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1. Introduction 
 

In a recent paper, William Winkler (2006) of the Census Bureau observed the following: 

 

“Statistical agencies have typically adopted masking methods because they are easy to implement. 

The easiest-to-implement methods seldom, if ever, have been justified in terms of preserving one 

or two analytical properties and preventing re-identification. In extreme situations, the crude 

application of masking methods may yield a file that cannot be used for analyses yet still allows 

some re-identification.” (page 4) 

 

We agree strongly with this statement, particularly for numerical confidential data. In recent years, there have been 

significant developments in masking techniques for numerical data. While there have been similar advances for protecting 

categorical confidential data, our analysis in this paper is restricted to numerical, confidential data. One key aspect of some of 

the newer techniques is that their performance is theoretically predictable. This is true for both information loss and 

disclosure risk. This is not to say that earlier methods did not provide this ability; obviously, we could assess the extent to 

which there was information loss using the additive noise approach. However, there were other techniques (micro-

aggregation and data swapping for instance) where, while it is possible to make some generalizations (“data swapping results 

in correlation attenuation” or “the micro-aggregation results in variance attenuation”), it was difficult to predict their 

performance characteristics for a given data set.  

 

Yet, there seems to be a tendency among statistical agencies to use micro-aggregation and data swapping more frequently 

than other techniques. There are several explanations for this state of affairs, the primary one being the opinion expressed by 

Mr. Winkler and is the title of this paper. We believe that since some techniques are easy to explain and easy to implement, 

they are preferred over other more sophisticated techniques that are, in relative terms, more difficult to implement and 

explain. After all, it is very easy to understand, explain, and implement data swapping than it is to understand, explain, and 

implement data shuffling. Yet, in terms of performance, there is no doubt that data shuffling is superior to data swapping; 

data shuffling provides lower information loss and lower disclosure risk than data swapping. 

 

In this study, we demonstrate the superiority of theoretically sound techniques over “easy to implement” techniques such as 

micro-aggregation and data swapping, for masking numerical data. Based on a theoretical evaluation, we identify two 

techniques (sufficiency-based linear models perturbation and data shuffling) that have the best performance characteristics. 

We then evaluate their performance on two data sets (one simulated and one real data set). In addition, we also evaluate the 

ability of these techniques to maintain characteristics of sub-domains of the data, something that has not been evaluated 

previously.  We hope that the results of this paper will provide some impetus for the adoption of these techniques.  

 

2. Assessing Disclosure Risk and Information Loss 
 

In our paper titled “A Theoretical Basis for Perturbation Methods” (Muralidhar and Sarathy, 2003), we developed specific 

measures for assessing disclosure risk and data utility. The primary objective of that paper was to provide, at least in theory, 

the optimal method for perturbation. In that paper, we showed that if we are able to generate the perturbed values from the 

true conditional distribution of the confidential variables given the non-confidential variables, the resulting perturbed values 



provided both the highest level of security (lowest level of disclosure risk) and the highest possible level of data utility 

(lowest possible information loss). These theoretical derivations have important implications for practice. 

 

2.1. Disclosure Risk 

There are two important issues relating to disclosure risk. First, the assessment of disclosure risk must be partitioned into two 

separate categories: disclosure risk attributable to the release of the non-confidential variables (if any) and disclosure risk 

attributable to the masking technique. Without such partitioning, it would be impossible to accurately assess the extent to 

which the making technique results in increased disclosure. For instance, if there are several non-confidential categorical 

variables that uniquely identify an individual in the data set, then regardless of the technique chosen to mask the numerical 

variables, an intruder would be able to identify that individual. In this case, the resulting identity disclosure must be attributed 

to the non-confidential variables. For the sake of argument, assume that a data provider first releases summary information 

(such as the mean vector and covariance matrix) for all the variables (both confidential and non-confidential). Subsequently, 

the same data provider also releases microdata on the non-confidential variables (but not the confidential variables). At this 

stage, no masking technique has been employed and no confidential microdata has been released. Yet, an intelligent intruder 

would be able to analyze the released data to identify a record as belonging to an individual or to predict the value of a 

confidential variable through techniques such as regression analysis using only the non-confidential variables. The level of 

disclosure that can be attributed to the non-confidential variables forms the baseline disclosure risk. After the release of the 

masked data set, the intruder will use the masked variables in addition to the non-confidential variables, to estimate the 

confidential values. This second step provides an assessment of the incremental disclosure that can be attributed to the 

masking technique, over and above that resulting from the non-confidential variables alone. Obviously, in cases where there 

are no non-confidential variables, the benchmark disclosure risk resulting from non-confidential variables will be zero. A 

good masking technique will result in little or no additional disclosure risk than that resulting from the non-confidential 

variables alone.  

 

The second issue relates to the extent of disclosure risk of a masking technique. From the discussion in the previous 

paragraph, in order for a masking technique to provide the highest possible level of security, it is necessary that the disclosure 

risk after releasing the masked data not be higher than that from releasing only the non-confidential and summary data. This 

can be achieved if the masked values of the confidential variables are generated as a function only of the non-confidential 

variables and an independent noise term. Our derivations show that when the masked values are generated in this manner, the 

incremental disclosure risk resulting from the release of the masked values is zero. This can be illustrated using simple 

regression analysis. Consider a data set with a set of confidential variables X and a set of non-confidential variables S. 

Assume that a data provider has released aggregate information on both X and S (in the form of mean vectors and covariance 

matrices). In addition, the data provider has also released microdata on S. Using this information alone, an intruder would be 

able to predict the value of X using S as: 

 

  X = β0 + β1S.          (1) 

 

Assume that the proportion of variability explained in X using the above equation is R
2
(X|S). Since no confidential microdata 

has been released, none of this disclosure can be attributed to the masking technique itself. Thus, R
2
(X|S) becomes the 

benchmark for assessing the resulting increase in disclosure (if any) resulting from the masking technique.  

 

Now let us assume that the masked values Y have been generated as: 

 

  Y = α0 + α1S + ε          (2) 

 

where ε is a noise term independent of both X and S. Now consider an intruder who attempts to predict the value of the 

confidential variables X using both S and Y. The resulting regression equation would be of the form: 

 

  X = γ0 + γ1S + γ2Y = γ0 + γ1S + γ2(α0 + α1S + ε).      (3) 

 

We can easily show that in this case, since ε is independent of both X and S, the resulting regression model reduces to 

equation (1). Hence, the proportion of variability in X explained by both S and Y, R
2
(X|S,Y), is the same as the proportion of 

variability explained in X using S alone (R
2
(X|S)). Thus, using R

2
(X|S) as the benchmark, releasing Y does not result in no 

increase in disclosure risk. Hence, the disclosure risk attributable to the masking technique is actually zero.  

 



In the above example, Y was generated as a linear function of S. In the Statistics & Computing paper, we show that as long as 

Y is generated as any function of S and ε, where ε is independent of S and X, the incremental disclosure risk resulting from 

the release of the masked microdata will be zero. Conversely, it also follows that when the masked values are generated as a 

function of X, releasing the masked values will resulting increased risk of disclosure. Finally, it is important to note that the 

results provided here are independent of the characteristics of the data set and the type of masking technique used; disclosure 

risk will be minimized (no more than that explicable using only S) and security will be maximized as long as the masked 

values are generated as a function of S and some noise term ε and independent of X.  

 

In situations where it is necessary to compare the performance of masking techniques that do not satisfy the minimum 

disclosure risk criterion, security has to be assessed empirically. Typically, such assessments are performed based on the 

extent to which the masked data results in disclosure of identity and disclosure of value. Identity disclosure is usually 

assessed by using record linkage and similar techniques. Value disclosure is usually assessed by computing the proportion of 

variability explained in the confidential variable(s) using the released data. 

 

2.2. Information Loss 
In our Statistics & Computing paper we showed that the released data set (consisting of masked and non-confidential 

variables) maintain the characteristics of the original data set (consisting of the confidential and non-confidential variables) 

when the masked data are generated from the conditional distribution of X given S, f(X|S). In most practical situations 

however, the true conditional distribution f(X|S) is never known, and may not even be possible to be estimated. Hence, most 

masking techniques rely on an approximate model of the joint distribution of X and S from which f(X|S) is estimated. The 

information loss is directly related to the extent to which the assumed (modeled) joint distribution deviates from the true joint 

distribution. Note that, as discussed earlier, we can still assure minimum disclosure risk even if we do not know the true 

conditional distribution f(X|S). Many masking techniques (simple noise addition, Kim’s method, and multiple imputation) 

implicitly assume a multivariate normal joint distribution, resulting in a linear model for generating the value of Y. Other 

masking techniques (copula based perturbation and data shuffling) use a more complex model of the joint distribution of X 

and S. Yet other approaches (data swapping, micro-aggregation, to name a few), make no explicit assumption regarding the 

joint distribution of X and S.  

 

While disclosure risk can be theoretically assessed, information loss assessment must be performed empirically since there is 

no general theoretical approach for estimating deviations from the true (possibly unknown) joint distribution. Thus, it makes 

sense to focus on the information loss from the viewpoint of how the masked data set will be used, in place of the original 

data. For a vast majority of situations, data released by statistical agencies is meant for statistical analyses such as estimation 

of means, standard deviations and variances, and other parameters and relationships. In all these cases, the interest is in 

developing masking procedures that can reproduce statistics and statistical relationships that exist in the original data. 

Consequently, the most sensible measure of information loss would be one that provides an assessment of deviations between 

the same statistics that are obtained from the original and masked data. In this study, we adopt this approach to define 

information loss as a statistical information loss.  One disadvantage of this approach is that we need to assess information 

loss for each statistic of interest. Given the typical types of statistical analysis that is performed with masked data, we first 

assess the extent to which the masked variable maintains the marginal distribution of the original variables. This satisfies the 

requirements of those users who are interested in performing univariate analysis on the data. Next, we assess information loss 

related to relationships among variables. Typically linear relationships are measured by the covariance matrix (or product 

moment correlation matrix) among the variables. In addition, we also assess the rank order correlation among the variables to 

assess the extent to which the masked variables maintain monotonic non-linear relationships among the variables. These 

assessments are also performed for sub-groups created by non-confidential categorical variables.  

 

Our measures of information loss differ from that proposed by Domingo-Ferrer and Torra (2001). In their case information 

loss is measured by the extent to which the masked value of a variable for a given record differs from the original value. In 

other words, the more different the masked value is from the original value, the greater the information loss. We believe that 

this measure is misguided, since it is not necessary for the masked values to be “close” to the original values, to avoid 

information loss in the statistics of interest.  This measure does not reflect how the masked data is generally used by 

statistical agencies. Additionally, this measure introduces a false trade-off between information loss and disclosure risk. As 

we shall show later, it is possible to provide a high level of protection against disclosure while ensuring practically no 

(statistical) information loss. .  

 

 

 



3. An Assessment of Masking Techniques 
 

In this section, we perform an assessment (that is by no means comprehensive) of common masking techniques for numerical 

confidential data. We focus our attention on those techniques that have received attention in the literature and in practice. We 

first provide a quick description of these techniques and an assessment of the resulting disclosure risk and information loss.   

 

3.1. Noise Addition 

The noise addition model adds random noise to the original confidential variable as follows (using the same notation as in the 

previous section): 

 

  Y = X + ε.          (4) 

 

In the original form of noise addition, the noise term ε was independent of X and was typically drawn from a normal 

distribution with mean vector 0 and a covariance structure that was diagonal (and all non-diagonal values were zero). This 

implied that noise terms were uncorrelated among themselves. The values of the diagonal terms represent the variance of the 

noise to be added, usually specified as a percentage of the variance of X.  

 

As we have shown above, since Y is not independent of X, releasing the masked data provides the intruder with additional 

information, resulting in increased disclosure risk. In terms of information loss in the marginal distribution of the masked 

variable, the variance of Y will be higher than that of the original variable X. In addition, since this is an additive model, if 

the original variable X is non-normal, the masked variable will be less skewed (and closer to normal) than the original 
variable. In terms of information loss in relationships, due to the random noise added, the relationship among the Y variables 

is different from those among the X variables and the relationship between (Y and S) is different from that between (X and 

S). 

 

A simple but important variation of this approach was suggested by Kim (1986). In this variation, the covariance structure of 

ε ( eeΣ ) specified to be dΣXX where ΣXX is the covariance matrix of the original X variables and d is a constant (typically 

between 0 and 1). The advantage of this specification is that the resulting relationships among Y are the same as that between 

the X variables. However, this procedure still results in higher variance for Y than that of X and linear relationships between 

the non-confidential and masked variables are attenuated. Further, since Y is not independent of X, this method does not 

minimize disclosure risk. Generally, the higher the value of d, the greater the information loss and lower the disclosure risk 

and vice versa. A further modification was proposed by Tendick and Matloff (1994) resulting in the variance of Y being the 

same as that of X. With this exception, the performance characteristics do not change.  

 

3.2. Linear Model Based Approaches 
Unlike models that add noise only to the confidential variables X, approaches based on a linear model generate the perturbed 

values Y using some variation of the following model: 

 

 Y = β0 + β1S + β2X + ε.          (5) 

 

Several such models have been proposed including Muralidhar et al. (1999, 2001) and Franconi and Stander (2002). The 

latter authors propose an empirical model whose specific form is based on the characteristics of the data set being masked. 

By contrast, Muralidhar et al. (1999) originally proposed a model of the form as shown in (5), but with the requirements that 

the covariance matrix of the released data (S and Y) be the same as that of (S and X). This specification imposes a specific 

structure on the covariance of ε. In order to improve the disclosure risk characteristics, Muralidhar et al. (2001) proposed a 

modified model of the form 

 

 Y = β0 + β1S + ε,           (6) 

 

where ,
1

SSXS1 ΣΣβ
−=  ,SSSXSY0 µ1ΣΣµβ −−= and eeΣ = ( ),SX

1

SSXSXX ΣΣΣΣ
−−  all of which are estimated using the original 

data.  With these specifications, for large data sets, the mean vector and covariance matrix of the released data (S and Y) will 

be the same as that of the original data (S and X). However, there is some information loss in estimates of the covariance 

matrix, due to sampling error in smaller data sets.  Since Y is generated as a function of S and ε this procedure also 

minimizes the risk of both identity and value disclosure.  



 

3.3. Sufficiency Based Linear Models 

An important variant of the linear model was suggested by Burridge (2003). In this approach, by appropriately generating the 

values of ε, it is possible to ensure that the mean vector and covariance matrix of the released data are identical to that of the 

original data. Hence, for all statistical analyses for which the mean vector and covariance matrix are sufficient statistics, the 

results of the analysis using the masked data will yield identical results to that using the original data. That is, the (statistical) 

information loss will be zero. Note that for most traditional statistical analyses (including, but not limited to, comparison of 

means, ANOVA, regression analysis, and even such multivariate procedures such as canonical correlation analysis), the mean 

vector and covariance matrix serve as sufficient statistics. Hence, if this procedure is employed to mask the data, a user who 

analyzes the masked data will get exactly the same results as using the original unmasked data. In addition, this procedure 

also minimizes disclosure risk. A similar approach was also suggested by Ting et al. (2005) when the entire data set is 

confidential. 

 

Muralidhar and Sarathy (2007) recently proposed a further modification of this linear model in equation (5) with the 

following restrictions: 

 

 ,S1X20 µβ)µβ(1β −−=           (7) 

 

 ( ) ,1SSXS21 ΣΣβIβ −−= and          (8) 

 

 ( ) ( ) T
2SX

1
SSXSXX2SX

1
SSXSXXεε βΣΣΣΣβΣΣΣΣΣ −− −−−= .      (9) 

 

With the above specifications and appropriately selecting the value of β2 it is possible to ensure that the masked data (Y and 

S) has exactly the same mean vector and covariance matrix as the original data (X and S). That is, this approach preserves 

sufficient statistics underlying linear relationships. Consequently, there is zero information loss in estimating any of the linear 

relationships among the different variables. When β2 is zero, this model reduces to the model shown in equation (6). For non-

zero β2 the resulting masked variables do not provide the lowest possible level of disclosure risk. However, these masked 

values may be more acceptable to some users who may have reservations using the more “synthetic” data generated from the 

model in equation (6). 

 

While the sufficiency-based linear models (SBLM) procedure in equations (5, 7, 8, and 9) provides significant advantages 

over other perturbation procedures, it is not without problems. First and foremost, this procedure results in information loss in 

the marginal distribution of the masked variable (Y). The exact form of the distribution of Y would depend on the selection 

of the distribution for the error term ε. However, unless X was normally distributed, the marginal distribution of Y will be 

different from that of X. One common problem that arises as a consequence is that the masked values may consist of negative 

values whereas the original data may be all positive. In addition, while this procedure maintains linear relationships among 

all variables, non-linear relationships are not preserved in the masked data. Thus, while this procedure is a complete solution 

to the masking problem when the joint distribution of (X and S) is multivariate normal, resulting in zero information loss and 

zero incremental disclosure risk, in other cases, it has some shortcomings. 

 

3.4. Multiple Imputation 
Originally proposed for missing data, multiple imputation was suggested as a possible alternative for masking data by Rubin 

(1993). Since then, several researchers have investigated the effectiveness of multiple imputation for masking numerical 

microdata. In its basic form, multiple imputation essentially uses a linear model as in equation (5). Using the available data, 

the intercept, slope coefficients, and error variance are estimated. Up to this point, both the linear models approach and 

multiple imputation are identical. In the traditional linear model approach, a data set would be generated using the estimated 

coefficients. In other words, the estimated coefficients are treated as population parameters and the only variability arises 

from the error variance.  In multiple imputation, additional variability is introduced by treating the intercept and slope 

coefficients as sample statistics. Further, several sets of masked data are generated (perhaps as many as 100). Each set of 

imputed values are based on newly generated values of intercept, slope, and error variance. The user is required to analyze 

each imputed set and finally aggregate the results (Raghunathan et al. 2003). The effectiveness of the procedure improves 

when the number of imputed data sets is larger.  

 

The difficulty of using multiple imputation in practice is obvious. Requiring users to analyze multiple data sets (as many as 

100) and then aggregating the results imposes a significant burden on the users. Rubin (1987) has clearly indicated that, in 



order for this procedure to be effective, it is necessary that the data be imputed multiple times. Furthermore, in order to 

ensure a high level of security, this procedure also requires that the data be imputed for those non-confidential values for 

which corresponding confidential values do not exist. In other words, the data set should consist of some data points for 

which both S and X have been observed and some for which only S has been observed. This may not be true for all data sets. 
 

In terms of performance, multiple imputation behaves very similar to the linear model procedure suggested by Muralidhar et 

al. (1999). If the values of Y are generated independent of the values of X, then multiple imputation also minimizes 

disclosure risk. More importantly, if we use the modification suggested by Burridge (2003) to maintain sufficient statistics, 

the resulting masked data is actually superior to multiple imputation. By ensuring that the results of analyses using the 

masked data are the same as that using original data, the liner model procedure allows the user to analyze a single data set 

and get better results than what they would get by analyzing and aggregating multiple data sets (Muralidhar and Sarathy 

2006a). 

 

3.5. Micro-aggregation 
Micro-aggregation is often suggested as an attractive procedure for data masking because of its simplicity (Domingo-Ferrer 

et al. 2002). In its simplest form, micro-aggregation works as follows. A set of k observations are identified as the “closest” 

observations. The values of the confidential variables for these observations are aggregated. The aggregated values are 

released in place of the original values. The selection of the “closest” observations can be performed on a variable by variable 

basis (univariate micro-aggregation) or for multiple variables (multivariate micro-aggregation). While micro-aggregation 

may be easy to implement, as we discuss below, its performance characteristics are very poor.  

 

In terms of security, univariate micro-aggregation has a very high risk of both identity and value disclosure (Winkler 2002). 

Proponents of multivariate micro-aggregation often contend that it satisfies k-anonymity (that is, there are at least k 

observations that have exactly the same value). This may provide security against identity disclosure, but not against value 

disclosure. Consider the situation where the values of all k observations are close together. Then, releasing the aggregated 

value is, for all practical purposes, the same as releasing the original value. Releasing the aggregated value will enable an 

intruder to predict the original values with a great deal of accuracy. That there are k observations that are similar is moot 

since the intruder is able to estimate the values of the confidential variables for all k observations.  

 

The information loss resulting from micro-aggregation can also be very high (Muralidhar and Sarathy 2006b). We can show 

theoretically that there is attenuation in the variance of the masked variables compared to the original variables. We can show 

that this attenuation in variance may be as high as 50%. The marginal distribution of the masked variables is different from 

those of the original variables. Due to the attenuation in variance, the correlation between the masked variables is higher than 

that of the original variables (Muralidhar and Sarathy 2006b).  

 

3.6. Data Swapping 
Like micro-aggregation, data swapping is often proposed as an effective masking technique because of its simplicity. 

Originally proposed for categorical variables, data swapping has since been adopted for numeric variables (Moore 1996). In 

data swapping, values of a particular variable within a specified proximity are exchanged. The process is repeated for every 

observation and every variable. The resulting masked data set retains the same marginal distribution as the original 

confidential variables. However, data swapping results in attenuation of product moment correlation as well as very high 

disclosure risk. It is also evident that, since the values of the variables are swapped randomly between a specified proximity, 

it will result in attenuation of the rank order correlation as well. Like micro-aggregation, it is difficult to theoretically specify 

the extent to which relationships among variables are affected by data swapping. An empirical assessment is provided by 

Moore (1996) and Muralidhar and Sarathy (2006c). Fienberg and McIntyre (2005) provide an excellent discussion of the 

variations of the data swapping procedure.  

 

3.7. Data Shuffling 
Data Shuffling is a new patented procedure (US Patent # 7200757) developed by Muralidhar and Sarathy (2006d). It is a 

hybrid procedure where the original variables are first perturbed using the copula based perturbation approach (Sarathy et al. 

2002). The resulting perturbed values are then reverse-mapped on to the original values, resulting in the shuffled data set. 

Superficially, data shuffling can be considered to be a multivariate version of data swapping since it is performed on the 

entire data set rather than on a variable by variable basis. For a complete description of data shuffling, please refer to 

Muralidhar and Sarathy (2006d). Data shuffling is a more general version of the LHS procedure suggested by Dandekar et al. 

(2002). 

 



Data shuffling has the following desirable properties. First and foremost, the perturbed values are generated independent of X 

(given S) and hence have no incremental disclosure risk. Second, like data swapping, the shuffled values are actually the 

original values of the confidential variables assigned to a different observation. Hence, the marginal distribution of the 

masked data is identical to the marginal distribution of the original data. Third, the use of the copula-based perturbation 

approach enables data shuffling to maintain the rank order correlation of the masked data to be the same as that of the 

original data. This implies that data shuffling results in minimal information loss in linear and monotonic non-linear 

relationships among variables. It does not maintain non-monotonic non-linear relationships.  

 

3.8. Summary of Comparison of Masking Techniques 
In this section, we provide a brief summary of the techniques and their capabilities. It is important to note that, among these 

techniques, it is possible to assess, theoretically, the disclosure risk and information loss characteristics of all the techniques 

except micro-aggregation and data swapping. Ironically, these are also the techniques that are often employed in practice 

because they are “easy to implement”, and not because they perform well. We can theoretically show that micro-aggregation 

does not maintain the marginal distribution, attenuates the variance, and accentuates correlation. Similarly, data swapping 

results in correlation attenuation even for linear relationships. Give these results, it would be reasonable to conclude that both 

micro-aggregation and data swapping are unlikely to maintain non-linear relationships. Yet, proponents of micro-aggregation 

and data swapping often defend the techniques under the claim that it may preserve relationships better. There is no 

theoretical or empirical evidence to suggest that these claims are true. Table 1 provides a summary of the performance 

characteristics. 

 

 
 

From Table 1, it is easy to see that among methods where additive noise is employed (simple noise addition, linear models, 

multiple imputation), the sufficiency-based linear models approach that maintains sufficient statistics provides superior 

performance to the other techniques in this class. Among the other models (micro-aggregation, data swapping, and data 

shuffling), data shuffling provides better performance characteristics (lower disclosure risk and information loss) than the 

other techniques. For these reasons, we provide an empirical illustration of the application of these two techniques. In 

addition to evaluating their performance on the overall data set, we also address the issue of sub-group characteristics.  

 



4. Performance for subsets of data 
 

One key aspect of the characteristics of the masking techniques that we investigate in this study is their ability to maintain 

sub-group characteristics. For numerical variables, it is possible to generate an infinite number of possible sub-groups and it 

becomes difficult to evaluate all possible sub-groups. However, when there are categorical non-confidential variables, there 

are usually a finite number of sub-groups that are created by the intersection of these categorical variables. Furthermore, data 

consisting of both categorical and numerical variables are very common in practice. Hence, we evaluate the performance of 

the two selected techniques (sufficiency-based linear models and data shuffling) on sub-groups as well. For each sub-group, 

we evaluate the extent of information loss from the masked data. No such evaluation is necessary for disclosure risk since the 

masked values are independent of the original data set in each sub-group. However, the benchmark disclosure risk for each 

sub-group will be different and will be a function of the relationships between the confidential and non-confidential variables 

in the sub-group and the size of the sub-group. 

 

5. Empirical Assessment 

 

We performed an empirical assessment of the two masking techniques using two data sets. The first masking technique used 

was data shuffling that does not require any parameter specifications. The second masking technique was the SBLM 

procedure with the requirement that β2 be a diagonal matrix with the value d (0 < d < 1) in the diagonal and 0 in the off-

diagonal terms. This simple specification implies that when d = 0, the resulting model is the one shown in equation (6) and 

when d = 1, the entire data set is released unmodified. Thus, the selection of d directly influences the extent to which the 

original values are used in the masking. Note that when d > 0, this method does not provide minimum security. 

 

5.1. Simulated Data Set 

We used two data sets in this empirical assessment. The first data set was simulated and consisted of 50000 observations. The 

data consisted of 3 categorical non-confidential variables Gender (male or female), Marital Status (married or other), and Age 

group (1 to 6). The 3 confidential numerical variables (Home value, Mortgage balance, Total net value of assets) were 

generated using the NORTA approach for generating related multivariate non-normal variables. Of the three confidential 

variables, two (Home value and Mortgage balance) had non-normal marginal distributions, while the third had a normal 

distribution. The relationship between the last two variables was linear while the other relationships were non-linear. Twenty 

four sub-groups were formed as a combination of the Gender × Martial status × Age group. Data shuffling was applied to the 

entire data set. In addition, 3 different levels of masking were applied for linear model approach (d = 0.00, 0.50, 0.90). As 

indicated earlier, when d = 0.00, given the non-confidential variables, the perturbed variables are independent of the original 

variables and are sometimes considered synthetic data.  

 

5.1.1. Assessment of Disclosure Risk  As indicated earlier, the first step in the assessment of the masking techniques was to 

compute the risk of identity disclosure. Table 2 provides the results of the identity disclosure assessment performed using the 

procedure suggested by Fuller (1993). There are many approaches for assessing identity disclosure and we could use any one 

of these procedures. However, the primary objective of this assessment is to compare the different methods rather than assess 

the extent of disclosure. While the specific results of using another procedure for assessing identity disclosure may be 

different, the relative performance of the different methods will be the same. Table 2 provides, for each sub-group defined by 

the categorical variables (a total of 24 sub-groups), the number of observations in each sub-group and the number of 

observations that were re-identified. As indicated earlier, when shuffling and perturbation with d = 0.00 are used to mask the 

variables, within a given sub-group, the original and masked variables are independent. Hence, the probability of re-

identification within a sub-group is (1/nk) where nk is the size of the sub-group. The results in Table 2 clearly show that this is 

indeed the case. The probability of re-identification is much higher for the other perturbed values, with the higher re-

identification occurring when d = 0.90. Thus, in terms of disclosure risk, it is easy to see that the data shuffling and 

perturbation with d = 0.00 provide the best results, with re-identification occurring by chance alone.  

 

It is also easy to assess the risk of value disclosure. As indicated earlier, for a given sub-group, the shuffled data and 

perturbed data with d = 0.00 are independent of the original data. This implies that the covariance between the original and 

masked data are close to zero for shuffled data and exactly 0.00 for the perturbed data with d = 0.00. Hence, the correlation 

between the original and masked data for these two methods will be 0.00, resulting in no predictive ability. By contrast, for 

the other two approaches, the correlation between the original and masked variables will be d and the intruder would be able 

to explain d
2
 proportion of the variability in the values of the original variables using the masked variables.  

 



 
 

As an illustration, consider the sub-group Gender = 0, Marital = 0, and Age = 1. The mean and standard deviation of the 

Home value variable in this sub-group are 2.872 and 8.643, respectively. With only this information, for any observation in 

this sub-set, the best prediction of a 99% interval estimate of the true value of the Home value variable would have an 

interval of approximately (3 × 8.643). Now assume that the shuffled data is released. The correlation between the original and 

the shuffled home values is 0.03. Hence, if we perform regression analysis to predict the original value of the confidential 

variable using the shuffled values, the resulting R
2
 would be 0.0009 resulting in a standard error of 8.642. Using this 

information, a simple 99% confidence interval would have an interval of approximately (3 × 8.642), which for all practical 

purposes is almost exactly the same as the interval constructed without access to the masked data. In other words, releasing 

the shuffled data does not allow the intruder to estimate the value of the confidential variable with any greater level of 

security. Similar results will be observed for the perturbed data when d = 0.00. 

 

The above result does not hold for the other two perturbation parameters (d = 0.50, 0.90). When d = 0.50, if we perform a 

regression analysis to predict the original Home value variable using the perturbed values, the resulting standard error is 

7.485. A 99% confidence interval estimate would have an interval of approximately (3 × 7.485). This implies that the 

intruder is able to gain a more accurate estimate compared to not having the perturbed values. When d = 0.90, the resulting 

standard error from the regression analysis is 3.767. If we construct a 99% confidence interval using this information, it 

results in an interval of approximately (3 × 3.767). Compared to the original interval, the width of this interval is less than 

50% of the original width. This allows the intruder to gain far more accurate estimate of the value of the confidential variable.  

 

Thus, an intruder would have a much better estimate of the original values when the data is masked using the perturbation 

approach with d = 0.50 and 0.90. In conclusion, when considering disclosure risk, because of their inherent property of 

conditional independence, data shuffling and perturbation with d = 0.00 perform better than perturbation with d = 0.50 and 

0.90. If disclosure risk were the only criterion, data shuffling and perturbation with d = 0.00 would be the preferred methods.  

 



5.1.2. Assessment of Information Loss  In assessing information loss, the first step was to assess the extent to which the 

marginal distribution of the (entire) masked data set resembles the original data set. We know that, for the entire data set, 

data shuffling maintains the marginal distribution of the masked variables to be exactly the same as that of the original 

variables. By contrast, the SBLM approach is capable of maintaining the marginal distribution of the variables only when the 

variable has a normal distribution. In this example, Home value and Mortgage balance were non-normally distributed, while 

the Net assets variable was normally distributed. Figure 1 shows the marginal distribution of the original Home value 

variable and the variable masked using the 3 linear perturbation models. We did not include the shuffled data since the 

marginal distribution of the shuffled data will coincide exactly with the original data. As expected, the marginal distributions 

of the original and shuffled variables are identical. Also as expected, the marginal distribution of the variable masked using 

the linear model with d = 0 differs most from the original variable. It is easy to see that greater the influence of X (greater the 

value of d), the closer the marginal distribution of the masked data to the original data. One of the problems with the SBLM 

approach is that while the original variables are always positive, the masked variables may have negative values. Figure 2 

provides the marginal distribution of the Mortgage balance variable. The results are similar to those observed for Home value 

variable. Finally, Figure 3 provides the marginal distribution of the original and 3 perturbed data sets. In this case, since the 

marginal distribution of Net Asset value was normal, all the masked variables maintain the marginal distribution to be the 

same as the original variable.  

Figure 1. Marginal Distribution of Home Value
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One of the attractive features of the data shuffling procedures is that the marginal distribution of the shuffled data within any 

sub-group defined by the non-confidential categorical variables is exactly the same as that of the original variable. This is 

not true for the other approaches. The marginal distribution of the perturbed data are different from that of the original data 

for sub-groups as well. To illustrate this, consider the case for the sub-group where Gender = 0, Marital Status = 0, and Age = 

1. Figure 4 provides the marginal distribution of the original and the 3 perturbed data sets for the Home value variable. 

Again, we do not provide the shuffled data since it will coincide exactly with the original data. As can be seen from this 

example, the marginal distribution of the perturbed data differs considerably from the original data even when d = 0.90. Thus, 

the “addition of noise” results in a marginal distribution that is closer to normality than the original data. Note that, for the 

Net Assets variable, the marginal distribution of all the masked variables for all the sub-groups will be similar since the 

original variable was normally distributed.  



Figure 2. Marginal Distribution of Mortgage Balance
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Figure 3. Marginal Distribution of Net Asset Value
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As discussed earlier, one other attractive feature of all the methods considered in this study is that the mean and variance of 

all the variables in every sub-group defined by the non-confidential categorical variables will be exactly the same as that of 

the original data. Hence, we see no reason to provide this data. However, in addition to maintaining the mean and variance, 

the shuffled data maintains all the univariate marginal characteristics of the masked data to be the same as that of the 

original data.  

 

 



Figure 4. Marginal Distribution for Original and Perturbed Home values in a Sub-Group 

(Gender = 0, Marital = 0, and Age = 1)
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To assess the extent to which the methods maintain relationships among variables, we computed the product moment 

correlation between the variables in the entire data set as well as in each sub-group. The results of this analysis are provided 

in Table 3. As expected, the product moment correlations of the original data and those of the perturbed data are exactly the 

same for the data set as a whole and for every sub-group. The shuffled data does not provide exactly the same results, but the 

product moment correlations of the shuffled data and those of the original data are very similar for the data set as a whole 

and for every sub-group. Thus, in terms of maintaining product moment correlation, the SBLM approach seems to perform 

better than the shuffling approach. This is expected since the SBLM approach is intended to maintain first and second order 

moments (and consequently correlation) among the variables. However, this does not necessarily mean that it is superior to 

data shuffling as the following discussion shows. 

 

Consider the relationship between the variables Mortgage balance and Net asset value. Figure 5 provides a scatter plot of the 

original values with Net asset values on the X-axis and Mortgage balance on Y-axis. It is clear from this figure that the 

relationship between the two variables is non-linear. In cases where the relationship is non-linear, product moment 

correlation which measures only the linear relationship is not an appropriate measure. The product moment correlation for 

these two variables in the data set is 0.719 and all three perturbed values maintain this correlation. By contrast, the correlation 

between the corresponding shuffled variables slightly different (0.718).  

 

Now consider a plot of the perturbed values of Mortgage balance and Net asset values (with d = 0.00) overlaid on top of the 

original scatter plot (Figure 6). Figure 6 clearly indicates that the perturbation approach has considerably modified the 

relationship between the variables; the original relationship was non-linear while the perturbed data is almost linear. A plot of 

the shuffled values of Mortgage balance and Net asset values overlaid on the original data is shown in Figure 7. This figure 

clearly indicates that the shuffled data maintains the (monotonic) non-linear relationship between the two variables better 

than the perturbed data. Thus, although the SBLM approach maintains the product moment correlation exactly, it does not 

necessarily maintain non-linear relationships between the variables. By contrast, while the shuffled data does not maintain the 

product moment correlation exactly, it is capable of maintaining monotonic non-linear correlations much better than the 

perturbed data. 
 



 
 

Figure 5. Scatter plot of Net Asset Value and 

Mortgage Balance (Original)
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Figure 6. Scatter plot of Net Asset Value and 

Mortgage Balance (Original and Perturbed)
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Figure 7. Scatter Plot of Net Asset Value and 

Mortgage Balance (Original and Shuffled)
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In situations where the relationship is non-linear, in place of product moment correlation, rank order correlation is used to 

measure the strength of the relationship. The results provided in Table 4 indicate that, in general, the shuffled data maintain 

rank order correlation better than the perturbed data. This is to be expected since the shuffling procedure attempts to maintain 

all monotonic relationships, while the SBLM approach only deals with linear relationships. Note that the shuffling procedure 

is able to maintain the rank order correlation of the masked data to be very close to that of the original data both at the overall 

and sub-group level. This is a significant advantage of the shuffling approach over the SBLM approach. It is also important to 

note that any approach based on linear models (simple additive noise, Kim’s method, multiple imputation, among others) are 

susceptible to the same “linearization” of non-linear relationships. Currently, only data shuffling offers the ability to maintain 

monotonic relationships among variables. 

 

5.2. Census Data 
In the previous example, we used a simulated data to highlight the strengths and weaknesses of the two procedures. In this 

section, we illustrate the applicability of the two procedures to any data set by considering the often used “Census Data”. The 

original Census Data consists of 13 variables and 1080 observations. Of the 13 variables, the variable called PEARNVAL 

(Total personal earnings) equals PTOTVAL (Personal total income) – POTHVAL (Total other person’s income). Hence, 

rather than using all 3 variables, we only used PEARNVAL in the analysis. Since all 13 of the variables were numerical, in 

order to illustrate the performance of these procedures for sub-groups, we converted 3 variables (AFLNWGT – Final weight, 

EMCOMTRB – Employer contribution, and PEARNVAL – Total personal earnings) to categorical variables. For each 

observation, if the value of each of these variables was less than the average for the entire data set, the value of the 

corresponding categorical variable was specified as 0 otherwise as 1. This resulted in a total of 8 possible combinations (sub-

groups). We used shuffling and perturbation (d = 0.00, 0.50, and 0.90) to mask the data.  

 

5.2.1. Assessment of Disclosure Risk  As before, we assessed identity disclosure risk using the procedure described in Fuller 

(1993). The results of this assessment are provided in Table 5. As with the simulated data set, it is easy to see that the 

shuffled data and perturbed data (d = 0.00) provide the lowest risk of identity disclosure, with just one or two records being 

identified in each sub-group. The other two perturbed data sets do not fare quite as well. Using the perturbed data with d = 

0.50, an intruder could identify a greater proportion of individuals in each sub-group. With the perturbed data with d = 0.90, 

the level of identity disclosure is extremely high.  

 

In terms of value disclosure, the width of the confidence interval estimate for the perturbed data with d = 0.00 is exactly 

100% of the original width. For the shuffled data, the width of the confidence interval is very close to 100% of the original 

data. For perturbed data with d = 0.50, the width of the confidence interval is 86.6% [(1 – 0.5
2
)
0.5
] of the width of the original 

interval. The width of the confidence interval for the perturbed data with d = 0.90 is only 43.6% [(1 – 0.9
2
)
0.5
] of the original 

width. Thus, the shuffled data and perturbed data with d = 0.00 minimize the risk of value disclosure. The perturbed data with 

d = 0.50 results in value disclosure which may be considered acceptable. The value disclosure risk resulting from the 

perturbed data with d = 0.90 is very high and allows the intruder to estimate the values of the confidential variables with 

much greater accuracy than without access to the data.  



 
 

 
 

5.2.2. Assessment of Information Loss  As in the case of the simulated data, all masked data maintain the following 

important characteristics. The mean and variance of the masked data are exactly the same as that of the original data for the 

entire data as well as for every sub-group. In addition, for the shuffled data, the marginal distributions of all the variables 

are exactly the same for the entire data set as well as for every sub-group. This is not true for the perturbed data. As before, 



the marginal distribution of the perturbed data are considerably different from the original data. Figure 8 shows the marginal 

distribution of the original FEDTAX variable along with the three perturbed values. 

 

 

Figure 8. Marginal Distribution of FEDTAX Variable
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The figure clearly shows that the marginal distribution of all three perturbed variables differs from the original variable. One 

problem with the SBLM approach is that while all the values of the original variable are zero or higher, the perturbed values 

are negative. Given the nature of the data set, it would be practically impossible not to have negative values when the data is 

perturbed. 

 

Figure 9 shows the marginal distribution of the original and perturbed data for the INTVAL variable for the first sub-group 

(when the value of all the categorical variables is zero). The marginal distribution of the perturbed values are very different 

from the original values. As with the previous example, there are many negative values while the original variable does not 

consist of any negative values. While we have limited our discussion to this particular variable for one sub-group, this 

behavior is observed for practically all variables in all sub-groups. In our opinion, this is a significant problem with the 

perturbation approach. We also experimented with using alternative distributions for the noise term. The results however are 

similar to those observed in these cases.  

 

One major advantage of the shuffling approach is that for all variables and all sub-groups, the shuffled data have exactly the 

same marginal distribution as the original variables. When the data is shuffled, users will be able to analyze individual 

variables within sub-groups without any information loss. SBLM at least maintains the mean and variance of the variables 

within the sub-groups. The other procedures (simple additive noise, Kim’s method, multiple imputation, micro-aggregation, 

and swapping) do not typically maintain even mean and variance. Thus, from the perspective of univariate analysis of the 

masked data for the complete data set and sub-groups, data shuffling provides the best alternative among existing procedures.  

 

As in the previous example, we analyzed both product moment and rank order correlation among the variables. In this case, 

with as many as 8 variables, there are a total of 21 different correlations to be considered for each of the 8 sub-groups and 4 

methods. For the sake of brevity, we did not reproduce the entire set of results. Instead, Table 6 provides the product moment 

correlation of FICA (Social security deduction) and WSALVAL (Annual total wage and salary). We selected this particular 

example because of the fact that in one of the sub-groups, the correlation among the two variables is exactly 1.0. The results 

in Table 6 are similar to those observed for the simulated data. The perturbed data maintains the product moment correlation 

to be exactly the same for the overall data set and for each sub-group. The product moment correlation of the shuffled data, 

while very close to the original data, is not exactly the same.  



Figure 9. Marginal Distribution of INTVAL Variable for Sub-Group 1
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As observed earlier however, we do not believe that the product moment correlation is the best method for assessing the 

relationship among these variables. Figure 10 provides a scatter plot of the FICA and WSALVAL variables for the entire data 

set. The plot shows a clear non-linear relationship among the variables. Similar results were observed for practically all the 

variables. Hence, we computed the rank order correlation among the variables as an additional measure of information loss. 

The results are presented in Table 7.  

 

The results in Table 7 clearly indicate that the shuffled data maintains the rank order correlation among these two variables 

better than the perturbed data for the overall data set as well as for practically every sub-group. Note that the data shuffling 

procedure is able to maintain the perfect correlation among the variables in sub-group 2 as does the perturbed data with d = 

0.00. Thus, as expected, in addition to maintaining linear correlation, data shuffling performs better in maintaining non-linear 

relationships among variables while the perturbed data do not.  

 

 



Figure 10. Scatter Plot of WSALVAL and FICA (Original Data)
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5.3. Summary of Results of the Empirical investigation 

The results of the empirical investigation can be summarized as follows.  

 

Data Shuffling: 

(1) Disclosure risk is minimized,  
(2) The marginal distribution of the shuffled data is exactly the same as that of the original data for the 

complete data set as well as for every sub-group, and 

(3) The rank order correlation of the shuffled data is very similar to that of the original data for the 
complete data set as well as for every sub-group.  

 

SBLM: 

(1) Disclosure risk is minimized for the perturbed data set when d = 0, but not in the other cases.  
(2) The mean vector and covariance matrix of the perturbed data is exactly the same as that of the 

original data for the complete data set as well as for every sub-group. However, the marginal 

distribution of the perturbed data is different from that of the original data,  



(3) The product moment correlation of the perturbed data is exactly the same as that of the original 
data for the complete data set as well as for every sub-group. However, the rank order correlation 

of the perturbed data is very different from the original rank order correlation.  

 

The selection of the specific approach would depend on the characteristics of the data. If the numerical data does not deviate 

significantly from normality and/or we are only interested in estimating linear relationships among variables, then the SBLM 

perturbation approach may be preferred since it offers the advantage that the results of traditional statistical analyses 

conducted on the masked data would yield exactly the same results as those using the original data. However, if the data is 

known to be non-normal and/or we are interested in estimating non-linear monotonic relationships, then shuffling would be 

preferred since it maintains the marginal distribution exactly and is also capable of maintaining monotonic non-linear 

relationships among variables. In practice, since data sets that exhibit multivariate normality are not very common, data 

shuffling would generally be the preferred approach.  

 

6. Conclusions 

 

In recent years there has been considerable research in the development of techniques for masking numerical data. The 

performance of these techniques both in terms of disclosure risk and information loss is better than those of most existing 

techniques. In this study, using both theoretical and empirical analyses, we evaluate the performance of two sets of 

techniques. In the empirical analysis, we use both simulated and real data. The results of the analyses clearly indicate that the 

shuffling and perturbation techniques put forth by this study offer several advantages in terms of minimizing information loss 

that none of the other techniques can match. In terms of disclosure risk, data shuffling and perturbation with d = 0.00 

minimize the risk of both value and identity disclosure.  

 

These techniques have however, received a lukewarm reception (if that) from most government agencies. The following 

other explanations are also often offered: 

 

(1) “This is too complicated to work in practice” – In our opinion, this is an indefensible argument 
since in almost every case where we have heard this statement the techniques in question have 

never been tried. Our response to this explanation would be “How would you know if you never 

tried?” 

(2) “Your technique is based on assumptions that will not be met in real data sets.” –  It is true that 
many of the newer techniques are model based. However, this does not mean that they will 

perform poorly when the assumptions are not met. More importantly, just because the simpler 

techniques are not model based does not automatically make them perform better. To paraphrase 

Fienberg et al. (1998) it is better to make certain assumptions regarding the data set since “we 

believe that this would be far preferable to throwing our hands up in despair or resorting to total ad 

hockery.” 

(3) “The procedures you have described will not maintain certain types of relationships. We think that 
micro-aggregation and data swapping will.” – This is a very interesting statement which is made 

possible by the very fact that the newer techniques are theoretically based and allow us to make a 

priori statements regarding their performance. This very advantage is often used as a key to 

disallow their performance. Consider the following facts. Data shuffling maintains product 

moment and rank order correlation while data swapping results does not. What possible reason 

could there be to believe that data swapping will perform better than data shuffling when it comes 

to other types of relationships?  

(4) “Users will not accept this procedure.” – Another one of those arguments that cannot be refuted by 
individuals outside the agency because they do not have access to the data available with agencies. 

However, we believe that if the users are offered a choice between a complicated technique that 

offers better performance and a simpler one that offers poor performance, they will choose the 

complicated technique.  

 

We agree that, compared to some procedures such as micro-aggregation and data swapping, these techniques may be 

perceived as substantially more difficult to implement. However, the degree of complexity is not much more than 

that of say multiple imputation. We would also like to believe that some of the resistance to accepting these 

procedures can be attributed to a lack of familiarity. We are hoping that this presentation will alleviate some of the 

familiarity problems.  



When a government agency implements a less than optimal technique for masking data, the eventual losers are the 

individuals or organizations about whom data has been gathered and the users of the data. Settling for an “easy to implement” 

technique like micro-aggregation would result in a level of information loss that makes the data practically useless. At the 

same, the released data is susceptible to very high disclosure risk. By contrast, while the techniques recommended in this 

study are not perfect, they provide the users with certain assurance regarding the usefulness of the data. Simultaneously, they 

also provide the government agency with strong assurances against identity and value disclosure. It is our hope that we have 

provided a convincing argument for the use of these advanced techniques for masking numerical data.  
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