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At the 2001 FCSM Research Conference, Greene et al. introduced a problem in editing and imputation based on fire data.  

The editing problem consists of imputing values to cells in a 2x2 contingency table subject to extensive item and unit 

nonresponse.  Mathematically, the nonresponse creates an incomplete 2-way table with partial counts for individual cells and 

marginal totals.  Statistically, the problem is to adjust the partial table to a fully populated (imputed) table.  Traditional 

imputation methods such as ratio adjustment and raking are ineffective, as they create imputed cell counts less than observed 

partial counts.  Moreover, in addition to maximum likelihood estimates, it is often desirable to produce a probability sample 

of imputed tables from which confidence intervals and tests of hypotheses regarding potential missing data mechanisms can 

be obtained.  We illustrate a method and efficient software for obtaining a probability sample for the editing problem and the 

general case of a partially-specified contingency table of network type, based on mathematical networks, and discuss 

statistical applications of this methodology. 

 

 

1. Introduction 

 

Imputation of unknown or missing values is an important aspect of research in many application areas.  In cases where 

obtaining the missing data is costly or impossible, imputation techniques can be used to aid in obtaining information or 

identifying patterns by filling in the missing values with derived estimates.  Parameter values can then be estimated for 

incomplete datasets that reflect the characteristics of complete datasets. 

 

In addition to imputation of maximum likelihood estimates, another aspect of missing data analysis is to obtain a probability 

sample of imputed values for partially-specified tables, in order to construct confidence intervals and conduct tests of 

hypothesis regarding missing data mechanisms.  Diaconis and Sturmfels (1998) present an elegant sampling method based on 

Gröbner bases; however, their method does not scale efficiently to high-dimensional tables.  Cox (2007) proposes a method 

based on mathematical networks by constructing a Markov basis for contingency tables of network type involving minimum-

size moves, which avoids creating infeasible solutions, a theoretical improvement and speed up over the Diaconis-Sturmfels 

method. 

 

In this paper, we present an enhanced method and demonstrate efficient software for imputation and sampling of partially-

specified contingency tables, based on mathematical networks.  The method, which we call Network-based Markov Sampling 

and Estimation (NMSE), builds on the ideas set forth by Diaconis and Sturmfels (1998), and Cox (2007), by providing an 

approach that can be easily generalized to n-way tables, and a robust implementation for conducting extensive computational 

studies. 

 

There is a large amount of research on the nature of missing data (see, for example, Little and Rubin (1987), and more 

recently Yuan (2009) for excellent discussions on the topic).  Whether data are missing completely at random (MCAR), or 

data are missing not at random (MNAR), this research seeks to provide a framework for sampling and imputation in both 

cases.  We do not make a statement as to which case is more likely to occur in real data, although we do make a 

recommendation about which imputation method (or family of methods) to use in each case. 

 

In Section 2, we discuss in detail the data editing (imputation) problem and the sampling problem with respect to partially-

specified tables of network type.  We illustrate our discussions with a problem introduced by Greene et al (2001) based on 
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fire incidence data.  In Section 3, we discuss implementation issues and considerations related to the method.  Section 4 

presents the results of our extensive computational study, where we compare our method with other imputation techniques.  

In Section 5, we discuss the results and conclusions, and set forth proposed directions for future research. 

 

 

2. Data editing and sampling in partially specified tables 

 

2.1 The data editing problem 

Suppose we conduct a two-question survey on a population of n++ subjects.  Once we obtain the responses, we tabulate them 

into a partial 2-dimensional table with r rows and c columns.  We denote by mij the observed count of complete responses to 

Question 1, Category i, and Question 2, Category j (full responses). 

 

Let mi,c+1 denote the number of cases that responded to Question 1 only, and whose response to Question 1 fell into Category 

i; similarly, let mr+1, j denote the number of cases that responded to Question 2 only, and Category j within question 2 (item 

nonresponses). 

 

Finally, let mr+1,c+1 denote the number of cases that did not respond to either question (unit nonresponse). 

 

The data editing problem lies in estimating the complete count data, nij, for the full count table given observed complete and 

partial counts.  One approach to solving this problem is to generate a probability sample of integer feasible solutions in the 

missing data space, and obtain a maximum likelihood estimate (MLE). 

 

2.2 The sampling problem 

We will continue with the above example to illustrate our implementation of the sampling procedure, based on the NMSE 

approach.  For an in-depth discussion of the theoretical foundation of NMSE, see Cox (2007).   

 

In the example discussed in 2.1, we can impose bounds on the feasible values nij of the imputed table cells, and the imputed 

row sums, ni+, and column sums, n+j, as follows: 

 

𝒏𝒊𝒋 ≥ 𝒎𝒊𝒋     𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑟, 𝑗 = 1, … , 𝑐 

 

𝒏𝒊+ ≥ 𝒎𝒊+ =  𝒎𝒊𝒌 + 𝒎𝒊,𝒄+𝟏

𝒌

     𝑓𝑜𝑟 𝑖 = 1, … , 𝑟 

 

𝒏+𝒋 ≥ 𝒎+𝒋 =  𝒎𝒌𝒋 + 𝒎𝒓+𝟏,𝒋

𝒌

     𝑓𝑜𝑟 𝑗 = 1, … , 𝑐 

 

Then, we can write the solutions network representing feasible integer solutions n to the data editing problem as: 

 

 𝒏𝒊𝒋 = 𝒏𝒊+

𝒄

𝒋=𝟏

     𝑓𝑜𝑟 𝑖 = 1, … , 𝑟 

 

 𝒏𝒊𝒋 = 𝒏+𝒋

𝒓

𝒊=𝟏

     𝑓𝑜𝑟 𝑗 = 1, … , 𝑐 

 

 𝒏𝒊+ =  𝒏+𝒋 = 𝒏++

𝒄

𝒋=𝟏

𝒓

𝒊=𝟏

 

 

A Basic Moves Approach.  We can easily select a beginning solution, n
(s)

, that is feasible with respect to the above 

conditions.  In its most basic form, our method explores the sample space by iteratively finding a feasible {-1, 0, +1}-move 

from n
(s)

 to n
(s+1)

, and then updating n
(s+1)

  n
(s)

.  Such moves can be obtained at each iteration by solving a related network 

optimization problem, which we call the moves network problem.   



 

The basic moves network problem can be written as a mathematical optimization problem as follows: 

 

The Basic Moves Problem (BP) 

 

Cost Function:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝑐∗∗
 𝑠 +𝑦∗∗

+ − 𝑐∗∗
 𝑠 −𝑦∗∗

−)

𝑐

𝑗=1

𝑟

𝑖=1

 (1) 

Subject to the following constraints: 
 

 (𝑦𝑖𝑘
+ −

𝑐

𝑘=1

𝑦𝑖𝑘
− ) = 𝑦𝑖+

+ − 𝑦𝑖+
−      𝑓𝑜𝑟 𝑖 = 1, … , 𝑟 (2) 

 (𝑦𝑙𝑗
+ −

𝑟

𝑙=1

𝑦𝑙𝑗
−) = 𝑦+𝑗

+ − 𝑦+𝑗
−      𝑓𝑜𝑟 𝑗 = 1, … , 𝑐 (3) 

 (𝑦+𝑘
+ − 𝑦+𝑘

− ) = 0

𝑐

𝑘=1

 (4) 

 (𝑦𝑙+
+ − 𝑦𝑙+

− ) = 0

𝑟

𝑙=1

 (5) 

0 ≤ 𝑦𝑖𝑗
+, 𝑦𝑖𝑗

−, 𝑦𝑖+
+ , 𝑦𝑖+

− , 𝑦+𝑗
+ , 𝑦+𝑗

− ≤ 1     𝑓𝑜𝑟 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐 (6) 

 

Equation (1) is a cost function, where each variable 𝑦∗∗ is assigned a cost 𝑐∗∗; Equations (2) through (6) represent network 

constraints that make sure any changes to the cell values of the original table are reflected in the corresponding column and 

row totals (Equations (2) and (3)) and that the sum of the changes in the columns and rows is zero (Equations (4) and (5)).  

Finally, all variables are continuous, between 0 and 1; however, because of the nature of the formulation, all variables will 

take values of either 0 or 1 (See Cox (2007) for a detailed discussion about optimization problems on contingency tables of 

network type and their solution properties).   

 

In addition, to ensure feasibility we impose the following conditions, which we call zero-restrictions: 

 

𝐼𝑓 (𝑛𝑖𝑗
(𝑠)

≤ 𝑚𝑖𝑗 ) 𝑡ℎ𝑒𝑛  𝑦𝑖𝑗
− = 0     𝑓𝑜𝑟 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐 

 

𝐼𝑓 (𝑛𝑖+
(𝑠)

≤ 𝑚𝑖+) 𝑡ℎ𝑒𝑛  𝑦𝑖+
− = 0     𝑓𝑜𝑟 𝑖 = 1, … , 𝑟 

 

𝐼𝑓 (𝑛+𝑗
(𝑠)

≤ 𝑚+𝑗 ) 𝑡ℎ𝑒𝑛  𝑦+𝑗
− = 0     𝑓𝑜𝑟 𝑗 = 1, … , 𝑐 

 

The sampling procedure consists of solving the moves network with different cost coefficients in Equation (1) at each 

iteration.  Cox (2007) proves that this iterative process produces a Markov basis of the solution space for the original 

network, since a solution to the moves network problem corresponds to a feasible {-1, 0, +1}-move y
(s)

 = y
(s)  

- y
(s)-

 from n
(s)

 to 

n
(s+1)

; thus, n
(s+1)

 = n
(s)

 + y
(s)

. 

 



In order to ensure that the space is sampled randomly and according to a Markov process, the costs at each iteration will be 

determined based on two factors: (1) randomization, and (2) zero-restrictions on 𝑦∗∗
−-variables as specified in the above 

formulation.  Therefore, at iteration s, costs are determined as follows: 

 

 Randomly assign variable 𝑦∗∗
+ cost 𝑐∗∗

 𝑠 + = -1, 0, or +1 with probabilities {1/3, 1/3, 1/3} respectively. 

 Assign variable 𝑦∗∗
− cost 𝑐∗∗

 𝑠 − = −𝑐∗∗
 𝑠 +

 

 

A Variable Step-Size Approach.  The moves network in the previous section provides a Markov basis for the solutions 

network based on finding a series of {-1, 0, 1}-moves from a starting feasible solution in order to explore the sampling space.  

Although theoretically correct, in practical applications this approach exhibits some limitations: 

 

1. Due to the nature of the cost coefficients (i.e. they can randomly obtain values of {-1, 0, or +1} only), there can be 

multiple optimal solutions to BP. 

2. Since only {-1, 0, 1}-moves are allowed at each step, it takes a very large number of iterations to obtain a significant 

coverage of the sampling space; in other words, it takes a long time to explore a diverse area, and moves are likely 

to return to previous solutions already explored before. 

 

In order to overcome some of these limitations, we modified the basic moves formulation in BP, and developed a variable 

cost, variable step size network problem (VP).  In VP, the following changes are made with respect to BP: 

 

 Instead of randomly assigning cost 𝑐∗∗
 𝑠 +

= -1, 0, or +1, we now assign it a random value R, where -M ≤ R ≤ +M, 

where M is some large number (i.e. it is sufficient that M be greater than the sum of all y-variables).  This guarantees 

that each instance of the moves network problem will have a unique optimal solution. 

 We relax Equation (6) in BP so that now each variable y can have a value between 0 and some maximum step size S.  

This helps ensure that a larger portion of the sampling space is explored more rapidly than before, and it can be 

proven that the Markov basis properties of the original (basic) approach are preserved (for a formal proof, we refer 

the reader to Cox (2007); it is sufficient to set S = 1 to prove that both BP and VP produce a Markov basis for the 

original solutions network). 

 

The new, variable step size moves network model (VP) can be formulated as follows: 

 

The Variable Moves Problem (VP) 

Cost Function:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  (𝑐∗∗
 𝑠 +𝑦∗∗

+ − 𝑐∗∗
 𝑠 −𝑦∗∗

−)

𝑐

𝑗=1

𝑟

𝑖=1

 (1’) 

Subject to the following constraints: 
 

 (𝑦𝑖𝑘
+ −

𝑐

𝑘=1

𝑦𝑖𝑘
− ) = 𝑦𝑖+

+ − 𝑦𝑖+
−      𝑓𝑜𝑟 𝑖 = 1, … , 𝑟 (2’) 

 (𝑦𝑙𝑗
+ −

𝑟

𝑙=1

𝑦𝑙𝑗
−) = 𝑦+𝑗

+ − 𝑦+𝑗
−      𝑓𝑜𝑟 𝑗 = 1, … , 𝑐 (3’) 

 (𝑦+𝑘
+ − 𝑦+𝑘

− ) = 0

𝑐

𝑘=1

 (4’) 

 (𝑦𝑙+
+ − 𝑦𝑙+

− ) = 0

𝑟

𝑙=1

 (5’) 



0 ≤ 𝑦𝑖𝑗
+, 𝑦𝑖𝑗

−, 𝑦𝑖+
+ , 𝑦𝑖+

− , 𝑦+𝑗
+ , 𝑦+𝑗

− ≤ 𝑺     𝑓𝑜𝑟 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐 (6’) 

We still impose zero-restrictions on the 𝑦∗∗
− -variables, as before; however, we now have to be careful not to exceed upper 

bounds, so we impose additional zero-restrictions on the 𝑦∗∗
+ -variables as well.  Let 𝑈𝑖𝑗  denote the upper bound on the value 

of cell (i, j), 𝑛𝑖𝑗 .  Then, we can calculate 

 

𝑈𝑖𝑗 ≤ 𝑚𝑖𝑗 + 𝑚𝑖,𝑐+1 + 𝑚𝑟+1,𝑗 + 𝑚𝑟+1,𝑐+1 for each i, j. 

 

We can then proceed to specify the additional zero-restrictions as follows: 

 

𝐼𝑓 (𝑛𝑖𝑗
(𝑠)

≥ 𝑈𝑖𝑗 ) 𝑡ℎ𝑒𝑛 𝑦𝑖𝑗
+ = 0     𝑓𝑜𝑟 𝑖 = 1, … , 𝑟, 𝑗 = 1, … , 𝑐 

 

 

3. Implementation Issues 

 

As mentioned in Section 2, the objective of our approach is twofold.  First, we seek an efficient method to sample the space 

of feasible “missing-value” tables of a partially-specified contingency table.  Second, we seek an effective method to estimate 

and impute missing values in a partially-specified contingency table. 

 

In terms of the first objective, it is important to obtain good “coverage” of the space, as well as obtaining a sample according 

to a predefined distribution for possible solutions.  In other words, ideally we would like to obtain a sample that explores the 

totality of the space, including its tails (i.e. regions that are close to the upper and lower cell bounds); in addition, we would 

like to estimate the likelihood that a particular full table corresponds to a true table, by implementing a rejection mechanism 

for moves that tend to drive us toward less likely regions. 

 

In order to test the performance of our method in terms of these issues, we use the fire data presented by Greene et al (2001).  

These data are arranged on a 2-way (2x2) partial table, as shown in Table 1. 

 

Table 1: 2x2 fire data partial table 

 mi , 1 mi , 2  mi , c+1  mi , + 

m1 , j 65 30 
 

5 
 

100 

m2 , j 25 50 
 

25 
 

100 

       

mr+1 , j 10 2000 
 

70 
 

 

       

m+ , j 100 2080 
 

 
 

2280 

 

 

From Table 1 we see that the total number of cases in the dataset is 2,280.  From those 2,280 cases, the data exhibits the 

following characteristics: 

 

 There are (65+30+25+50) = 170 full responses; 

 There are 5 cases with response to Q1 = 1, but no response to Q2; 

 There are 25 cases with response to Q1 = 2, but no response to Q2; 

 There are 10 cases with response to Q2 = 1, but no response to Q1; 

 There are 2,000 cases with response to Q2 = 2, but no response to Q1; 

 There are 70 cases with no response to either Q1 or Q2. 

 



From this table, it is simple to obtain a feasible solution of an imputed table.  For our analysis, we used three different 

feasible solutions as initial solutions in order to test and compare our sampling and estimation methods.  Tables 2, 3 and 4 

show these solutions. 

 

Table 2: Initial Solution 1 

 ni1 ni2 

n1j 75 30 

n2j 25 2145 

 

Table 3: Initial Solution 2 

 ni1 ni2 

n1j 65 2105 

n2j 50 50 

 

Table 4: Initial Solution 3 

 ni1 ni2 

n1j 100 1040 

n2j 100 1040 

 

In both Initial Solutions 1 and 2, two of the quantities correspond to the cells’ lower bounds and one quantity corresponds to 

the cell’s upper bound.  In Initial Solution 3, the quantities were chosen to be closer to the middle of their cell’s range.  This 

will allow us to test whether the starting solution has any effect on the characteristics of the sample and the quality of the 

estimators. 

 

Coverage Issues.  In terms of coverage, we tested our approach with both the BP and the VP network models described in 

Section 2.1.  Table 5 shows a comparison of both methods in terms of coverage and number of iterations.  As the table 

shows, the coverage percentage, c, improves with a larger step size.  This improvement is most significant for the case where 

Initial Solution 2 was used.  The improvement can be attributed primarily to the fact that Initial Solution 2 is in a more 

remote region of the feasible space, thus its lower solution rejection rate. 

 

In terms of the sample means obtained, Table 5 shows that the sample means produced by the VP method are closer to the 

maximum likelihood values for the cells.  These maximum likelihood values, obtained by the various estimation methods, 

seemed to converge on values close to 90, 1050, 60 and 1080 for cells (1,1), (1,2), (2,1) and (2,2) respectively.  In other 

words, these values resulted in the highest-probability imputed table. 

 

Table 5: statistical characteristics of samples generated 

with different initial solutions and step sizes 

(BP: step size = 1; VP: step size ≤ 5) 

 
 

Figures 1 and 2 show histograms for the samples obtained using Initial Solution 2 as a starting point, using the BP and VP 

methods, respectively.  Although the coverage obtained with the VP model is significantly better in fewer iterations (in fact, 

this particular case resulted in the best overall coverage), the VP model is prone to having considerable coverage gaps, where 

intermediate regions in the sampling space are left unexplored (this phenomenon can be seen in the histograms for Cells (1,2) 

and (2,2) in Figure 2.  Therefore, it is important to run additional iterations with VP, and compare the samples obtained in 

terms of descriptive statistics and mean and variance tests of hypothesis to make sure that the procedure is valid. 

 

  

Initial Method Iterations % moves

Solution Type N M S c M S c M S c M S c rejected

Sol1 BP 100000 96.97 15.28 100 946.36 310.72 54 56.9 10.25 59 1179.77 306.97 55 7%

Sol1 VP 100000 91.64 10.41 100 1039.06 129.11 53 59.7 7.97 89 1089.6 125.32 56 20%

Sol1 BP 300000 94.61 11.74 100 1034.45 190.8 54 58.5 8.51 64 1092.44 188.52 55 7%

Sol1 VP 300000 91.33 9.62 100 1051.84 77.57 54 59.91 7.6 89 1076.92 76.3 56 20%

Sol2 BP 100000 114.5 22.56 100 2034.31 27.69 7 50.75 19.25 100 80.44 21.4 5 7%

Sol2 VP 100000 93.81 14.84 100 1232.64 370.65 54 59.53 11.64 100 894.03 375.59 52 17%

Sol2 BP 300000 112.29 23.7 100 2042.92 27.68 7 50.32 16.96 100 74.47 18.22 5 7%

Sol2 VP 300000 92.06 11.43 100 1116.43 230.06 55 59.81 9.04 100 1011.69 233.07 53 19%

Sol3 BP 100000 93.14 9.32 73 1070.98 21.29 6 59.18 7.45 64 1056.69 21.3 7 7%

Sol3 VP 100000 91.17 9.11 80 1057.15 24.33 9 59.84 7.39 67 1071.84 24.28 9 20%

Sol3 BP 300000 93.28 9.31 74 1075.43 21.97 7 59.36 7.45 68 1051.93 21.62 7 7%

Sol3 VP 300000 91.08 9.1 80 1058.5 24.28 11 59.93 7.39 68 1070.49 24.05 10 20%

C(1,1) C(1,2) C(2,1) C(2,2)



 

 

Cell (1,1) - BP 

 
 

Cell (1,2) - BP 

 
 

Cell (2,1) - BP 

 
 

Cell (2,2) - BP 

 
 

Figure 1: histograms for table cells 

for BP method, N = 300,000 

 

Cell (1,1) - VP 

 
 

Cell (1,2) - VP 

 
 

Cell (2,1) - VP 

 
 

Cell (2,2) - VP 

 
 

Figure 2: histograms for table cells 

For VP method, N = 300,000 
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Our conjecture is that, as the sample size N increases, the parameters of samples created by the BP and the VP methods will 

converge.  In order to test this hypothesis, we ran each method for N = 3M iterations, and then conducted a two-tailed t-test 

of the sample means.  Table 6 shows results from our hypothesis test.  As the table shows, the difference between the means 

gets smaller as the sample size increases, and the magnitude of the standard deviation is reduced (as expected).  Although the 

p-values for each test remained extremely small (all were below 0.0001), given the large sample size and the improvement in 

coverage percentages, we decided to use the VP model for the remainder of our discussion and testing, as a valid method for 

generating the Markov basis for the solution network underlying a partial two-way table. 

 

Table 6: results from large sample size tests (99% conf. level) 

 Cell (1,1) Cell (1,2) Cell (2,1) Cell (2,2) 

Method M S C (%) M S C (%) M S C (%) M S C (%) 

BP 93.22 9.62 100 1069.74 65.70 55 59.30 7.60 66 1057.74 64.99 54 

VP 91.24 9.22 100 1056.65 33.45 59 59.97 7.46 89 1071.94 33.17 56 

 

Rejection Mechanisms.  Embedded in our sampling method is an assumption about the underlying distribution of the 

missing data.  It has been shown that missing data in tables often follows a hypergeometric distribution; therefore, we 

implemented a rejection step where a rejection probability is calculated for each move.  Diaconis and Sturmfels (1998) lay 

out a method that constructs a Markov basis by sampling from a reduced Gröbner basis.  Based on the general framework of 

their approach, we propose the following sampling algorithm: 

 

1. Initialize:  Generate an initial integer solution n
(0)

 to the solutions network problem 

2. Set: i = 1 

3. Count:  if i > imax, STOP 

4. Solve:  obtain a solution y
(i)

 for the VP network model 

5. Compute:  feasible integer solution n
(i)

 such that n
(i)  

 = n
(i-1)

 + y
(i)

 

6. Metropolis Step:  move to n(i) with probability min{1, π(n
(i)

)/π(n
(i-1)

)} 

7. Increment: i = i + 1 

8. Go to Step 3 

 

The rejection mechanism in this algorithm occurs at Step 6, Metropolis Step, where a solution is rejected with probability  

[1 - min{1, π(n
(i)

)/π(n
(i-1)

)], where π(∙) denotes the hypergeometric stationary distribution of the Markov chain.  After a 

sufficient number of iterations, a sample is constructed according to a predefined distribution implied in the Metropolis Step. 

 

Calculating π(∙) 
Since the Metropolis Step in our model computes a ratio of π(n

(i)
)/π(n

(i-1)
), and for some table k we can define π(k) = dk/N, 

where N is a normalizing constant, then we only need dk in order to calculate the ratio.  We define dk = P[𝑛𝑖𝑗
(𝑘)

 | π, n], where π 

corresponds to the r, c probabilities that a randomly selected sample individual falls in table cell (i, j); if item nonresponse 

and unit nonresponse are attributed to a missing completely at random assumption, then πij = (rcmij + rmi,c+1 + cmr+1,j + 

mr+1,c+1)/rcn++.
1
 

 

We can now compute dk as follows: 

 

𝑑𝑘 = 𝑃 𝑛𝑖𝑗
 𝑘 

 𝜋, 𝑛 = 𝑛!   
(𝜋𝑖𝑗 )

𝑛𝑖𝑗
(𝑘)

𝑛
𝑖𝑗

(𝑘)
!

𝑐

𝑗 =1

𝑟

𝑖=1

 

 

Estimation Issues.  The second objective of our research was to test and compare methods for editing (i.e. imputing) values 

in missing data.  The imputed values have to be determined based on a measure of their likelihood, in terms of a predefined 

notion of the missing data distribution. 

 

In order to obtain a most-likely estimator of the true value table, there are several methods that can be implemented.  Greene, 

et al (2001) proposed an adaptive raking method that was designed to overcome some of the drawbacks of traditional raking 

                                                 
1
 Note that in Cox (2007) the coefficients r and c in the second and third terms inside the parenthesis were inadvertently 

transposed - this has been corrected here. 



methods, such as imputed values being lower than the known lower bounds for cells.  Although Greene’s method is still 

susceptible to such limitations, we were able to modify his proposed raking method to guarantee that underestimation of the 

true values is avoided.  The raking algorithm we implemented is as follows: 

 

1. Set:  = a very small number; 

2. Calculate: for each row i = 1,…,r calculate (r_sumi) =  𝑚𝑖 ,𝑗 + 𝑗 mi, c+1 ; 

3. Calculate: for each column j = 1,…,c calculate (c_sumj) =  𝑚𝑖,𝑗 + 𝑖 mr+1, j ; 

4. For each row i, calculate pri = (r_sumi) * (n++ /  𝑟_𝑠𝑢𝑚𝑖𝑖 ) ; 

5. For each column j, calculate pcj = (c_sumj) * (n++ /  𝑐_𝑠𝑢𝑚𝑗𝑗 ) ; 

6. For i = 1,…,r update cell (i, j):  new valuei,j = mi,j * pcj / c_sumj; set mi,j  new valuei,j ; 

7. For j = 1,…,c update cell (i, j):  new valuei,j = mi,j * prj / r_sumi ; 

8. Calculate new_c_sumj for each column ; 

9.  If new_csumj < c_sumj + , STOP; otherwise, set c_sumj = new_c_sumj; go to Step 3. 

 

Another method we implemented is the Expectation Maximization (EM) algorithm, which has been the object of much 

research.  The EM algorithm consists of an iterative, two-step approach to estimation.  The first step consist of an expectation 

(E) of the log-likelihood with respect to the current estimate of the distribution for the missing data; the second step consists 

of a maximization (M) of the log-likelihood parameters, which are in turn used to determine the distribution of the missing 

data in the subsequent (E) step.  Figure 1 shows pseudo-code for our EM algorithm.  For the optimization step in the 

algorithm, we use the OptQuest
®
 Engine, a general-purpose optimizer that makes use of state-of-the-art techniques such as 

Scatter Search and Tabu Search. 

 

 
Figure 1: Pseudo-code for our EM algorithm implementation 

 

A third method we implemented is the estimation procedure proposed by Cox (2007).  In its most basic version, this 

procedure works as follows:  for a given feasible solution corresponding to table t, we use its associated hypergeometric 

probability π(t) as a score.  Then, we select the table with the highest score found during the sampling as the most-likely 

estimator of the true table.  One of the advantages of this approach is that we can construct confidence intervals for a given 

solution, since we have a sample of the solution space. 

 

Finally, we also implemented an optimization-based estimation procedure, which incorporates a pure metaheuristic search 

algorithm.  Here, again we used OptQuest to find the optimal solution to the editing problem.  We set up a discrete variable 

xij for each cell (i, j) in the table.  We set bounds mij and Uij on the variables, as discussed in Section ___, and we let OptQuest 

search for the values for xij that result in the highest probability P[xij | π, n]. 

 



Thus, we implemented four estimation methods: (1) Adaptive raking (AR); (2) Estimation Maximization (EM); (3) Cox’s 

maximum likelihood estimator (MLE); and (4) Metaheuristic search (MS). 

 

4. Computational Results 

 

In order to perform an extensive computational study of the four estimation methods implemented, we generated a series of 

partial tables from corresponding known complete tables.  The original, complete tables were constructed from micro- data 

about a particular organization’s individual employees, each described by a set of attributes such as Age, Gender, 

Performance, Education, Skill and Dependents.  Each attribute is made up of two or more categories; Age has two categories: 

(1) less than 30, and (2) greater than or equal to 30; Gender = {male, female}, Performance = {poor, average, good}, 

Education = {Bachelors, Masters, PhD}, Skill = {1,2,3,4,5,6,7,8} and Dependents = {Yes, No}.  This allowed us to construct 

various two-way tables of different dimensions. 

 

To create partial tables, we used the following procedure: 

 

1. Begin with the complete set of micro-data records; 

2. Select two employee attributes as table variables V1 and V2 in order to produce a two-way table; 
3. Determine the set of probabilities: P(respond to V1 and V2), P(respond to V1 only), P(respond to V2 only), P(no 

response to V1 or V2) 
4. Based on probabilities determined in Step 3, suppress responses in micro-data accordingly; 

5. Construct partial two-way table. 

 

In our study, we conducted tests on two sets of tables generated in this manner.  The first set of tables was generated under 

the assumption that data is missing completely at random (MCAR); thus, non-responses to V1 are completely independent 

from non-responses to V2, V3, …, Vn - and vice versa.  Therefore, if P(respond to V1=v1 only) = a and P(respond to V2=v2 

only) = b, then P(no response to V1=v1 or V2=v2) = ab, where v1 and v2 denote specific instances of V1 and V2, respectively.  

Table 7 summarizes the results of the tests on this set of tables.  In the table, the columns labeled “Diff” contain the sum of 

the absolute differences between the cells’ true value and the value estimated by each method.  The columns labeled as dk 

contain the probability score for the maximum likelihood table found by each method. 

 

Table 7: summary results of various 

partial tables under MCAR assumption 

Method MLE EM AR 

TABLE TYPE Diff dk Diff dk Diff dk 

Age/Dependents (2x2) 126 3.3E-05 126 3.3E-05 46 1.4E-08 

Age/Performance (2x3) 318 8.2E-08 314 8.3E-08 30 2.1E-43 

Educ/Performance (3x3) 366 3.2E-11 366 3.6E-11 98 3.8E-59 

Skill/Performance (8x3) 300 2.8E-28 316 2.8E-27 75 7.9E-65 

Age/Gender (2x2) 180 3.7E-05 180 3.7E-05 108 1.2E-11 

 

One notable result here is that a lower absolute difference did not result in the highest probability dk.  This is why the 

probability-maximization methods do not perform well, since they are all based on finding the table with maximum 

probability. 

 

Table 7 shows adaptive raking (AR) to be the best estimator for this set of partial tables (we did not include results for the 

metaheuristic search method in these tests, because this method and the expectation maximization (EM) method produced the 

exact results.)  This is not surprising, since raking (also called Iterative Proportional Fitting, or IPF) seeks to impute values 

based on the proportion of column and row non-responses to the corresponding column and row marginal sums.  Since the 

partial tables were generated with the assumption of independence, then proportional fitting would converge to a value for 

each cell that is independent from the values in other cells of the table; in other words, proportional fitting will impute values 

based on the proportion of the missing data on each cells row and column, without taking into account the proportion of 

missing data on other rows or columns of the table. 

 

The second set of tables we generated was based on the assumption that data were missing not at random (MNAR); thus, 

non-responses to V1 and non-responses to V2, V3, … , Vn are dependent.  Consider, for example, a table that shows data for 



employees’ Age and Gender.  It seems reasonable that older female employees will be more likely to suppress their responses 

than their male counterparts.  In addition, if other questions in the survey were meant to elicit sensitive information from a 

certain group of employees, such as poor performers, it is likely that these respondents would suppress such information. 

 

In this case, we determined the probabilities separately, and we varied the proportion of non-responses widely across 

different table instances.  Table 8 summarizes the data setup.  The table shows three trial runs for a table of 1,000 employees 

by age and gender.  The complete non-response rate, and partial response rates for Q1 and Q2 are shown in Columns 2, 3 

and 4 respectively. 

 

Table 8: Data setup for Age/Gender tests 

Trial 1 

Cell Non-Response (%) Response V1 (%) Response V2 (%) 

(1,1) 60 10 10 

(1,2) 0 0 5 

(2,1) 50 15 10 

(2,2) 0 0 5 

Trial 2 

Cell Non-Response (%) Response V1 (%) Response V2 (%) 

(1,1) 0 0 0 

(1,2) 0 0 0 

(2,1) 80 5 5 

(2,2) 0 0 0 

Trial 3 

Cell Non-Response (%) Response V1 (%) Response V2 (%) 

(1,1) 0 90 0 

(1,2) 0 0 5 

(2,1) 0 0 10 

(2,2) 0 90 0 

 

Table 9 summarizes the results of these trials for uniform sampling.  In uniform sampling the probability of a table is 

calculated as 

 

𝑑𝑘 = 𝑃 𝑛𝑖𝑗
 𝑘 

 𝜋, 𝑛 = 𝑛!   
1

𝑛𝑖𝑗
 𝑘 

!

𝑐

𝑗=1

𝑟

𝑖=1

.   

 

The values in Table 9 correspond to the sum of the absolute differences between the true value of each cell in the Age/Gender 

table and the estimated value.  The numbers in parentheses correspond to the associated probability score dk for the imputed 

table.  The smaller the value associated with each estimator, the “better” the method.  For example, for Trial 1, the MLE 

method produces the best result, with an absolute difference score of 56, while the EM method is second with 124, the MS 

method is third with 584, and the AR method is last, with 1082. 

 

In Table 10, we used hypergeometric sampling, where the probability of a given table k is 

 

𝑑𝑘 = 𝑃 𝑛𝑖𝑗
 𝑘 

 𝜋, 𝑛 = 𝑛!   
 𝜋𝑖𝑗  

𝑛𝑖𝑗
 𝑘 

𝑛𝑖𝑗
 𝑘 

!

𝑐

𝑗 =1

𝑟

𝑖=1

.  

 

For this set of tests the methods based on a maximum probability score (MLE, EM and MS) perform better than raking.  In 

addition, the more severe the non-response rate, the better these methods seem to perform with respect to raking.  This is 

because the maximum-likelihood score assumes that the missing data belong to a specific distribution, which means that non-

response probabilities are not independent.  Further evidence of this is the fact that, as opposed to the first set of tests, in this 

case the probability score dk seems to be greater when the absolute difference score is smallest. 

 

 



 

Table 9: summary of absolute differences and dk  

for uniform sampling 

Trial MLE EM MS AR 

1 56 (0.06) 124 (0.06) 584 (0.05) 1082 (0.02) 

2 708 (0.06) 166 (0.05) 0 (0.07) 750 (0.00)* 

3 92 (0.06) 32 (0.07) 60 (0.06) 452 (0.00)* 
* Denotes a value lower than 1E-3 

 

Table 10: summary of absolute differences and dk  

for hypergeometric sampling 

Trial MLE EM MS AR 

1 550 (3.0E-05) 538 (3.3 E-05) 564 (2.9E-05) 582 (1.1E-11) 

2 620 (3.1E-05) 616 (3.5E-05) 620 (1.0E-05) 750 (1.9E-20) 

3 346 (4.6E-05) 344 (4.6E-05) 340 (4.4E-05) 452 (1.5E-43) 

 

 

 

5. Conclusions and Proposed Future Research 

 

Having large amounts of missing data in datasets seems to be a commonplace albeit important problem in statistical data 

analysis.  Therefore, developing effective imputation and editing methods that provide accurate estimates of the missing 

values in reports and tables is an important area of research.  In this study, we developed four estimation methods in order to 

compare the accuracy of distinct approaches based on different underlying assumptions about the probability distribution of 

the missing data.  The results of our testing show the following: 

 

a. If we assume that the missing data in one category are independent from the missing data in all other categories of a data 

set, then proportional fitting methods such as adaptive raking provide better estimates of the true value of the missing 

data than probability maximization methods. 

b. If we assume that the missing data in one category are not independent from missing data in other categories of a data 

set, then probability maximization methods provide better estimates than proportional fitting methods such as adaptive 

raking.  This is not surprising, since probability maximization methods assume that the missing data follow a 

multivariate (i.e. multi-category) probability distribution.  Thus, the calculation of the likelihood of a table is directly 

implied by the underlying distribution. 

c. Proportional fitting methods seem to perform worse when the proportion of missing data increases, whereas probability 

maximization methods do not seem to be affected by the proportion of missing data. 

 

In terms of future research, we propose to continue the study as follows: 

 

a. The current study is concerned only with tables of network type, where a Markov basis is obtained from the iterative 

solution of a moves network optimization problem.  However, more research is necessary in testing our sampling and 

estimation methods over tables of different dimensions (beyond two-way tables).  Although the EM and MS methods, as 

well as the AR method, do not require sampling, it would be desirable to obtain a sample of the feasivble solution space 

for certain types of applications, as described in b). 

b. Although in the current study we develop a method for obtaining a sample of the solution-feasible space, in the future we 

would like to investigate the use of such a sample in assessing the accuracy of different imputation methods.  This would 

have applicability not only in research concerning missing data, but also is disclosure risk assessment applications where 

data confidentiality protection is a goal.   

 

Say, for example, that an investigator collects partial information, and then is able - through re-interviewing and 

supplementary administrative records - to obtain a complete, accurate table.  If someone posits that the missing data 

mechanism is missing completely at random (MCAR), then we can apply the correct probabilities (dk) for the complete 

table.  By constructing a sample of feasible tables based on MCAR probabilities, we can compare the complete table 

probability to probabilities of members of the sample, and then compute a p-value for the hypothesis that the missing 

data was MCAR.  If this p-value is large (above some threshold confidence level), then we determine that disclosure risk 



is too large, and disclosure limitation techniques should be used to protect the data.  In this way, we can test different 

assumptions about the underlying data. 
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