B) = 0 where

UN(β) =
N∑

i=1

∂

∂β
log f(yi; β) =

H∑
h=1

N∑
i=1

(yi − g−1(μi(β)))xi

V (μi(β))g′(μi(β))
.

A closed form solution for B is available when the yi are normally distributed:

B =
(∑N

i=1 xix
T
i

)−1 (∑N
i=1 xiyi

)
; otherwise an iterative procedure such as iterative reweighted

least squares must be used. Note that the quantity B such that U(B) = 0 is always a meaningful
population quantity of interest even if the model is misspecified (i.e., yi is not exactly linear with
respect to the covariates), since it is the linear approximation of xi to g(E(Yi | xi)).

The posterior predictive distribution of B is given by

p(B | y, X) =
∑

l

∫ ∫
p(B | y, X, θl)p(θl | y, X)dθl

for θl = (βl, φ, L = l). Simulations from p(B | y, X) can be obtained by first obtaining a draw from
p(θl | y, X), and then computing

H∑
h=1

Wh

nh∑
i=1

(ŷhi − g−1(μi(B̂)))xhi

V (μhi(B̂))g′(μhi(B̂))
= 0
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where Wh = Nh/nh and ŷhi = g−1(ZT
liβl). Thus, in the example of logistic regression, where

V (μi) = μi(1 − μi) and g′(μi) = μ−1
i (1 − μi)−1, a posterior draw of B can be computed by solving

for Bj , j = 1, . . . , p

H∑
h=1

Wh

nh∑
i=1

xhij
exp(xhijBj)

1 + exp(xhijBj)
=

H∑
h=1

Wh

nh∑
i=1

xhij
exp(xhijβhj)

1 + exp(xhijβhj)

where βhj corresponds to the jth value of the βl parameter for the hth inclusion stratum as a
function of the lth pooling pattern. When the yi are normally distributed, a closed form solution is

directly available: B̂ =
[∑H

h=1 Wh

∑nh

i=1 ZliZ
T
li

]−1 [∑H
h=1 Wh

(∑nh

i=1 ZliZ
T
li

)
βl

]
where

Wh = Nh/nh for the population size Nh and sample size nh is the hth inclusion stratum. Note that
this preserves the distribution of the covariates under the sample design while allowing the slopes to
still be fully-modeled.

A direct draw from p(θl | y, X) = p(βl | σ2, L = l, y, X)p(σ2 | L = l, y, X)p(L = l | y, X) is
possible in the Gaussian setting if H is of modest size; otherwise a Metropolis step can be run to
obtain an approximation to the marginal posterior of p(L = l | y, X), and direct draws obtained
accordingly. Details for the Gaussian model are provided in Section 6.1 of the Appendix. In the
non-Gaussian setting, we approximately a direct draw by using a Laplace approximation to obtain a
draw from p(L = l | y, X) and a Metropolis step to obtain a draw from p(βl | L = l, y, X);
alternatively a Metropolis step may be used to obtain draws from p(L = l |βy, X) and an Markov
Chain Monte Carlo algorithmn implemented instead. Details for the non-Gaussian model are
provided in Section 6.2 of the Appendix.

3.2 Fractional Bayes Factors

In the absence of strong prior information to define p(θl), the Bayes Factors comparing weight
pooling model l with weight pooling model l′

BF (y, X) =
p(L = l | y, X)
p(L = l′ | y, X)

=
p(y | L = l, X)p(L = l)
p(y | L = l′, X)p(L = l′)

=
∫ ∫

p(y | βl, σ
2L = l, X)dβldσ2p(L = l)∫ ∫

p(y | βl′ , σ
2L = l′, X)dβl′dσ2p(L = l′)

can be quite sensitive to the choice of p(θl) (Kass and Raftery 1995). We have a similar issue in our
weight pooling model, since our marginal pooling probabilities are simply Bayes Factors converted
from the odds to the probability scale. To counter this, we consider the “fractional Bayes factor”
approach proposed in O’Hagan (1995). A fraction b of the sample is set aside as to provide a
data-based proper prior for θl. O’Hagan (1995) shows that the resulting Bayes factor for comparing
model l with model l′ using the data-based prior, which he terms a fractional Bayes factor (FBF), is
of the form BFb(y, X) = ql(f, y, X)/ql′(f, y, X), where

ql(f, y, X) =
∫

p(θl)f(y | θl)dθl∫
p(θl)f(y | θl)bdθl

.

Small values of b should be most efficient at choosing correct models, while larger values of b are
protective against outliers (data generated under a model not in the classes considered). O’Hagan
proposed n−1 log n and n−1/2 as increasingly “robust” choices of b. O’Hagan assumes a
non-informative prior h(θl) in contrast to our proper prior, but very weakly informative priors, as
we use in simulations and examples below, can be used as well. The Appendix provides details
describing the use of FBF in the weight pooling application.
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4 Simulation Results

4.1 Linear Regression

For the linear regression model, we generated population data under a linear spline as follows:

Yi | Xi, β, σ2 ∼ N(β0 +
10∑

h=1

βh(Xi − h)+, σ2),

Xi ∼ UNI(0, 10), i = 1, . . . , N = 20000.

where (x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0. A noninformative, disproportionally stratified
sampling scheme sampled elements as a function of Xi (Ii equals 1 if sampled and 0 otherwise):

Hi = �Xi�
P (Ii = 1 | Hi) = πh ∝ (1 + Hi)Hi

This created 10 strata, defined by the integer portions of the Xi values A total of n = 1000 elements
were sampled without replacement for each simulation (maximum normalized weight ≈ 11.0). The

object of the analysis is to obtain the population slope B1 =
∑N

i=1
(Yi−Y )(Xi−X)∑N

i=1
(Xi−X)2

.

We considered three patterns for β:

1. βC = (0, 0, 0, 0, .5, .5, 1, 1, 2, 2, 4)′

2. βD = (0, 11,−4,−2,−2,−1,−1,−.5,−.5, 0, 0)′

3. βE = (0, 2, 0, 0, 0, 0, 0, 0, 0, 0, )′.

and considered values of σ2 = 10l, l = 1, . . . , 5; 200 simulations were generated for each value of σ2.
The effect of model misspecification increases as σ2 → 0 as the bias of the estimators becomes larger
relative to the variance, and conversely decreases as σ2 → ∞. Under βC , weight trimming is likely
to be a productive strategy under smaller values of σ2 than under βD, since the low
probability-of-selection slopes are equal. Under βE , the linear regression model for the population is
correctly specified, and the unweighted estimator should be most efficient.

We use priors equivalent to the “data-based” priors we used for population means, extended
to population slopes: β0 = β̂ = (XT X)−1XT y, Σ0 = cnVar(β̂) for Var(β̂) = τ̂2(XT X)−1,
τ̂2 = (n − p)−1(y − Xβ̂)T (y − Xβ̂), a = s = 10−8, and c = 1000. We also consider Fractional Bayes
Factor with training fraction of log n/n and n−1/2. O’Hagan suggests that PWTF1 will be more
efficient at choosing the correct model when the true model is among the models considered, whereas
PWTF2 will be more robust (have better repeated sampling properties when the true model is not
among the models considered).

As in the population mean evaluation, we consider the FWT, TWT, and UNWT estimators,
again estimating their variance using the Taylor Series (linearization) approximation that accounts
for weighting and stratification.

Table 1 shows the root mean square error (RMSE) relative to the fully-weighted estimator
and nominal 95% coverage for the three design-based and three model-based estimators of the
population slope (second component of B̂) as a function of the variance σ2, under βC , the structure
that favors weight trimming for smaller values of σ2; Tables 2 and 3 show the equivalent measures
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RMSE relative to FWT True Coverage
Variance log10 Variance log10

Estimator 1 2 3 4 5 1 2 3 4 5
UNWT 15.27 4.68 1.75 0.61 0.57 0 0 16 87 96
FWT 1 1 1 1 1 96 92 94 95 94
TWT 5.45 1.83 0.80 0.61 0.57 0 22 95 98 98
PWT 0.99 0.98 0.97 0.93 0.93 96 94 96 96 96
PWTF1 1.00 1.01 1.00 0.73 0.55 90 88 91 92 97
PWTF2 0.94 0.90 0.84 0.72 0.70 96 94 96 96 99

Table 1: Relative bias (%), square root of mean square error (RMSE) relative to RMSE of fully-
weighted estimator, and true coverage of the 95% CI or PPI of population linear regression slope
estimator under the misspecified model βC that favors weight trimming.

under βD and βE , the structures that respectively favor weight trimming for only larger values of
σ2, and the correctly specified linear model.

Under all three models, the nominal coverage of the 95% CI of fully weighted estimator is
approximately correct. The unweighted and trimmed estimators are always biased because of model
misspecification, although the reduction in variance overwhelms bias correction for large σ2, yielding
approximately correct nominal 95% CI coverage and smaller MSEs relative to the fully weighted
estimator. When the model is correctly specified, the unweighted and trimmed estimators reduce
RMSE by 35-45%, and nominal 95% CI coverage is correct.

The weight pooling estimator with non-informative prior generally tracks the fully weighted
estimator in the presence of model misspecification, although for large σ2 there is a 10% reduction in
RMSE. Nominal 95% coverage is correct except for small values of σ2 under βD, the model least
favorable to weight trimming. Under the correctly specified model, the weight pooling estimator
with non-informative prior has a 5-10% reduction in RMSE, with correct nominal 95% PPI coverage.

The weight pooling estimator with the smaller training fraction FBF prior (PWTF1) has
equivalent RMSE to the fully-weighted estimator when σ2 is small under βC and weight trimming is
not warranted, but has equivalent RMSE to the unweighted estimator when σ2 is large and weight
trimming is appropriate. A similar pattern is seen under βD, except that PWTF1 “overpools”
somewhat for intermediate levels of σ2, leading to slightly higher RMSE that the fully-weighted
estimator. Under the correctly specified model βE , PWTF1 has RMSE properties similar to that of
TWT, with a 35-45% reduction in RMSE. There is modest undercoverage of the nominal 95% PPI
when σ2 is small and the model is misspecified.

The weight pooling estimator with the larger training fraction FBF prior (PWTF2) is more
robust that PWTF1, with little increase in RMSE over the fully-weighted estimator even when the
model is misspecified and σ2 is small, but retaining substantial RMSE reductions (over 30%) when
bias correction is unimportant or the model is correctly specified. Coverage properties of the 95%
PPI are correct, except for modest undercoverage under the “worst case” model (βD with small σ2).

4.2 Logistic Regression

We consider logistic regression under a correctly specified and then under an increasingly
misspecified model. We generated population data as follows:

P (Yi = 1 | Xi) ∼ BER(expit(2 − .4 ∗ Xi + C ∗ X2
i ))
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RMSE relative to FWT True Coverage
Variance log10 Variance log10

Estimator 1 2 3 4 5 1 2 3 4 5
UNWT 9.69 3.68 1.52 0.57 0.63 0 0 25 93 96
FWT 1 1 1 1 1 92 91 96 94 96
TWT 5.40 2.22 1.00 0.65 0.68 0 7 88 98 99
PWT 1.00 1.00 1.01 0.93 0.90 84 92 93 96 98
PWTF1 1.02 1.04 1.11 0.60 0.53 85 92 90 96 98
PWTF2 1.03 1.03 0.96 0.74 0.70 88 93 94 98 96

Table 2: Relative bias (%), square root of mean square error (RMSE) relative to RMSE of fully-
weighted estimator, and true coverage of the 95% CI or PPI of population linear regression slope
estimator under the misspecified model βD that discourages weight trimming.

RMSE relative to FWT True Coverage
Variance log10 Variance log10

Estimator 1 2 3 4 5 1 2 3 4 5
UNWT 0.55 0.46 0.55 0.50 0.49 94 96 94 96 96
FWT 1 1 1 1 1 96 95 96 94 96
TWT 0.64 0.54 0.66 0.60 0.59 96 100 98 98 98
PWT 0.93 0.91 0.93 0.93 0.93 94 98 98 94 96
PWTF1 0.62 0.56 0.63 0.61 0.59 98 98 94 96 95
PWTF2 0.69 0.70 0.72 0.71 0.68 97 97 97 98 98

Table 3: Relative bias (%), square root of mean square error (RMSE) relative to RMSE of fully-
weighted estimator, and true coverage of the 95% CI or PPI of population linear regression slope
estimator under the correctly specified model βE .
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Xi ∼ UNI(0, 10), i = 1, . . . , N = 20000.

where expit(·) = exp(·)/(1 + exp(·)). The object of the analysis is to obtain the logistic population

regression slope, defined as the value B1 in the equation
∑N

i (yi − expit(B0 + B1xi))
(

1
xi

)
= 0. A

disproportional sampling scheme was implemented as described in the linear regression simulations.
We consider values of C = 0, .0158, .0273, .0368, .0454, corresponding to curvature measures of
K = 0, .02, .04, .06 at the midpoint 5 of the support for X , where K(X ; C) =| 2C

[1+(2CX−.75)2]3/2 |; 200
simulations were generated for each value of C. A noninformative, disproportionally stratified
sampling scheme sampled elements as a function of Xi (Ii equals 1 if sampled and 0 otherwise):

Hi = �Xi�

P (Ii = 1 | Hi) = πh ∝ (1 + Hi/2.5)Hi

A total of n = 1000 elements were sampled for each simulation (maximum normalized weight ≈ 7.5).

For priors, we considered a nearly non-informative prior of the form βl | L = l ∼ N(0, 225I),
which assumes that the logistic regression parameters lie between -30 and 30 with 95% probability.
We term the estimator of B1 obtained under this model PWT. We again consider the Factional
Bayes Factor data-based prior as well; PWTF1, which uses a training fraction of n−1/2, and
PWTF2, which uses a larger training fraction of 0.1.

In addition to these two weight pooling models, we consider the standard designed-based
(fully weighted) estimator (FWT), as well as trimmed weight (TWT) and unweighted (UNWT)
estimators. The TWT estimator is obtained by replacing the weights whi with trimmed values wt

hi

that set the maximum normalized value to 3: wt
hi = Nw̃t

hi∑
H

h=1
nhw̃t

h

, where w̃t
hi = min(whi, 3N/n), and

the UNWT estimator obtained by fixing whi = N/n for all h, i. We estimate their variance using the
Taylor Series (linearization) approximation (Binder 1983) that accounts for weighting and
stratification.

Table 4 shows the relative bias, RMSE relative to the RMSE of the fully-weighted estimator,
and true coverage of the nominal 95% CIs or PPIs associated with each of the six estimators of the
population slope (B) for different values of curvature K, corresponding to increased degrees of
misspecification.

The undersampling of small values of X means that the maximum likelihood estimator of B
in the model misspecification setting will be unbiased for K = 0 and biased downward for
K = .02, .04, .06 unless the sample design is accounted for. The trimmed estimator’s bias is
intermediate between the unweighted and fully weighted estimator. The weight pooling estimator
with a non-informative prior, similar to the fully weighted estimator, showed little bias. The weight
pooling FBF estimator with the smaller training fraction (PWTF1) had bias similar to the
unweighted estimator, while the weight pooling FBF estimator with the larger training fraction
(PWTF2) had bias similar to the trimmed weight estimator.

The unweighted estimator had substantially improved MSE (40% reduction) when the linear
slope model was approximately correctly specified, but was highly biased with moderate to large
degree of misspecification. The trimmed weight estimator and the weight pooling estimator with a
non-informative prior both dominated the standard fully-weighted estimator over the range of
simulations considered. The crude trimming estimator yielded up to 35% reduction in MSE, while
the weight pooling estimator with non-informative priors yielded 10% reduction in MSE. The weight
pooling estimators with the fractional Bayes factors had MSE reductions up to nearly 40% when the
linear slope model was approximately correctly specified, but only PWTF2 was robust against model
misspecification.
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Relative bias (%) RMSE relative to FWT True Coverage
Curvature K Curvature K Curvature K

Estimator 0 .02 .04 .06 0 .02 .04 .06 0 .02 .04 .06
UNWT -0.2 -12.8 -59.2 -217.9 .59 .87 1.51 1.72 96 86 32 22
FWT -0.1 3.9 -0.1 16.6 1 1 1 1 86 96 92 86
TWT 0.3 -3.4 -21.4 -83.9 .65 .71 .90 .91 92 96 92 88
PWT 2.4 1.6 -2.8 -0.0 .96 .92 1.02 .91 87 92 93 89

PWTF1 -0.0 -7.7 -42.2 -281.1 .61 .65 1.08 1.47 97 98 90 90
PWTF2 -0.0 -2.8 -25.2 -96.7 .63 .61 .95 .97 98 99 95 97

Table 4: Relative bias (%), square root of mean square error (RMSE) relative to RMSE of fully-
weighted estimator, and true coverage of the 95% CI or PPI of population logistic regression slope
estimator under model misspecification.

The unweighted estimator had poor coverage except when the linear slope model was
correctly specified, or nearly so. The fully-weighted, trimmed weight, and the weight pooling
estimator with non-informative priors generally had approximately correct coverage, except for
somewhat below nominal coverage when the linear model was badly misspecified. The fractional
Bayes factor estimators had somewhat conservative coverage when the model is correctly specified,
with the coverage dropping somewhat below nominal for model misspecification only for PWTF1.

5 Discussion

The model discussed in this manuscript generalizes the work Elliott and Little (2000), where
population inference was restricted to population means using a weight pooling model that
mimicked weight trimming. We consider a model that allows for the pooling of all conterminous
inclusion strata, as well as utilizing data-based “fractional Bayes Factors” of O’Hagan (1995), we
obtained robust estimators that can still gain considerable efficiencies over standard fully-weighted
estimators. This manuscript also extended the weight pooling method to consider population
regression slopes under the linear and generalized linear model, allowing for regression models for
both coninuous and binary or count outcomes.

More generally, the methods discussed in this manuscript show the promise of adapting
model-based methods to attack problems in survey data analysis. However, because these models
rely on stratifying the data by probability of selection as a prelude to using pooling or shrinkage
techniques to induce data-driven weight trimming, there is a natural correspondence between this
methodology and (post)stratified sample designs in which strata correspond to disproportional
probabilities of inclusion. Developing methods that accommodate a more general class of complex
sample designs that include single or multi-stage cluster samples and/or strata that “cross” the
weight strata remains an area for future work.
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6 Appendix

6.1 Simulations from linear weight pooling models

We obtain a direct draw from the posterior of p(βl, σ
2, L = l | y, X) as follows:

1. p(L = l | y, X) = p(y|L=l,X)P (L=l)∑
l
p(y|L=l,X)P (L=l)

, where p(y | L = l, X) ∝ |Ψl|1/2
[
Δl − θT

l Ψlθl

]−(n+a)/2

for Ψl = ((ZT
l Zl) + Σ0)−1, θl = (ZT

l Zl)b + Σ0β0, Δl = bT (ZT
l Zl)b + βT

0 Σ−1
0 β0 + Q2

l + as2,
b = (ZT

l Zl)−1ZT
l y, and Q2

l = yT (IpH∗ − Hl)y, Hl = Zl(ZT
l Zl)−1ZT

l .

2. σ2 | L = l, y, X ∼ Inv − χ2(n + a, Δl − θT
l Ψlθl)

3. βl | σ2, L = l, y, X ∼ N(ΓlAl, σ
2Γl), Al = ZT

l y + Σ−1
0 β0, Γl = [Σ−1

0 + (ZT
l Zl)]−1

We derive these marginal and conditional distributions in reverse order to simplify
computation and notation.

3. is derived by noting that

p(βl | σ2, L = l | y, X) ∝ f(y | X, βl, σ
2, L = l)p(βl | σ2, L = l) ∝

exp
(
− 1

2σ2
[(b − βl)

T (ZT
l Zl)(b-βl) + (βl − β0)

T Σ−1
0 (βl − β0)]

)
∝

fb(b | βl, σ
2, L = l)fβl

(βl | σ2, L = l)

for
b | βl, σ

2, L = l ∼ N(βl, σ
2(ZT

l Zl)−1)

βl | σ2, L = l ∼ N(β0, σ
2Σ0)

and thus by standard results (Gelman et al., 2004, p. 85-86)

βl | b, σ2, L = l ∼ N(β̃, Σ̃)

where
β̃ = [(σ2Σ0)−1+(σ2(ZT

l Zl)−1)−1]−1[(σ2(ZT
l Zl)−1)−1b+(σ2Σ0)−1β0] = [Σ−1

0 +ZT
l Zl]−1[ZT

l y+Σ−1
0 β0]

and Σ̃ = σ2[Σ−1
0 + ZT

l Zl]−1.

2. is derived by

p(σ2, | y, X, L = l) ∝
∫ ∞

−∞
f(y | βl, σ

2, L = l, X)p(βl | σ2, L = l)p(σ2 | L = l)dβl ∝

(2π)−
n+pH∗

2 (σ2)−( n+pH∗+a
2 +1)×∫ ∞

−∞
exp

(
− 1

2σ2
[(βl − b)T (ZT

l Zl)(βl − b) + (βl − β0)
T Σ−1

0 (βl − β0) + Q2
l + as2)]

)
dβl.

Now
(βl − b)T (ZT

l Zl)(βl − b) + (βl − β0)
T Σ−1

0 (βl − β0) + Q2
l + as2 =

βT
l (ZT

l Zl + Σ−1
0 )βl − 2βT

l [(ZT
l Zl)b + Σ−1

0 β0] + bT (ZT
l Zl)b + βT

0 Σ−1
0 β0 + Q2

l + as2 =

(βl − Ψlθ)T Ψ−1
l (βl − Ψlθ) + Δl − θT

l Ψlθl
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Thus ∫ ∞

−∞
exp

(
− 1

2σ2
[(βl − b)T (ZT

l Zl)(βl − b) + (βl − β0)
T Σ−1

0 (βl − β0 + Q2
l + as2)]

)
dβl =

(2πσ2)
pH∗

2 |Ψl|1/2 exp
(
− 1

2σ2
[Δl − θT

l Ψlθl]
)

from the normalizing constant for a N(μ, Σ) distribution, and thus

p(σ2 | L = l, y, X) ∝ (2π)−
n
2 (σ2)−( n+a

2 +1)|Ψl|1/2 exp
(
− 1

2σ2
[Δl − θT

l Ψlθl]
)

which is the kernel of a scaled inverse chi-sqaure distribution with n + a degrees of freedom and
scaling factor Δl − θT

l Ψlθl.

1. then follows:
p(L = l | y, X) ∝ p(y | L = l, X)p(L = l)

where

p(y | L = l, X) =
∫ ∞

0

∫ ∞

−∞
f(y | βl, σ

2, L = l, X)p(βl | σ2, L = l)p(σ2 | L = l)dβldσ2 ∝

∫ ∞

0

(2π)−
n
2 (σ2)−( n+a

2 +1)|Ψl|1/2 exp
(
− 1

2σ2
[Δl − θT

l Ψlθl]
)

dσ2 ∝

(2π)−
n
2 |Ψl|1/2Γ

(
n + a

2

) (
n + a

2

)−(n+a)/2
[

Δl − θT
l Ψlθl

n + a

]−(n+a)/2

∝

|Ψl|1/2
[
Δl − θT

l Ψlθl

]−(n+a)/2

from the derivation of 2. and the normalizing constant for the Inv − χ2(n, s2) distribution.

6.1.1 Fractional Bayes Factors

To implement O’Hagan’s (1995) Fractional Bayes Factors for the marginal weight pooling selection
probability, we replaced

p(L = l | y, X) ∝ p(L = l)
∫ ∞

0

∫ ∞

−∞
f(y | βl, σ

2, L = l, X)p(βl | σ2, L = l)p(σ2 | L = l)dβldσ2

with

p(L = l | y, X) ∝ p(L = l)

∫ ∞
0

∫ ∞
−∞ f(y | βl, σ

2, L = l, X)p(βl | σ2, L = l)p(σ2 | L = l)dβldσ2∫ ∞
0

∫ ∞
−∞ f(y | βl, σ

2, L = l, X)bp(βl | σ2, L = l)p(σ2 | L = l)dβldσ2
.

where 0 < b < 1 represents a “training fraction” of the data set aside to provide prior information
for the parameters for the lth pooling model. From the derivation of 1. above we have∫ ∞

0

∫ ∞

−∞
f(y | βl, σ

2, L = l, X)bp(βl | σ2, L = l)p(σ2 | L = l)dβldσ2 ∝

|Ψbl|1/2
[
Δbl − θT

blΨblθbl

]−(bn+a)/2

12



for for Ψbl = ((bZT
l Zl) + Σ0)−1, θbl = b(ZT

l Zl)b + Σ0β0,

Δbl = b
[
bT (ZT

l Zl)b + Q2
l

]
+ βT

0 Σ−1
0 β0 + as2. Thus using FBF, we have

p(L = l | y, X) ∝ p(L = l)

[
Δbl − θT

blΨblθbl

](bn+a)/2

|Ψl|1/2

[
Δl − θT

l Ψlθl

](n+a)/2

|Ψbl|1/2

6.2 Simulations from the generalized weight pooling model

6.2.1 Simulations from the generalized weight pooling model using direct draws

Draws from p(βl, L = l | y, X) = p(βl | L = l, y, X)p(L = l | y, X) can be made by drawing first
from p(L = l | y, X) using a Laplace approximation (Tierney and Kadane 1986) to obtain
f(y | L = l, X) and then a Metropolis step for p(βl | L = l, y, X).

Note that

p(L = l | y, X) =
f(y | L = l, X)∑
l f(y | L = l, X)

(2)

where
f(y | X, L = l) =

∫
f(y | X, βl, L = l)p(βl | L = l)dβl ≈∫

f(y | X, βl, L = l)dβl ≈ (2π)(pH∗)/2 | Σ̂ ˆβl

|1/2 f(y | X, β̂l, L = l)

where β̂l is the MLE of a GLM regressing y on Zl, where Zl consists of the stacked row vectors of
ZT

li , and Σ̂ ˆβl

is the associated covariance matrix estimate for β̂l given by the inverse of the expected

information matrix. The first approximation follows from assuming a non-informative or nearly
non-informative prior on βl | L = l, and the second from the Laplace approximation to the true
marginal distribution of y.

Draws from p(βl | L = l, y, X) are made by running a Metropolis algorithm using a
N(0, kΣ̂ ˆβl

) jumping distribution, where k is a tuning factor designed to obtain an acceptance rate of

20-30%. The algorithm starts at β
(0)
l = β̂l, and a proposal draw βprop

l = β̂l + e, e ∼ N(0, kΣ̂ ˆβ
l

) is

made; β
(1)
l = (1 − u)β(0)

l + uβprop
l , where u is a Bernoulli random variable with probability

min(1,
f(y|X,{βprop

l ,L=l)

f(y|X,{β(0)
l ,L=l)

). The algorithm proceeds until a sufficient number of draws T have been

made to approximate the posterior distribution. In general k = .1 and T = 200 provided reasonable
acceptance rates and sufficient coverage of the posterior interval.

Fractional Bayes Factors

When using the FBF prior, we replace f(y | L = l, X) in ( 2) with

f∗(y | L = l, X) =
∫

f(y | X, βl, L = l)p(βl | L = l)dβl∫
f(y | X, βl, L = l)bp(βl | L = l)dβl

for 0 < b < 1. Under a nearly non-informative prior, we have, using the Laplace approximation,∫
f(y | X, βl, L = l)bdβl ≈

13



(2π)(pH∗)/2 | b−1Σ̂ ˆβl

|1/2 f(y | X, β̂l, L = l)b

so that
f∗(y | L = l, X) ≈ b(pH∗)/2f(y | X, β̂l, L = l)(1−b).

6.2.2 Simulations from the generalized linear weight pooling model using an MCMC
algorithm

Draws from the posterior distribution of (βl, L = l) are obtained via the product space series
method of Carlin and Chib (1995). This approach assumes that y is independent of {βk �=l} given
that L = l. Assuming also that {βl} are independent for l = 1, . . . , L, we have that

p(y | X, L = l) =
∫

f(y | X, β, L = l)p(β | L = l)dβ

=
∫

f(y | X, βl, L = l)p(βl | L = l)dβl

The form given to the “pseudoprior” p(βk �=l | L = l) is irrelevant, as it is chosen only to completely
define the joint model specification:

p(y, β, L = l | X) = f(y | X, βl, L = l)
2H−1∏
j=1

{
p(βj | L = j)

}
P (L = l)

We can then develop a Gibbs sampler that draws from p(βl | L = l, βk �=ly, X) and then from
p(L = l | β, y, X).

With the model fixed at L = l, we obtain a draw of

p(βl | L = l, βk �=l, y, X) = p(βl | L = l, y, X)

using the Metropolis step described in 7.1.

The full conditional p(L | β, y, X) is given by

p(L = l | β, y, X) =
f(y | X, βl, L = l)

∏2H−1

j=1

{
p(βj | L = j)

}
P (L = l)∑2H−1

j=1 f(y | X, βj , L = j)
∏2H−1

i=1 {p(βi | L = j)}P (L = j)

Because computing
∏2H−1

j=1

{
p(βj | L = j)

}
is prohibitive except when H is small, we instead used a

Metropolis step suggested by Dellaportas, Foster, and Ntzoufras (1998) to obtain a draw from
L | β, y, X .

1. Propose new model l′ with probability h(l, l′).

2. Generate βl′ from the pseudoprior p(βl′ | L �= l′).

3. Accept the new model l′ with probability

min
{
1,

f(y|X,βl′ ,L=l′)p(βl′ |L=l′)p(βl|L=l′)P (L=l′)h(l′,l)
f(y|X,βl,L=l)p(βl|L=l)p(βl′ |L=l)P (L=l)h(l,l′)

}
.

Carlin and Chib note that poor choices for pseudo-priors p(βk �=l | L = l) can yield slow
convergence, and suggest matching them as closely as possible to the true model-specific posteriors.
Because of the large number of models to be considered, we simply set the pseudo prior to be
multivariate normal with mean β̂k given by the MLE of a GLM regressing y on Zl, and covariance
Σ ˆβl

given by the inverse of the expected information matrix. Jumping probabilities to the l′ models

that exclude L were always given by the uniform dicrete distribution with probability (2H−1 − 1)−1.
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