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Introduction 
 

Before releasing estimates for publication, most period surveys systematically review their computed 
estimates.  Macro-editing is an identification process used to determine whether outlying estimates are the 
results of uncorrected respondent or data capture errors or are in fact values that provide useful information 
(e.g., indicators of change in target estimates).  Such identification is generally performed after completing 
micro-level review, during which the individual questionnaire returns are scrutinized and corrected on a 
flow basis.   At the macro-level review phase, distributions of tabulated cell estimates are reviewed, within 
both the current collection period and in contrast to corresponding prior period estimates.  Once outlying 
cell estimates are flagged, analysts review the micro-data within these cells -- often focusing on the most 
influential reporting units -- and make any necessary corrections. 
 
The majority of the statistical macro-editing techniques rely on distributional analyses, attempting to isolate 
atypical estimates.  Survey data estimates rarely have known parametric distributions.   Moreover, 
quantitative economic data are often best assessed via ratio comparisons of totals (e.g. current to prior 
estimates, wage per employee).  Consequently, macro-editing techniques that utilize survey data must 
employ non-parametric or robust methods.  Moreover, since the original set of estimates will contain 
outliers, these methods should be resistant.  As always with data sets containing multiple outliers, macro-
editing may be subject to two types of outlier-identification problems:  masking and swamping.  Masking 
occurs when the presence of several outliers makes each individual outlier difficult to detect. Swamping 
occurs when multiple outliers cause the procedure to erroneously flag too many observations as outliers.   
 
Ratio comparisons are often quite effective at identifying outlying estimates, but can lead to redundant 
analyst work since often the same estimation cells are repeatedly identified using different sets of estimates.  
A multivariate outlier detection method that simultaneously considers all key estimates to identify all (or 
most) outlying estimation cells could save considerable time. Using data from the 2002 and 2003 data 
collections of the estimates collected from the U.S. Census Bureau’s Annual Capital Expenditures Survey 
(ACES), Thompson (2007) presented promising preliminary results for bivariate comparisons with 
applications of the Hidiroglou-Berthelot edit (Hidiroglou and Berthelot, 1986) and with resistant fences 
methods, and had some success with multivariate outlier detection methods by applying a robust 
Mahalonobis distance measure.   
 
This paper continues the evaluation presented in the earlier paper, by applying these recommended 
techniques to subsequently collected ACES data in addition to data from two different economic programs 
administered by the U.S. Census Bureau.  The objective of this study was to determine whether any of the 
previously recommended methods could be successfully utilized with few modifications by other programs.  
If so, these methods could be incorporated into our directorate’s Standard Economic Processing System 
(StEPS).   Analysts could apply these methods to stored estimates as part of the review process.  Note that 
we do not advocate any outlier-treatment procedure as a result of macro-editing.  This analysis is designed 
simply as an additional stage of estimate validation, for the purposes of analyst identification (and possible 
review of micro-data). 
 
In the next section, we present the methodology used, including the outlier detection methods, the 
evaluation procedure, and the evaluation methodology.   We then present case studies from three periodic 
economic surveys:  one survey that employs a very typical design and estimation procedure, but collects 
fairly atypical economic data (ACES); one survey that collects representative economic data, but utilizes a 
less typical design strategy and employs a very atypical estimation procedure (the Quarterly Financial 

                                                 
1 This report is released to inform interested parties of ongoing research and to encourage discussion of 
work in progress.  Any views expressed on statistical, methodological, or operational issues are those of the 
authors and not necessarily those of the U.S. Census Bureau. 
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Report, or QFR); and one survey that has a very conventional design and estimation procedure and collects 
representative economic data (the Quarterly Services Survey, or QSS).  Finally, we make a few concluding 
comments and recommendations for future research. 
 
Methodology 
Outlier Detection Methods 
Bivariate (Ratio) Comparison Methods.  Bivariate macro-level analyses perform two types of (estimate) 
comparisons:  current cell ratio tests and historic cell ratio tests.  Current cell ratio tests are designed to 
detect extreme observations within the current collection period in the context of the entire survey, by 
comparing two different item estimates from the same data set (current period data) in the same estimation 
cells.  More formally, let iCY ,

ˆ  and iCX ,
ˆ be the survey estimates of two highly correlated items from 

estimation cell i, both collected at current time t. The current cell ratio iCR ,
ˆ  is the quotient of 

iCY ,
ˆ and iCX ,

ˆ , and the complete set of these current cell ratios is denoted }.,ˆ{ˆ
, iR iCC ∀=R   Historic cell 

ratio tests are designed to detect extreme fluctuations in corresponding survey estimates between 
consecutive time periods, formally comparing the value of an estimate t

iŶ  ( iCY ,
ˆ= as defined above) to its 

corresponding prior period value .ˆ 1−t
iY  The complete set of historic cell ratios for item P  is denoted 

}.,ˆ{ˆ
, iR iPP ∀=R   

 
A traditional “ratio edit” compares the ratio of two items to predetermined edit limits (tolerances).  This 
type of edit can be quite problematic with periodically collected data.  For example, when the distribution 
of current cell or historic cell ratios is very positively skewed, then outliers on the left tail of the 
distribution are often undetectable with traditional robust (or even resistant) outlier detection methods.  
Equally problematic, unless ratio edit tolerances are developed within some type of unit-size classification, 
the variability of the ratios can be quite large, and the tolerances will need to be accordingly wide.  When 
this happens, too many small estimates are erroneously flagged as outliers, and not enough large units will 
be considered.  Hidiroglou and Berthelot (1986) refer to this as the “size masking effect” because the 
variability of ratios from smaller estimation cells is often legitimately larger than the variability of ratios 
from larger estimation cells.   
 
Their Hidiroglou-Berthelot (HB) edit is an edit procedure that is specifically designed to address these two 
outlier-detection problems for distributions of ratios that are strictly positive.   The HB edit performs the 
following series of transformations on the original distribution of current or historic cell ratios prior to 
outlier identification: 

• Centering transformation  
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where m is the median of the ordered distribution of ratios as defined in Section 2.1.2. above. 
 

• Magnitude transformation  
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where R̂ is an industry-average or median current cell ratio2 and 0 ≤ U ≤ 1.  The industry-average 
ratio ensures that both of the two current cell ratio items are converted to the same units of measure 
(e.g., a wage per employee ratio).   

                                                 
2 In our applications, R̂ = m.    
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The exponent U “provides control on the importance associated with the magnitude of the data” 
(Hidiroglou and Berthelot, 1986).  For example, U ≥ 0.5 will greatly compress large values of ratios 
(generally obtained from smaller units) and will leave smaller values of ratios virtually unchanged.  
Following the recommendations of Thompson (2007), Sigman (2005), and Banim (2000), we consider 
values of U = 0.30 and 0.50.  Outliers are identified as values smaller than (Em – CdQ1) or larger than (Em + 
CdQ3), where Em is the median value of the Ei, C is a parameter that controls the width of the acceptance 
interval (obtained subjectively, through trial and error), |)|,( 11 mQmQ AEEEMAXd −= and 

|)|,( 33 mmQQ AEEEMAXd −= .  The A parameter in the dQ1 and dQ3 terms avoids nearly-zero limits 
when the absolute distance from the Em to EQ1 (the first quartile of the transformed ratios) or from Em to EQ3 
(the third quartile of the transformed ratios) is quite small.  We used A =0.05 in the applications described 
in Section 3 and consider C=10 and C=20 in all applications. 
 
The HB edit requires that both estimates in the ratio edit are positive.  This requirement is often satisfied 
with economic data items such as sales/receipts or expenditures.  As an alternative outlier-detection method 
for real-valued estimates, we consider asymmetric fences rules (Thompson, 1999).   Given an ordered 
distribution of current or historic cell ratios, let q25 = the first quartile, q75 = the third quartile, m = the 
median, and H = (q75 – q25), the interquartile range.  Asymmetric Fences rules flag ratios less than q25 – k × 
(m - q25) or greater than q75 + k× (q75 - m) as outliers, elongating the outlier-cutoff rule in the direction of 
the distribution’s longer tail: k =3 defines inner fences and k = 6 defines outer fences (c.f., k to the C 
parameter in the HB edit).  Since they are based on quartiles, resistant fences rules are designed to reduce 
masking; the statistician controls the swamping via the number of interquartile ranges between the quartiles 
and the fences.   Asymmetric fences rules are applied to the original (untransformed) distributions of ratios. 
When distribution of ratios has wide variation (e.g., both items are not highly correlated), then the 
asymmetric fences rules will be quite prone to the “size-masking effect” mentioned above. 
 
Multivariate Outlier Detection Methods.  With multivariate outlier detection, we consider p variables 
jointly to identify estimation cells that have outliers in several different variables. Graphically, an ellipse is 
placed around the data and the estimation cells that fall outside of the ellipse are flagged as outliers.  The 
Mahalanobis distance statistic is the classical method used to identify outliers in Rp from a randomly 
sampled dataset (X= {x1, x2, … xn}), where xi

/ = (xi1, …,xip), assumed drawn from a multivariate normal 
distribution with mean µ and covariance Σ, estimated respectively by T(X) and C(X). The Mahalanobis 
distance for each observation is given as ))()(())(( ′−−= XXX TxCTxMD iii .  The distance MDi 
measures how far each xi is from the center of the cloud of data, while taking into account the cloud’s 
shape.  Outlying observations are identified by comparing the computed MDi to a 2

pχ critical value.   
 
The assumption of multivariate normality with economic micro-data is somewhat questionable, although 
multivariate lognormality is fairly common when all estimates are strictly positive.  For macro-editing, we 
compare distributions of sample estimates, each in itself a function of a sample mean and can very loosely 
invoke a Central Limit Theorem (then cross our fingers) to assume multivariate normality. 
 
The classical Mahalanobis distance is prone to masking effects because of the weak resistance from the 
parametric estimators for T(X) and C(X).    We use the minimum volume ellipsoid (MVE) measure 
(Rouseeuw and Zomeren, 1990) to develop robust estimates of T(X) and C(X) with approximately 50% 
breakdown points.  T(X) is determined from the center of the MVE covering half of the observations and 
C(X) is determined by the same ellipsoid after applying a correction factor.  This method should have low 
incidence of masking because of their high breakdown points.  Given the questionable assumption of 
normality in our case study data sets, we consider two variance stabilizing power transformations as well as 
applications to the original sets of estimates:  the log-transformation3 and the cube-root transformation. 
 
                                                 
3 In two of our three case study data sets where all estimates are strictly positive. 
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Evaluation Methodology 
Preliminary Analysis and Classification. Each case study uses estimates constructed from consecutive 
data collections in the same programs.  The input data are constructed from weighted reported data, with 
edited values substituted for missing reported data items.   As the first step of the evaluation, we classified 
each separate estimate in the input data set into the following categories by comparing the percentage 
difference of the input data estimate to its corresponding final data estimate.  If the data item is strictly non-
negative (e.g., capital expenditures, sales), then we classified each estimate as an outlier or not an outlier 
based on an analysis of each collection period’s distribution of percentage difference for each item.  
Specific classification rules are included with each separate analysis. If the item could take on any real 
value (e.g., net income before taxes), then we classified each estimate as  
 
Outlier (O) The percentage difference between the input and final data estimates in this cell 

was greater than the robust confidence interval defined by ( ),2 WTR σ± where 

TR is the 10-percent trimmed mean of the distribution of percentage differences 
and σW is the10-percent trimmed mean standard error (based on the 10-winsored 
sum of standard deviations). 

Not an outlier (N)  The item in this cell was not flagged as an  “O.” 
 
An obvious limitation of this classification procedure is the subjective determination of outlier “cut-off” 
values. This decision was data-based, varied by program, and is not meant as a recommendation for other 
data sets.  Recall that the end-use of this evaluation is find outlier-detection methods, and we are not 
advocating any outlier-procedure, simply review of the micro-data. 
 
The final data are constructed from the weighted final edited/corrected data4.  The input data estimates 
are our analysis variables, and the final data estimates are our evaluation variables (i.e., the “gold 
standard” estimates).  Each estimate includes survey-specific adjustments for unit non-response  and outlier 
correction factors as appropriate5. 
 
For current cell ratio tests, all considered estimates are constructed from input data in the same collection 
period.  To obtain sufficiently large sets of outliers in our comparisons, we classified input estimates as: 
 
• Bivariate:  a ratio pair of estimates is an outlier if either the numerator or the denominator is flagged as 

an outlier (O) and is not considered an outlier otherwise. 
• Multivariate:  a set of industry estimates (within the same survey collection) is an outlier if at least one 

estimate is flagged as an outlier (O) and is not considered an outlier otherwise.  
 

For historic cell ratio tests, we compare the input data value in the most recent collection period to its 
corresponding final data value in the prior collection period.  This mimics a production environment, where 
the current period’s cell value would be edited in comparison with the presumably previously validated 
prior period’s corresponding cell value.  Here, we classified a historic cell ratio as an outlier if the 
numerator is either flagged as an outlier (O).  Note that we do not consider multivariate applications to 
historic cell comparisons. 
 
Evaluation Statistics.  Any outlier-detection rule is a hypothesis test, where the null hypothesis is that 
none of the considered estimates is an outlier.  Errors occur in either direction, so that we can define the 
Type I error rate for each outlier detection test as the proportion of non-outlier estimates that are flagged 
as outliers by a given procedure and the Type II error rate for each outlier-detection test as the proportion 
of outlier estimates that are not flagged as outliers by a given procedure.  
 

                                                 
4 Input and final estimates include the same unit non-response adjustment procedures and micro-level 
outlier downweighting factors, as applicable 
5 ACES and QFR adjust estimates for unit non-response; QSS imputes complete records.  ACES estimates 
include a micro-level outlier correction procedure. 
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With a bivariate comparison, the Type I and Type II error rates for individual tests are controlled by 
modifying test rule parameters (i.e., the C and U parameters in the HB edit and the k parameter with 
asymmetric fences rules), recognizing that a decrease in one error rate will result in an increase in the other.   
Granquist (1995) introduces the hit rate (the proportion of flagged estimates that are outliers) as a measure 
of the operational efficiency of a given outlier-detection rule.  When data items are subjected to more than 
one bivariate edit, then the individual edit Type II error rates are a poor measure of the unidentified 
outliers in the completely reviewed data set (Thompson and Sigman, 1999).   The all-item Type II error 
rate, defined as the proportion of outlier estimates that are not flagged as outliers by any ratio test, is a 
better measure.  We compute all-item Type II error rates with respect to the complete set of tested items in 
a set of either current cell or historic cell ratios. 
 
For multivariate analysis, the Type I error rate is the proportion of non-outlier records that are flagged as 
outliers (with respect to the total set of identified non-outliers).  The Type II error rate is calculated 
similarly as with the bivariate tests, but the denominator is the set of records that contain at least one 
outlier estimate.  In this setting, the hit rate is equivalent to (1 - Type II error rate), i.e., the power of the 
multivariate test.  Similarly to the bivariate comparison, we compute the multivariate Type I and Type II 
error rates with respect to the considered estimates (which may not comprise the entire multivariate record).   
 
Case Studies 
 
Annual Capital Expenditures Survey (ACES) 
Background.  The ACES survey collects data about the nature and level of capital expenditures in non-
farm businesses operating within the United States.  Respondents report their expenditures for the calendar 
year in all subsidiaries and divisions for all operations within the United States.  ACES respondents report 
total capital expenditures, as well expenditures on Structures and expenditures on Equipment, hereafter 
referred to as Total, Structures, and Equipment.  All characteristics are further sub-classified by New/Used 
purchases (e.g., New Structures, Used Structures). 
 
The ACES universe contains two sub-populations:  employer companies and non-employer companies.  
Different forms are mailed to sample units depending on whether they are employer companies (ACE-1) or 
non-employer companies (ACE-2).  New ACE-1 and ACE-2 samples are selected each year, both with 
stratified SRS-WOR designs.  The ACE-1 sample comprises approximately seventy-five percent of the 
ACES sample (roughly 46,000 companies selected per year for ACE-1 and 15,000 for ACE-2).  
Responding firms account for approximately 88 percent of the total capital expenditures estimate.  More 
details concerning the ACES survey design, methodology, and data limitations are available online at 
www.census.gov/csd/ace. 
 
This paper examines data collected on the ACE-1 form.  For the ACE-1 component of the survey, each 
company is classified into one industry for stratification, and these industry strata are subdivided into 
certainty and non-certainty size strata, based on primary source of revenue (Stetser et al, 1998).   Sampled 
units are asked to report their information by industry category for the industries in which the company 
participates.  This type of survey is referred to in-house as a “roster” survey, where the number (roster) of 
industries for a given sample unit is unknown until reported.  The roster data are tabulated by the sampled 
units’ self-reported industries.  The ACES collects company level and roster data.  In our analysis, we 
consider only roster data items and only examine estimates of totals. 
 
Because capital expenditures within the same company are generally characterized by low year-to-year 
correlation, historic cell ratio comparisons are ineffective for this survey at both the micro- and macro-
levels.   We concentrate instead on current cell ratio comparisons, examining estimates of Total Capital 
Expenditures, Capital Expenditures on Structures, Capital Expenditures on New Structures, Capital 
Expenditures on Used Structures, Capital Expenditures on Equipment, and Capital Expenditures on New 
Equipment.  None of these estimates can take on negative values.  A zero-valued cell estimate would be 
rare, but is possible.   Our current cell ratio comparisons are Structures/Total (1); New Structures/Structures 
(2); New Structures/Used Structures (3); Equipment/Total (4); and New Equipment/Equipment (5).  
Thompson (2007) demonstrates poor correlation between ratio edit estimates in tests (1), (3), and (4), 
rendering the asymmetric fences methods inappropriate for these tests.   Instead, we utilize the HB edit for 
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the bivariate comparisons, as recommended in Thompson (2007).   For ACES, items whose percentage 
difference between the input and final data estimates in a cell were greater than the 95th percentile of the 
given distribution were classified as outliers.   This appeared to be quite reasonable, as ACES micro-data 
undergo an outlier-detection and correction procedure prior to estimate evaluation, and the majority of the 
ACES micro-editing procedures make “small” changes to the record to satisfy additivity requirements. 
Appendix A presents the counts of estimate classifications for the ACES current cell ratio (bivariate) and 
multivariate comparisons respectively.  Estimates are tabulated by the self-reported (roster) industry. 
 
Current Cell Ratio Comparisons. Table 1 presents the evaluation statistics using the HB edit on the 
individual bivariate tests.  When examining each individual test, it appears that using a conservative value 
of C = 20 best balances the individual Type I and Type II error rates in most cases, and that the “influence 
parameter” value (U) does not have a noticeable effect.  The effectiveness of the actual tests seems to vary 
quite a bit by data collection, with the collective set of ratio edits being quite effective with the 2002 and 
2003 data sets, but are considerably less so with the 2004 and 2005 data sets.  

 
Table 1:  Evaluation Statistics for Bivariate ACES Comparisons 

 Structures/ Total New Structures/ 
Structures 

New Structures/ 
Used Structures Equipment/ Total New Equipment/ 

Equipment 

Year HB 
Parameters 

Type 
I 

Error 
Rate 

Type 
II 

Error 
Rate 

Hit 
Rate

Type 
I 

Error 
Rate

Type 
II 

Error 
Rate

Hit 
Rate

Type 
I 

Error 
Rate

Type 
II 

Error 
Rate

Hit 
Rate

Type 
I 

Error 
Rate

Type 
II 

Error 
Rate 

Hit 
Rate 

Type 
I 

Error 
Rate

Type 
II 

Error 
Rate

Hit 
Rate

U=0.3, c =10 0.04 0.52 0.69 0.13 0.50 0.27 0.10 0.53 0.37 0.00 0.61 1.00 0.02 0.50 0.75 

U=0.3, c =20 0.00 0.57 1.00 0.11 0.50 0.32 0.09 0.53 0.39 0.00 0.61 1.00 0.00 0.75 1.00 

U=0.5, c =10 0.07 0.61 0.50 0.17 0.50 0.22 0.14 0.47 0.32 0.03 0.61 0.69 0.03 0.50 0.60 
2002 

U=0.5, c =20 0.00 0.65 1.00 0.12 0.50 0.29 0.10 0.53 0.37 0.00 0.70 1.00 0.01 0.58 0.83 

U=0.3, c =10 0.10 0.37 0.30 0.08 0.50 0.25 0.09 0.50 0.31 0.05 0.57 0.38 0.07 0.43 0.45 

U=0.3, c =20 0.03 0.30 0.64 0.06 0.25 0.56 0.04 0.44 0.64 0.02 0.46 0.78 0.03 0.45 0.60 

U=0.5, c =10 0.13 0.27 0.40 0.09 0.45 0.25 0.12 0.46 0.25 0.07 0.50 0.38 0.08 0.38 0.45 
2003 

U=0.5, c =20 0.07 0.40 0.40 0.07 0.25 0.53 0.09 0.25 0.55 0.02 0.46 0.78 0.04 0.45 0.55 

U=0.3, c =10 0.05 0.43 0.57 0.11 0.42 0.33 0.10 0.10 0.43 0.02 0.50 0.70 0.01 0.50 0.86 

U=0.3, c =20 0.00 0.50 1.00 0.10 0.42 0.37 0.06 0.20 0.53 0.01 0.71 0.80 0.00 1.00 0.00 

U=0.5, c =10 0.06 0.50 0.50 0.12 0.42 0.32 0.13 0.00 0.38 0.03 0.50 0.64 0.01 0.42 0.88 
2004 

U=0.5, c =20 0.00 0.57 1.00 0.11 0.42 0.35 0.10 0.20 0.38 0.02 0.64 0.71 0.00 0.92 1.00 

U=0.3, c =10 0.07 0.54 0.33 0.17 0.20 0.32 0.10 0.46 0.37 0.08 0.43 0.38 0.06 0.40 0.47 

U=0.3, c =20 0.06 0.69 0.31 0.13 0.20 0.39 0.06 0.54 0.46 0.06 0.64 0.36 0.01 0.47 0.80 

U=0.5, c =10 0.1 0.38 0.33 0.17 0.13 0.34 0.10 0.38 0.40 0.12 0.43 0.30 0.08 0.33 0.43 
2005 

U=0.5, c =20 0.05 0.62 0.38 0.13 0.2 0.39 0.05 0.38 0.57 0.07 0.50 0.37 0.04 0.40 0.60 

 
The influence parameter’s effect is visible when examining all tests jointly with regards to the six tested 
items.  Table 2 presents the All-Item Type II error rates (proportion of unidentified outliers in the data set).  
Here, the smaller value of the influence parameter (U = 0.3) combined with the less conservative critical 
value decision rule (C = 0.10) yields the lower all-item Type II error rates in all but the 2005 data set. 
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Table 2:  All-Item Type II Error Rates (ACES) 
Year HB Parameters Type II Error Rate Year HB Parameters Type II Error Rate 

U=0.3, c =10 0.43 U=0.3, c =10 0.37 

U=0.3, c =20 0.50 U=0.3, c =20 0.48 

U=0.5, c =10 0.45 U=0.5, c =10 0.37 
2002 

U=0.5, c =20 0.50 

2004 

U=0.5, c =20 0.52 

U=0.3, c =10 0.30 U=0.3, c =10 0.27 

U=0.3, c =20 0.33 U=0.3, c =20 0.30 

U=0.5, c =10 0.30 U=0.5, c =10 0.20 
2003 

U=0.5, c =20 0.33 

2005 

U=0.5, c =20 0.27 

 
Here, obtaining a reasonable level of All-Item Type II error rates using the HB edit requires five separate 
ratio tests.  Table 3 presents Type I and Type II error rates for the multivariate outlier-detection procedure 
determined using the MVE technique, with records comprised of four estimates (New and Used Structures, 
New and Used Equipment).  We consider three separate variations here, computing the robust Mahalanobis 
distance on the original data, log-transformed data, and cube-root transformed data.   
 

Table 3:  Multivariate Comparisons (ACES): 
New and Used Structures, New and Used Equipment 

Year Transformation Type I Error 
Rate 

Type II Error 
Rate 

None 0.42 0.46 

Log 0.06 0.48 2002 

Cube-Root 0.27 0.51 

None 0.4 0.15 

Log 0.12 0.25 2003 

Cube-Root 0.22 0.16 

None 0.44 0.23 

Log 0.06 0.42 2004 

Cube-Root 0.31 0.24 

None 0.39 0.04 

Log 0.06 0.69 2005 

Cube-Root 0.23 0.27 

 
Here, the Type I error rates obtained using the original or cube-root transformed data are unacceptably 
high, and the Type II error rates are equally poor.  The results with the log-transformed estimates are more 
promising, with the caveat that their results are derived from smaller sets of ratios than with the other two 
transformations, since zero-value estimation cells must be excluded.   
 
Quarterly Financial Report (QFR) 
Background.  The Quarterly Financial Report (QFR) is a sample survey of companies from the mining, 
wholesale trade, and retail trade sectors having total assets of $50 million or more, and from the 
manufacturing sector having total assets of $250 thousand or more.  The QFR sample is divided into panels 
that are rotated into and out of the survey, and each non-certainty sampled company is interviewed for eight 
consecutive business quarters.  For any given quarter, eight panels selected from up to three different frame 
years are in the survey. Each year, a new sample of corporate tax returns is selected from the most recent 
tax year data.  This new sample is split into four panels.  Each quarter, one of the four new panels is 
introduced, and the panel that has completed all eight interviews is dropped from the survey.  This type of 
rotating panel design yields precise quarterly change estimates. 
 
The sampling frame for the QFR survey comes from the file of United States Internal Revenue System 
(IRS) corporate tax returns.  Every year, the Census Bureau receives a list of corporate tax returns for the 
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previous year from the IRS and classifies all the companies by reported industry (sample industry) and total 
assets.  Companies that have total assets of $250 million or more are included with certainty and are in the 
survey indefinitely. The remaining companies are stratified within sample industry and are further stratified 
within sample industry code by size; the within-industry size strata are referred to as the asset classes.  The 
mining, wholesale trade, and retail trade sectors have one non-certainty stratum per sample industry, 
whereas the manufacturing sector has five non-certainty strata per industry.   
 
It is possible for a QFR company to conduct business in a different industry than indicated by the sampling 
frame.  QFR estimates are tabulated by the company-reported industry, not the sample (frame) industry.  
The revised industry classification is referred to as the enumeration industry.  Classification changes are 
determined when the report is returned.  Estimates of quarterly totals are unweighted means multiplied by 
an estimate of population size for the enumeration industry/size-classification.  This population estimate 
incorporates both industry changes (from the sampling frame) and the rotation scheme.   The QFR variable-
weight estimates are further adjusted for non-response in the enumerated industry and asset class, using 
unweighted inverse response rates as advocated by Vartivarian and Little (2002).  More details concerning 
the QFR survey design, methodology, and data limitations are available online in the source and accuracy 
statement of any publication table (http://www.census.gov/csd/qfr/).  
 
The QFR collects income statement and balance sheet data from each surveyed company.  From this data, 
the QFR publishes several key economic statistics, including quarter-to-quarter percent change in sales as 
well as estimates of total.  The key data items examined here are total sales, net income after taxes (NIAT), 
net income before taxes (NIBT), total assets, and (stockholders’) equity.   A zero-valued cell estimate 
would be rare, but is possible.   
 
NIBT and NIAT are real-valued estimates.  Consequently, we apply asymmetric resistant fences rules 
(instead of the HB edit) to current cell ratio comparisons of NIAT/sales, NIAT/assets, NIBT/assets, 
NIAT/equity, and NIBT/equity.  Although these ratios are extremely important indicators to QFR data 
users, the estimates in each bivariate test are not strongly correlated.  We apply the HB edit to historic cell 
ratios for sales, income, and assets considering data from all four quarters of the 2006 data collections and 
the last quarter of the 2005 data collection.  For QFR, items whose percentage difference between the input 
and final data estimates in a cell were greater than the 95th percentile of the given distribution were 
classified as outliers.  Appendix B presents the counts of estimate classifications for the QFR current cell 
ratio (bivariate) and multivariate comparisons respectively.  Estimates are tabulated by enumerated 
industry. 
 
The examined QFR estimates have a very low incidence of either bivariate or multivariate outliers, 
especially in the first three quarters (2005Q4, 2006Q1, and 2006Q2).  With these quarters’ estimates, the 
Type I error rates will be exaggerated, the hit rates will be nearly zero (since there are generally few or no 
outliers), and the Type II error rates will be zero as well.  
 
Current Cell Ratio Comparisons.  Table 4 presents the evaluation statistics using the asymmetric fences 
rules on the individual bivariate tests.  The extremely low Type II error rates and hit rates in the first three 
quarters are an artifact of the unusually small number of outliers in the data sets. 
 
Clearly, the asymmetric fences rules are less than optimal for outlier-detection with these sets of ratios.  
Recall that these ratio pair estimates are not highly correlated, and that the resultant tolerances can be quite 
wide.  Moreover, the very small number of outlying observations in the first three quarters of data result in 
exaggerated error and hit rate effects.  Given this, the outer fences rules appear to be not entirely 
unpromising for all ratio tests but the NIAT/sales test.  Due to the small number of outliers in the QFR data, 
the all-item Type II error rates do not provide more information, ranging from 0 in 2006Q2 (no outliers) 
and from 0.60 to 1 in the other quarters.  Except for 2006Q3, All-Item Type II error rates are equivalent for 
each asymmetric fences rule (inner, outer) within quarter:  there is a slight improvement in the rates using 
inner fences rules with the 2006Q3 data (0.67 with inner fences compared to 0.78 with outer fences). 
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 Table 4:  Asymmetric Fences Results (QFR) 

NIAT/ Sales NIBT/ Equity NIAT/ Equity NIBT/ Assets NIAT/ Assets 

Collection 
Period Fences Type 

I 
Error 
Rate 

Type 
II 

Error 
Rate 

Hit 
Rate

Type 
I 

Error 
Rate

Type 
II 

Error 
Rate

Hit 
Rate

Type 
I 

Error 
Rate

Type 
II 

Error 
Rate

Hit 
Rate

Type 
I 

Error 
Rate 

Type 
II 

Error 
Rate 

Hit 
Rate 

Type 
I 

Error 
Rate

Type 
II 

Error 
Rate

Hit 
Rate

Inner 0.34 1.00 0.00 0.08 0.00 0.00 0.14 0.00 0.00 0.08 0.00 0.00 0.03 0.00 0.00
2005Q4 

Outer 0.17 1.00 0.00 0.06 0.00 0.00 0.06 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
Inner 0.46 1.00 0.00 0.03 0.00 0.00 0.03 0.00 0.00 0.09 1.00 0.00 0.00 1.00 0.00

2006Q1 
Outer 0.31 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.00 0.00 0.00 1.00 0.00
Inner 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

2006Q2 
Outer 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Inner 0.23 0.40 0.30 0.11 0.88 0.25 0.14 0.86 0.20 0.00 0.88 1.00 0.00 1.00 0.00

2006Q3 
Outer 0.13 0.80 0.20 0.07 0.88 0.33 0.07 0.86 0.33 0.00 1.00 0.00 0.00 1.00 0.00
Inner 0.07 0.50 0.67 0.13 0.83 0.20 0.18 0.56 0.44 0.16 0.80 0.17 0.00 1.00 0.00

2006Q4 
Outer 0.03 0.63 0.75 0.10 1.00 0.00 0.04 0.78 0.67 0.06 1.00 0.00 0.00 1.00 0.00

 
Table 5 presents Type I and Type II error rates for the multivariate outlier-detection procedure determined 
using the MVE technique, with records comprised of the five estimates tested in the above bivariate 
comparisons.  Since NIAT and NIBT are real-valued, we consider two separate variations (original data 
cube-root transformed data).   
 

Table 5:  Multivariate Comparisons (QFR) 

Year Transformation Type I 
Error Rate

Type II 
Error Rate

None 0.29 0.00 
2005Q4 

Cube-Root 0.07 1.00 
None 0.24 0.50 2006Q1 

Cube-Root 0.26 1.00 
None 0.22 0.00 

2006Q2 
Cube-Root 0.27 0.00 

None 0.3 0.67 2006Q3 
Cube-Root 0.12 0.86 

None 0.41 0.45 
2006Q4 

Cube-Root 0.18 1.00 
 
With the QFR data, quite reasonable results are achieved by applying a robust Mahalanobis distance to the 
original data.  In fact, the multivariate results represent a substantial improvements over the combined 
univariate results in terms of (All-Item) Type II error rates. 
 
Historic Cell Ratio Comparisons.  As mentioned above, QFR publishes estimates of change for key 
quarterly statistics.  Analysts review the quarterly estimates prior to release.  For our historic cell ratio 
comparisons, we apply the HB edit to estimates of sales, assets, and equity.  Appendix B presents the 
counts of estimate classifications for the QFR historic cell ratio (bivariate). 
 
Table 6 presents the Type I error rates for each of the bivariate tests.  The Type II error rates and hit rates 
are not displayed:  for change periods when the Type I error rate is zero, the Type II error rate is also zero 
and the hit rate is undefined (no outliers); for change periods when the Type I error rate is greater than zero 
(2006Q3 to 2006Q2 and 2006Q4 to 2006Q3), the Type II error rates are 100-percent and the hit rates are 
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zero.  Due to the small number of outliers in these data sets, all sets of error rates are quite exaggerated, 
although there is some evidence that the HB edit is effectively identifying outliers (when they exist) with 
U=0.5 and C = 20.   
 

Table 6:  Type I Error Rates for QFR Historic Ratios 
Item Change 

Period HB Parameters 
Sales Assets Equity 

U=0.3, c =10 0.09 0.09 0.03 
U=0.3, c =20 0.06 0.03 0.03 
U=0.5, c =10 0.06 0.03 0.03 

2006Q1 
to 

2005Q4 
 U=0.5, c =20 0.03 0.03 0.03 

U=0.3, c =10 0.06 0.09 0.06 
U=0.3, c =20 0.00 0.03 0.03 
U=0.5, c =10 0.00 0.03 0.04 

2006Q2 
to 

2006Q1 
U=0.5, c =20 0.00 0.00 0.00 
U=0.3, c =10 0.00 0.00 0.00 
U=0.3, c =20 0.00 0.00 0.00 
U=0.5, c =10 0.00 0.00 0.00 

2006Q3 
to 

2006Q2 
 U=0.5, c =20 0.00 0.00 0.00 

U=0.3, c =10 0.00 0.00 0.00 
U=0.3, c =20 0.00 0.00 0.00 
U=0.5, c =10 0.00 0.00 0.00 

2006Q4 
to 

2006Q3 
U=0.5, c =20 0.00 0.00 0.00 

 
Industry estimates of assets and stockholders equity tend to be fairly constant between quarters, so the 
results displayed in Table 6 are not particularly surprising to our subject-matter experts – in fact, they are 
expected, and provide a bit more evidence of the effectiveness of this edit technique for change estimates of 
sales (which tend to be more variable). 
 
Quarterly Services Survey (QSS) 
Background. The Quarterly Services Survey is a voluntary economic indicator survey whose primary 
purpose is to provide timely estimates of quarterly receipts (published about 75 days after the end of the 
reference quarter) and early estimates of calendar year receipts for selected service sectors.   Currently, the 
QSS covers the following North American Industry Classification System (NAICS) sectors: Information; 
Professional, Scientific, and Technical Services; Administrative and Support and Waste Management and 
Remediation Services; and Hospitals and Nursing and Residential Care Facilities. 
 
Approximately 5,000 sampling units were selected for the initial QSS sample.  Sample maintenance 
activities are performed each quarter.  During this process, out-of-business units are identified and removed 
from mailing; and newly formed sampling units are identified, subjected to a two-phase sampling process, 
and selected units are added to the sample.  The questionnaire for every NAICS code collects quarterly 
receipts, receipts by class of customer, and reporting period if the reported receipts are not for the calendar 
quarter.    If a unit does not respond or does not report receipts, a value is imputed based on other survey 
data and administrative records.  Further details about QSS are at 
http://www.census.gov/indicator/qss/qsstechdoc.pdf.   QSS collects receipts from all six-digit industries, 
and collects receipts and expenses from the Hospitals and Nursing and Residential Care Facilities sector.  
Since the latter sector comprises only four six-digit industries, we confine our analysis to historic cell 
comparisons of receipts, which are always positively value.  We apply the HB edit to historic cell ratios for 
receipts considering data from the 2005 QSS data collection.   For QSS, items whose percentage difference 
between the input and final data estimates of receipts a cell were greater than the 90th percentile are 
classified as outliers.  Appendix C presents the outlier counts for the QSS data. 
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Since we are confined to one analysis variable with QSS (other analysis variables are derived from edited 
totals or are only collected in one sector), we restrict our QSS analysis to a historical cell ratio comparison. 
 
Historic Cell Ratio Comparison.  Table 7 presents the Type I and Type II error rates for each historic cell 
ratio test along with its associated hit rate. 
 
Table 7:  Evaluation Statistics for QSS Historic Cell Ratios (90th Percentile Outlier Cut-off) 

Change 
Period 

HB 
Parameters 

Type I Error 
Rate Type II Error Rate Hit Rate 

U=0.3, c =10 0.00 1.00 0.00 
U=0.3, c =20 0.00 1.00 0.00 
U=0.5, c =10 0.00 1.00 0.00 

2005Q4 to 
2005Q3 

U=0.5, c =20 0.00 1.00 0.00 
U=0.3, c =10 0.00 0.25 1.00 
U=0.3, c =20 0.00 0.75 1.00 
U=0.5, c =10 0.00 0.25 1.00 

2005Q3 to 
2005Q2 

U=0.5, c =20 0.00 0.50 1.00 
U=0.3, c =10 0.00 0.00 1.00 
U=0.3, c =20 0.00 0.50 1.00 
U=0.5, c =10 0.00 0.00 1.00 

2005Q2 to 
2005Q1 

U=0.5, c =20 0.00 0.50 1.00 
 
With these data, the evaluations statistics are so “ideal”, in particular with values of c = 10 (the less 
conservative outlier detection rule), that we suspected that they were an artifact of our outlier classification 
procedure.  Table 8 presents the same statistics obtained after reclassifying the individual estimates based 
on the 75th percentile as outlier cut-off (another data-based decision). 
 
Table 8:  Evaluation Statistics for QSS Historic Cell Ratios (75th Percentile Outlier Cut-off) 

Change 
Period 

HB 
Parameters 

Type I Error 
Rate Type II Error Rate Hit Rate 

U=0.3, c =10 0.00 1.00 0.00 
U=0.3, c =20 0.00 1.00 0.00 
U=0.5, c =10 0.00 1.00 0.00 

2005Q4 to 
2005Q3 

U=0.5, c =20 0.00 1.00 0.00 
U=0.3, c =10 0.00 0.63 1.00 
U=0.3, c =20 0.00 0.88 1.00 
U=0.5, c =10 0.00 0.63 1.00 

2005Q3 to 
2005Q2 

U=0.5, c =20 0.00 0.75 1.00 
U=0.3, c =10 0.00 0.50 1.00 
U=0.3, c =20 0.00 0.75 1.00 
U=0.5, c =10 0.00 0.50 1.00 

2005Q2 to 
2005Q1 

U=0.5, c =20 0.00 0.75 1.00 
 
Again, no false outliers are detected.  The effect on Type II error rates is apparent, and shows the same 
pattern.  If there are in fact several outliers in the set of QSS estimates, then the HB edit with u = 0.3 or 0.5  
And c=10 will clearly be very effective in correctly identifying outliers, but will not be completely 
sufficient for data review.  In a production setting, however, it is more likely that the first comparison 
shown in Table 13 is realistic, since estimates will not be examined until micro-editing is complete, and 
large errors in the micro-data are corrected. 
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Discussion 
 
In this paper, we applied a variety of previously-proven outlier detection techniques to sets of estimates 
from three very different economic surveys.  With the ACES data, the degree of statistical association 
(correlation) between estimates is inconsistent from one collection period to another.   With the QFR data, 
the statistical associations between items are more constant both within and between statistical periods, but 
they are quite low for all current cell ratios.  With the QSS data, only one data item can be examined.  
Neither the QFR nor ACES estimates appear to be multivariate normally distributed, although it appears 
that the log-transformed ACES estimates satisfy this condition and that the QFR estimates are sufficiently 
“close to multivariate normal” to use the robust MVE Mahalanobis distance to identify multivariate 
outliers. 
 
When the data items are positively valued and there is some statistical association between tested item 
pairs, the HB edit was generally very effective.  Not surprisingly, the asymmetric fences methods did not 
fare so well when applied to the poorly-correlated QFR current cell ratio tests.  The standardization 
procedure employed by the HB edit provides a clear advantage over the asymmetric fences applications. 
The current cell ratio results for QFR could possibly be improved by applying a power-transformation (e.g., 
the cube-root transformation) to the original ratios to reduce the effect of legitimate large tail values, then 
applying the asymmetric fences rules to the data.   
 
In all of these case studies, the outlier-detection method does not use predetermined limits, but instead 
dynamically identifies outliers in the data set at hand.   This is a tremendous advantage over many 
traditional micro-editing techniques.   Here, however, each outlier-detection method requires “rules” for 
setting the limits, and these rules may very well differ for each comparison.  Ultimately, flexibility will be 
key, since “rules” may need to be modified on a flow basis as a procedure identifies too many or two few 
outliers. 
 
Despite the success of the HB edit with the ACES data current cell ratio tests, we believe that it is worth 
pursuing the use of the minimum volume ellipsoid (MVE) Mahalanobis distance measure to identify 
outliers.  With the ACES current cell ratios, several different HB edit tests were required to achieve 
reasonable all-item Type II error rates.  With both the ACES and QFR data, similar results were achieved 
in one-pass with this robust MVE Mahalanobis distance.  Along the same lines, an automatic procedure 
that flags bivariate pairs via the HB edit tests, then unduplicates records could be equally more effective. 
 
The results presented in this paper demonstrate the need for creativity and flexibility for successful macro-
editing.  Each presented technique had varying success within survey (between data collection periods) and 
between surveys.  Even so, each case study presents methods that worked well for the studied program.  As 
long as the subject-matter experts can spend sufficient preparatory time learning these methods and 
developing item-specific outlier rules, there is quite a bit to recommend further evaluations and perhaps 
even production implementation of these methods on our directorate’s StEPS system. 
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Bivariate Classifications for ACES 

Year Classification Structures/ 
Total 

New 
Structures/ 
Structures 

New 
Structures/ 

Used 
Structures 

Equipment/ 
Total 

New 
Equipment/ 
Equipment 

Not Outlier 123 122 119 123 121 2002 
Outlier 23 12 15 23 12 

Not Outlier 123 119 116 120 121 2003 
Outlier 10 12 16 13 11 

Not Outlier 123 123 124 123 123 2004 
Outlier 14 12 10 14 12 

Not Outlier 163 150 126 161 159 2005 
Outlier 13 15 13 14 15 

 
Multivariate Classifications for ACES 
Year Cell Classification Count 

Not Outlier 127 2002 
Outlier 21 

Not Outlier 129 2003 
Outlier 8 

Not Outlier 138 2004 
Outlier 7 

Not Outlier 171 2005 
Outlier 4 
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Bivariate Comparisons for QFR Current Cell Ratios  
 
 Classification NIAT/ 

Sales 
NIBT/ 
Equity 

NIAT/ 
Equity 

NIBT/ 
Assets 

NIBT/ 
Assets 

Not Outlier 35 36 36 36 36 2005Q4 
 Outlier 1 0 0 0 0 

Not Outlier 35 36 36 35 35 2006Q1 
 Outlier 1 0 0 1 1 

Not Outlier 36 36 36 36 36 2006Q2 
 Outlier 0 0 0 0 0 

Not Outlier 31 28 29 28 29 2006Q3 
 Outlier 5 8 7 8 7 

Not Outlier 29 31 28 32 29 2006Q4 
 Outlier 8 6 9 5 8 

 
Multivariate Comparisons (QFR):  Sales, NIAT, NIBT, Equity, Assets 

Collection 
Period Classification Counts Collection 

Period Classification Counts 

Not Outlier 35 Not Outlier 27 2005Q4 
 Outlier 1 

2006Q3 
 Outlier 9 

Not Outlier 34 Not Outlier 27 2006Q1 
 Outlier 2 

2006Q4 
 Outlier 11 

Not Outlier 36 2006Q2 
 Outlier 0 

 

 
Historic Cell Outlier Counts for QFR 

Item Change 
Period Classification 

Sales Assets Equity 
Not Outlier 35 35 36 2006Q1 

to 
2005Q4 Outlier 1 1 0 

Not Outlier 36 36 36 2006Q2 
to 

2006Q1 Outlier 0 0 0 

Not Outlier 35 34 34 2006Q3 
to 

2006Q2 Outlier 1 2 2 

Not Outlier 35 36 35 2006Q4 
to 

2006Q3 Outlier 2 1 2 
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Outlier Counts for QSS Data 
Item Change Period 

  
Classification 

  Quarterly Revenue 
Not Outlier 29 2005Q4 to 

2005Q3 Outlier 3 
Not Outlier 28 2005Q3 to 

2005Q2 Outlier 4 
Not Outlier 28 2005Q2 to 

2005Q1 Outlier 4 
 


