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1 Introduction

Record linkage (e.g., Fellegi and Sunter 1969, Newcombe et al. 1959) involves comparing two or more files on
the same population for purposes of unduplication of records and merging files. Record linkage is used in many
applications, including population size estimation at the U.S. Census Bureau (Winkler 1994, 1995, and Jaro 1989,
1995), epidemiology and medical studies (Newcombe 1988, Gill 1997), sociological studies (Belin et al. 2004), survey
frame improvement, and, more recently, counterterrorism (Gomatam and Larsen 2004). See also Alvey and Jamerson
(1997) and references therein.

Latent class (McCutcheon 1987) and mixture models (McLachlan and Peel 2000) have been used to model the
data arising from comparing records in two files (Larsen and Rubin 2001, Winkler 1988, 1994, 1995, Jaro 1989,
1995). Although successful in many applications (Alvey and Jamerson 1997), the models used in these applications
have not accounted for all restrictions in the data. In particular, forcing each record on one file to have at most a
single, matching record on the other file (“one-to-one matching”) has been implemented post-hoc with a one-to-one,
linear-sum assignment procedure (Burkard and Derigs 1980, Jaro 1989) to choose individual links. The one-to-one
assignment procedure can effectively eliminate many candidate links that have some degree of similarity, but actually
are nonlinks.

Experience from previous record linkage operations has been used informally to select models (Larsen and Rubin
2001) and restrict parameters (Winkler 1989, 1994). Bayesian approaches to record linkage have been suggested by
Larsen (1999a, 2002, 2004, 2005), Fortini et al. (2002, 2000), and McGlinchy (2004). A procedure is described here
that explicitly uses the one-to-one matching assumption and allows parameter values to vary by file block, which is
a subset of the data being linked. The approach will necessarily be Bayesian, because of the relatively small sample
sizes within blocks and the difficulty of calculating expectations under complex restrictions on unobserved data.

This article is organized as follows. Record linkage is introduced in section 2. Bayesian record linkage algorithms
are presented in section 3. Section 4 is a conclusion and discusses future work. Computational procedures are
presented in appendices Appendix A and Appendix B. References are given in section 5.

2 Record Linkage

Suppose that there are two files, A and B, on a single population. Consider record a in file A and record b in B. Do
records a and b correspond to the same person or entity? If files A and B do not have unique, accurately recorded
identification numbers for every unit in both files, then it is necessary to consider the information recorded in a and
b in order to answer the question.

Define agreement for each piece of information common to both files. Decennial census applications at U.S.
Census Bureau record variables including last name and first name, street number and name, age, sex, race, and
relation to head of household. Files are extensively preprocessed before linkage is attempted. For example, names
are standardized and coded according to Soundex codes or other scheme. Names and address fields are parsed and
standardized. In the case of simple comparisons, for each pair of records (a, b) being considered, a vector of 1’s and
0’s indicating agreement and disagreement on K comparison fields is recorded. That is, for a ∈ A and b ∈ B, define

(a, b) = {(a, b)1, (a, b)2, . . . , (a, b)K}

where (a, b)k equals 1 (agreeement) or 0 (disagreement) on field k, k = 1, . . . ,K. Many agreements ((a, b) mostly
1’s) are typical of matches. Many disagreements ((a, b) mostly 0’s) are typical of nonmatches. Some variables (e.g.,
race) are informative in some locations regarding matches and nonmatches, but not in others. Disagreement on sex
suggests a nonmatch, whereas agreement on sex is not persuasive by itself for being a match.

2.1 Data with One-to-One Restrictions and Blocking
In some cases, it is assumed that the two data files do not contain duplicate records for any person or entity. In the
case of the census, records are organized by geographical location, each household should have only one form, and
efforts are made at unduplicating records. Insurance companies and medical records systems are updated continuously



Table 1: Illustration of possible matching structure within a household.

Housing unit i File B
Person 1 Person 2 ... Person nBi

File A Person 1 same different . . . different
Person 2 different same . . . different
. . . . . . . . . . . .
Person nAi different different

and efforts are made to avoid duplicate records. Record linkage could be of interest in these cases. Census follow-up
operations are conducted independently in large areas. The National Death Index is matched to existing insurance,
medical, and other databases for studies such as Livingston and Ko (2005), Rauscher and Sandler (2005), Thompson
et al. (2005), and many others.

In census and other operations, the files are divided geographically into groups of records or ’blocks’ that do not
overlap. Blocking is used in other applications as well in order to reduce the number of record pairs being compared.
It is assumed that there are no (or very few) matches across different blocks. Other operations use first letter of last
name (individuals) or industry code (businesses) or state as blocking variables.

Let blocks be indexed by s = 1, . . . , S. Suppose that file A has nas records and file B has nbs records, respectively,
in block s. For blocks s = 1, . . . , S, as = 1, . . . , nas and bs = 1, . . . , nbs , define

I(as, bs) =

{
1 a and b are matches
0 a and b are nonmatches

The set of match-nonmatch indicators in block s is Is = {I(as, bs)}. The one-to-one restrictions and blocking
assumptions mean that

∑
bs
I(as, bs) ≤ 1,

∑
as
I(as, bs) ≤ 1, and

∑
as

∑
bs′
I(as, bs′) = 0 for s ∕= s′. The number of

matches in block s, nms is defined and restricted under one-to-one matching as follows:∑
as

∑
bs

I(as, bs) = nms ≤ min (nas , nbs).

In census applications, there could be further structure in the data. Within a housing unit, if there are no
duplicate listings, there should be unique matches. The situation is illustrated in Table 1. Such an explicit structure
is not imposed here, because missing values and recording errors might make exact household linkages problematic,
but blocking might be less of a problem. Further, blocks at the U. S. Census Bureau use first letter of last name
as a blocking criterion, in addition to geography, thereby splitting some households. Information on individuals
within households is critical for differentiating similar records, such as father-son, mother-daughter, husband-wife,
brother-brother, sister-sister pairs, etc., across files, and actual matching pairs. Another reason for not blocking on
household is that address listings, especially in multiple household dwelling, might not be unique or reported values
might be nonunique.

2.2 Prior beliefs and logical relationships
Prior experience and data often are available from previous record linkage operations and sites. In previous record
linkage studies, clerks at the U.S. Census Bureau looked at record pairs and determined whether or not they truly
were nonmatches or matches. Belin (1993, 1995), Larsen (1999b), and Larsen and Rubin (2001) found that in some
U.S. Census Bureau record linkage applications characteristics of populations being studied varied by area in ways
that made a significant impact on estimates of parameters needed for record linkage. There were, however, consistent
patterns across areas. The percentage of record pairs, one record from each of two files, under consideration that
actually are matches corresponding to the same person is roughly similar across sites. The probability of agreeing on
some key fields of information among matches and nonmatches are similar across sites. The probability of agreements
are higher among matches than among nonmatches. There is, however, variability across sites in these and many
other characteristics.

It is expected that the probability of agreeing on an individual field of comparison is higher for matches than for
nonmatches:

P (k(a, b) = 1∣(a, b) ∈ Match) > P (k(a, b) = 1∣(a, b) ∈ Nonmatch).

Logically, the number of matches in block s, nms , is smaller than the smaller of the number of records in file A
(nas) and in file B (nbs). So the probability of a match in block s, psM is less than or equal to the minimum size
(min(nas , nbs)) divided by the number of pairs in block s: nasnbs .



3 The Bayesian Record Linkage Model and Computations of Posterior
Distributions

Section 3.1 presents a Bayesian version of record linkage for the mixture model approach of Fellegi and Sunter (1969),
Larsen and Rubin (2001), and others, as described previously by Larsen (1999a). Section 3.2 contains the details of
a hierarhical Bayesian model for record linkage suggested in part by Larsen (2004, 2005). Section 3.3 discusses the
outline of the algorithm for simulating the posterior distribution of unknown parameters and unobserved matching
indicators. Sections 3.4 and 3.5 present models and algorithms for incorporating one-to-one matching. Appendices
Appendix A and Appendix B provide details of the iterative simulation algorithm.

3.1 Bayesian Approach to Latent Class Record Linkage Models
The mixture model approach to record linkage models the probability of a comparison vector  as arising from a
mixture distribution:

Pr() = Pr(∣M)pM + Pr(∣U)pU , (1)

where Pr(∣M) and Pr(∣U) are the probabilities of the pattern  among the matches (M) and nonmatches (U),
respectively, and pM and pU = 1− pM are marginal probabilities of matches and unmatched pairs. In practice at the
U.S. Census and Statistics Canada, models using three classes often are useful when matching individuals because
estimates based on them reflect household structure (see, e.g., Larsen and Rubin 2001, Armstrong and Mayda 1993,
and Winkler 1995). Databases on businesses in general would not reflect the household grouping typical of people.
We will consider the situation with two classes and comment on extensions in the discussion.

The conditional independence assumption simplifies the model by reducing the dimension within each mixture
class from 2K − 1 parameters to K:

Pr(∣C) =

K∏
k=1

Pr(k∣C)k(1− Pr(k∣C))1−k , (2)

with C ∈ {M,U}. Interactions between comparison fields have been allowed in Larsen and Rubin (2001), Arm-
strong and Mayda (1993), Thibaudeau (1993), Winkler (1989), and others. Here we consider only the conditional
independence model and extensions of it to a hierarchical framework.

Previous approaches have not directly enforced one-to-one linkage in the likelihood and have used the following
likelihood function:

S∏
s=1

∏
a∈As,b∈Bs

Pr((a, b)), (3)

where Pr((a, b)) is a comparison vector modeled using the mixture assumption (1). When the parameters determining
Pr(∣M) and Pr(∣U) do not depend on the block from which the pairs originate and n is the number of pairs of
records with comparison pattern , the simple likelihood can be written as∏

∈Γ

Pr()n .

Assuming the conditional independence model (2) and global parameters that do not vary by block, a prior
distribution on parameters can be specified conveniently as the product of independent Beta distributions as follows:

pM ∼ Beta(�M , �M ),

Pr(k(a, b) = 1∣M) ∼ Beta(�Mk, �Mk), k = 1, . . . ,K,

and
Pr(k(a, b) = 1∣U) ∼ Beta(�Uk, �Uk), k = 1, . . . ,K.

Instead of specifying the prior distribution in this manner, it would conceptually be possible to specify a prior
distribution on the whole of the probability vector associated with the set of comparison vectors  as two Dirichlet
distributions. That is, independent prior distributions Pr(∣M) ∼ Dirichlet(�M ) and Pr(∣U) ∼ Dirichlet(�U ) could
be specified. This option is not explored in this paper. It is noted, however, that pairs of records with known match
status could be used as “training data” (as in Belin and Rubin 1995) for the purposes of specifying a prior distribution.
The prior parameter values, �M and �U , could be considered as ’prior counts’ by agreement vector pattern in the
matches and nonmatches.



The match/nonmatch indicators I = {I(a, b), a ∈ As, b ∈ Bs, s = 1, . . . , S} are unobserved. By Bayes’ theorem, if
the parameters were known and one does not consider restrictions from one-to-one matching, one could calculate for
a pair (a, b) the probability that a and b match:

Pr(I(a, b) = 1∣(a, b)) = Pr(M ∣(a, b)) = pMPr((a, b)∣M)/Pr((a, b)) (4)

with the denominator given by (1).
If the match indicators I were known, the posterior distributions of individual parameters given values of the

other parameters would be as follows:

pM ∣I ∼ Beta(�M +
∑
(a,b)

I(a, b), �M +
∑
(a,b)

(1− I(a, b)), (5)

Pr(k(a, b) = 1∣M, I) ∼ Beta(�Mk +
∑

Iabk(a, b), �Mk +
∑

Iab(1− k(a, b))) (6)

for k = 1, . . . ,K, and

Pr(k(a, b) = 1∣U, I) ∼ Beta(�Uk +
∑

(1− Iab)k(a, b), �Uk +
∑

(1− Iab)(1− k(a, b))) (7)

for k = 1, . . . ,K, where Iab = I(a, b) and sums are over all pairs allowed within the blocking structure.
The posterior distribution of parameters is simulated by sampling from alternating conditional distributions (Gibbs

sampling; Geman and Geman 1984, Geland and Smith 1990) as follows.

1. Specify parameters for the prior distributions. Choose initial values of unknown parameters.

2. Repeat the following four steps numerous times until the distribution of draws has converged to the posterior
distribution of interest.

(a) Draw values for the components of I independently from Bernoulli distributions with the probability that
I(a, b) = 1 given by formula (4).

(b) Draw a value of pM from the distribution specified in formula (5) and calculate pU = 1− pM .

(c) Draw values of Pr(k(a, b) = 1∣M, I) independently for k = 1, . . . ,K from distributions specified in formula
(6).

(d) Draw values of Pr(k(a, b) = 1∣U, I) independently for k = 1, . . . ,K from distributions specified in formula
(7).

3. Stop once the algorithm has converged. Convergence of the algorithm can be monitored by comparing distri-
butions from multiple independent series as suggested by Gelman and Rubin (1992) and Brooks and Gelman
(1998).

Once the algorithm has converged, it is necessary to decide which pairs of records to designate links and nonlinks
and which to send to clerical review or leave undecided. If one-to-one restrictions are not enforced, then one could
calculate the proportion of times that a record pair (a, b) has I(a, b) = 1 and for each record in file A assign the
record in file B that has the largest proportion. If one-to-one matching is desired, the simulated probabilities (4) of
matching could be supplied to a linear-sum-assignment algorithm.

There are some restrictions on parameters that could improve the performance of this model for record linkage.
First, the range of pM logically should be restricted to be less than or equal to the smaller of the two file sizes divied
by the number of pairs under the blocking structure. When pM is drawn in the Gibbs sampling algorithm from its
conditional distribution, values of pM greater than the cutoff should not be used. Alternatively, if pM = cMp

′
M where

p′M has the Beta distribution given above and cM < 1 is a scale factor appropriate for transforming p′M to the allowable
range of pM , one can sample p′M and scale it by cM . Second, logically the probability of a record pair agreeing on
a comparison field should be larger among matches than among nonmatches. That is, Pr(k∣M) > Pr(k∣U), for
k = 1, . . . ,K. Such a restriction can be added to the Gibbs sampling algorithm by simply ignoring sampled pairs of
these probabilities that do not satisfy the constraint. Alternatively, one can draw one value, say Pr(k∣M), and scale
the value of Pr(k∣U) to be in the range (0,Pr(k∣M)). That is, after drawing a value of Pr(k∣M), draw a value
from the Beta distribution specified in the algorithm and multiply it by Pr(k∣M).

There are several significant limitations to this model beyond the logical restrictions already noted. There is no
explicit one-to-one matching in the likelihood (3) and without subsequent processing some records could be involved



in more than one designated link. As a consequence, it was not necessary to model the number of matches overall
or within individual blocks. In many applications, some records in file A and some in file B might not have any
matches. One-to-one matching then is the assumption that records have at most one match in the other file. The
parameters are global and do not vary across blocks despite the fact that populations can vary greatly across blocks.
The conditional independence assumption was made for convenience and is not realistic. It has been relaxed in the
case of maximum likelihood estimation (see Larsen and Rubin 2001 and references therein). Interactions between
comparison fields within the matches and nonmatches could be allowed in the Bayesian approach as well. It is the
belief of the author, however, that explicitly modeling (at most) one-to-one matching and allowing parameters to
vary by block will be more beneficial than modeling interactions for entire operations.

3.2 A Hierachical Bayesian Model
A hierarchical model for record linkage will specify distributions of parameters within blocks s = 1, . . . , S. In this
section, the specification of the model is given. The outline of the iterative simulation algorithm is given in Section 3.3.
Details of the Metropolis-Hastings step can be found in Appendix Appendix A. Consideration of a Bayesian model
incorporating the one-to-one restriction begins in Section 3.4. That is, the likelihood used in this section is given by
likelihood (3) with parameters varying by block.

The probabilities of agreeing on fields of information are allowed to vary by block as follows:

psMk = Pr(k = 1∣M, s) ∼ Beta(�sMk, �sMk)

and
psUk = Pr(k = 1∣U, s) ∼ Beta(�sUk, �sUk)

independently across blocks, fields, and classes (M and U). The restriction that psMk ≥ psUk will be assumed.
Hyperpriors distributions are placed on transformed versions of the Beta parameters. The distributions are

independent across blocks, fields, and groups. These transformations were suggested by Andrew Gelman (2004) and
incorporated into Larsen (2004):

�sMk = logit(
�sMk

�sMk + �sMk
) ∼ N(��Mk, �

2
�Mk),

�sUk = logit(
�sUk

�sUk + �sUk
) ∼ N(��Uk, �

2
�Uk),

�sMk = log(�sMk + �sMk) ∼ N(��Mk, �
2
�Mk),

and
�sUk = log(�sUk + �sUk) ∼ N(��Uk, �

2
�Uk).

Note that there is a unique bivariate inverse transformation: �sCk = e�sCk logit−1(�sCk) and �sCk = e�sCk logit−1(1−
�sCk) for C = M,U . One could also consider correlation in the hyper parameter distribution for block s among the
�’s, among the � ’s, and between the �’s and � ’s.

The restriction noted in the previous paragraph does not mean that, for k = 1, . . . ,K, �sMk ≥ �sUk; the restriction
only constrains the parameters psMk and psUk. It would be possible to use a prior distribution with the constraint
that �sMk ≥ �sUk as well.

The probability of belonging to class M in block s, psM , is given a Beta(�sM , �sM ) prior distribution. The
hyperprior distrbutions are

�sM = logit(
�sM

�sM + �sM
) ∼ N(��M , �

2
�M )

and
�sM = log(�sM + �sM ) ∼ N(��M , �

2
�M ),

and are independent of the other hyperpriors. The restriction that psM is smaller than the minimum of nAs and
nBs divided by the number of pairs nAsnBs is enforced in this model. If it were not, the small sample size and great
variability across blocks would surely produce poor results for some blocks. Note that �sM = e�sM logit−1(�sM ) and
�sM = e�sM logit−1(1− �sM ).



3.3 Simulating the Hierachical Model Posterior Distribution
The posterior distribution of parameters and unobserved match/nonmatch indicators will be simulated using Gibbs
sampling. The conditional distributions for the hyperparameters will be sampled using the Metropolis-Hastings
(MH) algorithm (Hastings 1970) within the Gibbs sampling framework. The procedure iterates through draws of full
conditional distributions as described below.

1. Choose hyperparameter distributions. That is, specify (��M , �
2
�M ) and, for k = 1, . . . ,K, specify (��Mk, �

2
�Mk),

(��Uk, �
2
�Uk), (��Mk, �

2
�Mk), and (��Uk, �

2
�Uk).

2. Generate initial values of (�sM , �sM ) and, for k = 1, . . . ,K, (�sMk, �sMk) and (�sUk, �sUk) from their prior
distributions.

3. Assign an initial match/nonmatch configuration I. Since one-to-one matching is not being forced, but con-
straints on the parameters and proportion of matches are, the algorithm of section 3.1 with analogous parameter
constraints could be run for several iterations. An alternative is to randomly generate a matrix of 1’s and 0’s
in each block to represent match/nonmatch status.

4. Cycle through the following steps numerous times until the distribution of drawn values converges to the target
posterior distribution. Let Iab denote I(a, b).

(a) For s = 1, . . . , S, draw psM from its conditional distribution given the current indicators Is and values of
(�sM , �sM ). Specifically,

psM ∣Is, �sM , �sM ∼ Beta(�sM +
∑

Iab, �sM + nasnbs −
∑

Iab),

where the sum is over all pairs (a, b) in block s. Enforce the constraint

psM ≤ min(nas , nbs)/(nasnbs).

(b) For s = 1, . . . , S and k = 1, . . . ,K, draw psMk and psUk from their conditional distribution given the
current indicators Is, the comparison vectors s in block s, and values of (�sCk, �sCk), C ∈ {M,U}.
Specifically,

psMk∣Is, s, �sMk, �sMk ∼ Beta(�sMk +
∑
s

Iabk(a, b), �sMk +
∑
s

Iab(1− k(a, b))),

psUk∣Is, s, �sUk, �sUk ∼ Beta(�sUk +
∑
s

(1− Iab)k(a, b), �sUk +
∑
s

(1− Iab)(1− k(a, b))),

and psMk ≥ psUk, where sums are over all pairs (a, b) in block s.

(c) For s = 1, . . . , S, use the Metropolis-Hastings algorithm (Hastings 1970; see also Gelman 1992 and Gelman
et al. 2004, chapter 11) to draw values of hyperparameters �sM and �sM from their full conditional
distributions. See appendix Appendix A for details of this and the next two steps.

(d) For s = 1, . . . , S and k = 1, . . . ,K, use the Metropolis-Hastings algorithm to draw values of hyperparam-
eters �sMk and �sMk.

(e) For s = 1, . . . , S and k = 1, . . . ,K, use the Metropolis-Hastings algorithm to draw values of hyperparam-
eters �sUk and �sUk.

(f) For s = 1, . . . , S, a = 1, . . . , nas , and b = 1, . . . , nbs , given values of psM and, for k = 1, . . . ,K, psMk and
psUk, draw a value of I(a, b) from a Bernoulli distribution with the following probability:

psM
∏K
k=1

[
p
k(a,b)
sMk (1− psMk)1−k(a,b)

]
{
psM

∏K
k=1

[
p
k(a,b)
sMk (1− psMk)1−k(a,b)

]
+ (1− psM )

∏K
k=1

[
p
k(a,b)
sUk (1− psUk)1−k(a,b)

]} .
5. Stop once the algorithm has converged.

Note that one-to-one restrictions are not imposed on the I matrix. The size of the candidate match class in each
block is controlled in 4(a) by keeping psM small. Once the algorithm has converged, it is necessary to decide which
pairs of records to designate links and nonlinks and which to send to clerical review or leave undecided. Suggestions
were made at the end of section 3.1. Metropolis-Hastings and algorithm details are in appendix Appendix A.



3.4 A Hierachical Bayesian Model with One-to-One Restrictions
In this section, the one-to-one linkage assumption will be enforced in the set of indicators I. The simulation for this
model is described in section 3.5. The hierarchical specification of section 3.2 will continue to be used. In order to
use the non-hierarchical model with one-to-one restrictions, one would need to combine the appropriate modeling
assumptions and prior distributions from section 3.1 and this section. Algorithms for sampling from the posterior
distribution would then combine appropriate steps from section 3.3 and the next section.

Define nms to be the number of matches in block s, s = 1, . . . , S. By definition, nms ≤ min (nas , nbs). The prior
distribution for nms , independently for each s, is taken to be

nms ∼ Binomial(min (nas , nbs), ps), (8)

where ps ∼ Beta(�p, �p). If �p = 4 and �p = 1, then Eps = 0.8, SDps = 0.16, and the distribution is skewed strongly
left. If �p = 4.5 and �p = 1.5, then Eps = 0.75, SDps = 0.16, and the distribution is skewed left, but not quite so
strongly. The parameters psM do not play a role in this model.

Let Is = {I(a, b), a ∈ As, b ∈ Bs} for s = 1, . . . , S. The prior distribution for Is is taken to be uniform on the
space of possible matching configurations:

P (Is∣nms) =

[(
nas
nms

)(
nbs
nms

)
nms !

]−1

. (9)

Without examining the data to some degree, it would not be possible to assign another prior distribution. In the
census application, it would be reasonable if records are grouped by household to place higher probability on records
in the same household within blocks. One would probably gain by placing higher probabilty of matching on the
first record listed in each household and continuing with descreasing probabilty through the household list. The
task of enumerating such a prior distribution, however, would be quite cumbersome. As was mentioned earlier,
address information might have its limitations and blocking by first letter of last name at census sometimes separates
household members, so placing too much reliance on exact address correspondence might have a downside in some
neighborhoods.

Given values for the components of I, the likelihood for parameters based on the comparisons of recorded infor-
mation is

Pr(∣I) =

S∏
s=1

⎡⎣ ∏
a∈As,b∈Bs

(
K∏
k=1

p
k(a,b)
sMk (1− psMk)1−k(a,b)

)I(a,b)
(

K∏
k=1

p
k(a,b)
sUk (1− psUk)1−k(a,b)

)1−I(a,b) ⎤⎦
=

S∏
s=1

⎡⎣ ∏
a∈As,b∈Bs,(a,b)∈M

K∏
k=1

p
k(a,b)
sMk (1− psMk)1−k(a,b)

∏
a∈As,b∈Bs,(a,b)∈U

K∏
k=1

p
k(a,b)
sUk (1− psUk)1−k(a,b)

⎤⎦ (10)

As mentioned before, the parameters psM are not used in this model.
Let the prior distributions for psMk and psUk, s = 1, . . . , S, k = 1, . . . ,K and their associated hyperprior distri-

butions be the same as in section 3.2.

3.5 Simulating the Hierarchical One-to-one Model Posterior Distribution
The posterior distribution of parameters and unobserved match/nonmatch indicators will be simulated using Gibbs
sampling with Metropolis-Hastings steps. The procedure iterates through draws of full conditional distributions as
described below.

1. Choose hyperparameter distributions. That is, specify �p and �p and, for k = 1, . . . ,K, means and variances
(��Mk, �

2
�Mk), (��Uk, �

2
�Uk), (��Mk, �

2
�Mk), and (��Uk, �

2
�Uk).

2. Generate initial values in blocks s = 1, . . . , S for matching variables k = 1, . . . ,K of (�sMk, �sMk) and
(�sUk, �sUk) from their prior distributions.



3. Assign an initial match/nonmatch configuration I. Since one-to-one matching is being forced, the algorithms of
sections 3.1 and 3.2 with appropriate constraints on parameters followed by a linear sum assignment procedure
(Burkard and Derigs 1980) could be used to produce an initial I. An alternative approach is to randomly
generate a matrix of 1’s and 0’s with at most one ’1’ in each row and column in each block to represent
match/nonmatch status. In block s, nms =

∑
a∈As

∑
b∈Bs I(a, b).

4. Cycle through the following steps numerous times until the distribution of drawn values converges to the target
posterior distribution.

(a) For s = 1, . . . , S, draw ps from its conditional distribution given the current indicators Is (and hence nms)
and values of (�p, �p). Specifically,

ps∣Is, �p, �p ∼ Beta(�p + nms , �p + min(nas , nbs)− nms).

(b) For s = 1, . . . , S and k = 1, . . . ,K draw psMk and psUk from their conditional distribution as described in
step (4b) of section 3.3.

(c) For s = 1, . . . , S and k = 1, . . . ,K, use the Metropolis-Hastings algorithm to draw values of hyperparam-
eters �sMk and �sMk as described in appendix Appendix A step (d).

(d) For s = 1, . . . , S and k = 1, . . . ,K, use the Metropolis-Hastings algorithm to draw values of hyperparam-
eters �sUk and �sUk as described in appendix Appendix A step (e).

(e) For s = 1, . . . , S, use the Metropolis-Hastings algorithm to draw values of Is and nms from their full
conditional distributions. See appendix Appendix B for details of this step.

5. Stop once the algorithm has converged.

Note that one-to-one restrictions are imposed on the I matrix. The size of the match class in block s is explicitly
controlled by the fact that nms ≤ min(nas , nbs); 0 < ps < 1. Once the algorithm has converged, it is necessary
to decide which pairs of records to designate as links and nonlinks and which to send to clerical review or leave
undecided. Suggestions in this regard were made at the end of section 3.1. Appendix Appendix B contains details
for step 4(e) above and the Metropolis-Hastings implementation.

4 Conclusions and Future Work

A novel hierarchical Bayesian model for record linkage has been presented. The model allows probabilities to vary
by block and reflect local information. One-to-one matching restrictions are imposed in the likelihood. Indicators of
match status are sampled using Gibbs sampling and the Metropolis-Hastings algorithm. Simulations could be used
to evaluate the performance of the proposed methods.

Several areas can be identified for future work. Many of these will be important in actual applications. It will
be interesting to apply these methods to data from the U.S. Census Bureau, the U.S. National Center for Health
Statistics, and other sources. An automated system for applying these models to new sets of files would be useful
in this regard. In a real application, one could consider better specifications of prior distributions for the record
linkage model parameters. In particular, if data are available from another record linkage site and the site differs
in some ways from the current application, then one must decide the degree to which data from the previous site
should be discounted or down weighted when analyzing the new site. In some applications, the size of the files
will be a challenge. In order to speed computations, one might consider parallel computations; for example, many
computations are performed separately in each block.

The algorithm’s perfomance could be improved by studying tuning parameters and the order of sampling cy-
cles within Metropolis-Hastings and Gibbs sampling algorithms. One could study the sensitivity of results to the
specification of hyperprior distributions. If some Metropolis-Hastings draws for some parameters and elements of I
infrequently lead to changes in the values, then one could examine methods for increaseing the frequency of accepting
Metropolis-Hastings’ moves. In particular, one could consider combining two or more attempted moves into one step.

Two extensions related to the record linkage model can be studied. First, one can consider expanded definitions
of the agreement/disagreement comparisons for the matching variables. That is, one could allow partial agreement,
missing values, and string comparator metrics (Winkler 1993, 1994). These comparisons probably would use matching
information more effeciently. Second, in some applications, one could consider more fully using household structure.
In some applications at the U.S. Census Bureau, household structure is reflected in part by the use of three latent
classes in the record linkage mixture model (Larsen and Rubin 2001 and references therein).



Another direction for development in the future is the Bayesian analysis of files that are created through record
linkage operations. Lahiri and Larsen (2005) extended Scheuren and Winkler (1993) on adjusting for the bias that
arises due to errors in matching. One could image a feed-back loop, as in Scheuren and Winkler (1997), where points
with large residuals in a linear regression model are more likely than their agreement patterns alone suggest to be
nonmatches and points that are very certain to be matches have more influence on a linear regression fit.
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Appendix A Metropolis-Hastings Sampling Steps for the Hierarchical
Record Linkage Model

Details of the three Metropolis-Hastings (Hastings 1970) steps in the simulation procedure of section 3.3 are presented
below.

(c). For s = 1, . . . , S, use the Metropolis-Hastings algorithm (Hastings 1970; see also Gelman 1992 and Gelman et
al. 2004 chapter 11) to draw values of hyperparameters �sM and �sM from their full conditional distributions.
Specifically, given current values of �sM and �sM (and hence �sM and �sM ), Is, and other parameters,

(i) Define tuning constants ℎ�M > 0 and ℎ�M > 0.

(ii) Draw u ∼ Uniform(0, 1),
�∗ ∼ N(�sM , �

2
�M/ℎ�M ),

and
�∗ ∼ N(�sM , �

2
�M/ℎ�M ).

(iii) Calculate �∗ = e�
∗
logit−1(�∗) and �∗ = e�

∗
logit−1(1− �∗).

(iv) Calculate

r = min
(

1, p�
∗−�sM
sM (1− psM )�

∗−�sM

× exp (−ℎ�M
�2
�M

(�sM − �∗)2) exp (−ℎ�M
�2
�M

(�sM − �∗)2)

)
(v) If u ≤ r, let �sM = �∗ and �sM = �∗.

Otherwise, let �sM and �sM remain the same.

(d). For s = 1, . . . , S and k = 1, . . . ,K, use the Metropolis-Hastings algorithm to draw values of hyperparameters
�sMk and �sMk. Specifically, given current values of �sMk and �sMk (and hence �sMk and �sMk), Is, and other
parameters, follow the steps outlined in step (c) above but with all M indexes replaced by Mk’s.



(e). For s = 1, . . . , S and k = 1, . . . ,K, use the Metropolis-Hastings algorithm to draw values of hyperparameters
�sUk and �sUk. Specifically, given current values of �sUk and �sUk (and hence �sUk and �sUk), Is, and other
parameters, follow the steps outlined in step (c) above but with all M indexes replaced by Uk’s.

The tuning parameters ℎ�M and ℎ�M are chosen so that the drawn values of the parameters are accepted approx-
imately 23-44% of the time (Gelman et al. 2004 chapter 11.9). Thus the algorithm could be run for several iterations
to assess the acceptance rate, adapting the tuning paramters as necessary. A second phase then could be initiated
with fixed values for tuning parameters.

Appendix B Metropolis-Hastings Steps for Sampling from the Hier-
archical Record Linkage Model with One-to-One Restric-
tions

In this section, the updating step for the number of matches, nms , and the configuration of matches and nonmatches,
Is, for blocks s = 1, . . . , S is described. It is assumed that current values of parameters and hyperparameters are
given. Each block is updated separately. Given the value of a match/nonmatch configuration Is, the unknown
parameters of the model are drawn as described in section 3.5.

Let s = {(a, b), a ∈ As, b ∈ Bs} be the collection of comparison vectors for all pairs in block s. For notational
convenience, let �s = (�sMk, �sUk, k = 1, . . . ,K), �s = (�sMk, �sUk, k = 1, . . . ,K), � = (��Mk, ��Uk, ��Mk, ��Uk, k =
1, . . . ,K), and �2 = (�2

�Mk, �
2
�Uk, �

2
�Mk, �

2
�Uk, k = 1, . . . ,K) be collections of hyperparameters. For block s, the full

conditional distribution of (nms , Is) is

Pr(nms , Is∣s, {psMk, psUk, k = 1, . . . ,K}, ps, �s, �s, �, �2) ∝
Pr(nms ∣ps)Pr(Is∣nms)Pr(s∣Is, {psMk, psUk, k = 1, . . . ,K}), (11)

which is non-zero if and only if the one-to-one and match class size restrictions of section 2.1 are fulfilled. The
distributions listed in (11) are discrete.

One way to implement a Gibbs sampling step to draw a new value is (n∗ms , I
∗
s) as follows. Compute the right-hand

side of (11) for all possibilities (nms , Is), ignoring the constant of proportionality. Then add all the terms together,
and divide them by their total to normalize them to sum to one. Order the possibilities (nms , Is) for block s and
compute the cumulative probability distribution for a given order by accumulating the normalized likelihood values.
Draw a random deviate u ∼ Uniform(0, 1). Let (n∗ms , I

∗
s) be the match/nonmatch configuration with cumulative

probability for the given order closest to but not less than u. The problem with this implementation is the enormous
computation needed to compute the (unnormalized) density (11) for all possibilities of (nms , Is). For example, when
nas = nbs = 10, there are 234,662,231 possibilities.

One Metropolis-Hastings sampling procedure would randomly pick a new candidate configuration (n∗ms , I
∗
s) from

the product of the prior distributions given in (8) and (9) and the current value of ps: Pr(nms ∣ps)Pr(Is∣nms). The
move to the candidate configuration would be accepted with the probability

min ( 1,
Pr(n∗ms , I

∗
s∣all current parameter values) Pr(nms , Is∣ps)

Pr(nms , Is∣all current parameter values) Pr(n∗ms , I
∗
s∣ps)

) . (12)

The normalizing constants from the ratio of the conditional density (11) evaluated at the two sample points cancel.
Although it would be simple to sample from the prior distribution and to evaluate the ratio in (12), the procedure is
not recommended due to the fact that it would rarely move from a reasonable configuration to a randomly selected
new configuration. In practice, each record in a file has few potential matches in the other file. Thus, sampling
candidate values from the prior distribution will be very inefficient.

Here we propose incremental ways of modifying nms and Is to cover the space of possible configurations and to
produce higher probabilities of change across iterations. Three basic “moves” or modifications of nms and Is will be
considered. First, one matching pair can be turned into a nonmatching pair: n∗ms = nms −1 and I(a, b) changes from
one to zero for some (a, b) in block s. Second, one nonmatching pair is grouped with the matches: n∗ms = nms +1 and
I(a, b) changes from zero to one for some (a, b) such that, before changing the indicator to one,

∑
a∈As I(a, b) = 0

and
∑
b∈Bs I(a, b) = 0. Third, n∗ms = nms is unchanged, but I∗s is different from Is. The changes in Is that will be

considered will involve at most two records from As and two from Bs. That is, a record in file A block s that has a
match will switch to a new match in file B block s, a record with a match in file B will switch to a new match in file
A, or two pairs of records in block s will switch matches.



B.1 Move 1: n∗
ms

= nms − 1
In this movement, one pair currently designated to be a match is changed to a nonmatch designation. Option 1 below
chooses a matched pair from block s with uniform probability. Option 2 below chooses a matched pair based on the
probability that the pair is a nonmatch given that one among the matches is a nonmatch.

Option 1: Pick a pair (a, b), a ∈ As, b ∈ Bs that is designated to be a match, I(a, b) = 1, at random from the set
of all matches in block s with equal probabilities. Suppose the chosen pair is (ai, bj), for some index values i and j.
For the selected pair, set I(ai, bj) = 0. Probability of picking a pair (ai, bj) is (nms)

−1.
The inverse move is to add the deleted pair of records to the set of designated matches (see Move 2 below). If

a uniform selection probability is used to add a nonmatching pair to the set of matches, the probability of selecting
the dropped match is ((nas − nms)(nbs − nms))−1. The acceptance probability for the MH algorithm is

min ( 1,
Pr(n∗ms , I

∗
s∣all current parameter values) nms

Pr(nms , Is∣all current parameter values) (nas − nms)(nbs − nms)
) .

Option 2: Pick a matched pair (ai, bj) at random with probabilities given below and set I(ai, bj) = 0. In the formulas
below, products and summations are over pairs that are designated matches in block s. The pair (ai, bj), ai ∈ As, bj ∈
Bs has comparison vector ij .

Pr(drop pair(ai, bj)) = Pr(ij ∣U, s)
∏

(k,l)∕=(i,j)

Pr(kl, (k, l) ∕= (i, j)∣M, s)/

⎛⎝∑
i′

∑
j′

Pr(i′j′ ∣U, s)
∏

(k,l) ∕=(i′,j′)

Pr(kl, (k, l) ∕= (i′, j′)∣M, s)

⎞⎠
= Pr(ij ∣U, s)/⎛⎝Pr(ij ∣U, s) + Pr(ij ∣M, s)

∑
i′

∑
j′

Pr(i′j′ ∣U, s)/Pr(i′j′ ∣M, s)

⎞⎠
Given that nms in some blocks might not be too large, the computation of probabilities above in some applications

might be reasonable. Pairs of records that agree on all or almost all comparisons and that have low levels of agreement
with other potential matches likely would not be selected to be dropped. Pairs of records that have more disagreements
and that have alternative matches should be dropped more readily.

As for option 1, the inverse move is to add the deleted pair of records to the set of designated matches (see Move
2 below). Let Pr(drop pair(ai, bj)) be the probability of dropping pair (ai, bj) from the match set to decrease nms by
one. Let Pr(add pair(ai, bj)) be the probability of adding pair (ai, bj) to the match set to increase nms by one. The
acceptance probability for the MH algorithm is

min ( 1,
Pr(n∗ms , I

∗
s∣all current parameter values) Pr(add pair(ai, bj))

Pr(nms , Is∣all current parameter values) Pr(drop pair(ai, bj))
) .

B.2 Move 2: n∗
ms

= nms + 1
In this movement, one pair currently designated to be a nonmatch is changed to a match designation. Option 1 below
chooses a nonmatched pair from block s with uniform probability. Option 2 below chooses a nonmatched pair based
on the probability that the pair is a match given that one among the nonmatches is a match.

Option 1: Pick a pair (a, b), a ∈ As, b ∈ Bs that is designated to be a nonmatch, I(a, b) = 0, at random from the set
of all nonmatches in block s with equal probabilities. For the selected pair, set I(ai, bj) = 1. Probability of picking
a pair (ai, bj) is ((nas − nms(nbs − nms))−1.

The inverse move is to deleted a pair of records from the set of designated matches (see Move 1 below). If a
uniform selection probability is used to delete a matching pair, the acceptance probability for the MH algorithm is

min ( 1,
Pr(n∗ms , I

∗
s∣all current parameter values) (nas − nms)(nbs − nms)
Pr(nms , Is∣all current parameter values) nms

) .

Option 2: Pick a nonmatched pair (ai, bj) at random with probabilities given below and set I(ai, bj) = 1. In the
formulas below, products and summations are over pairs that are designated nonmatches in block s.



Pr(add pair(ai, bj)) = Pr(ij ∣M, s)
∏

(k,l)∕=(i,j)

Pr(kl, (k, l) ∕= (i, j)∣U, s)/

⎛⎝∑
i′

∑
j′

Pr(i′j′ ∣M, s)
∏

(k,l)∕=(i′,j′)

Pr(kl, (k, l) ∕= (i′, j′)∣U, s)

⎞⎠
= Pr(ij ∣M, s)/⎛⎝Pr(ij ∣M, s) + Pr(ij ∣U, s)

∑
i′

∑
j′

Pr(i′j′ ∣M, s)/Pr(i′j′ ∣U, s)

⎞⎠
Pairs of records that disagree on all or almost all comparisons are not likely to be added. Pairs of records that are

current nonmatches but agree on many fields are likely to be added. As for option 1, the inverse move is to delete
the added pair of records from the set of designated nonmatches (see Move 1 above). The acceptance probability for
the MH algorithm is

min ( 1,
Pr(n∗ms , I

∗
s∣all current parameter values) Pr(drop pair(ai, bj))

Pr(nms , Is∣all current parameter values) Pr(add pair(ai, bj))
) .

B.3 Move 3: nms unchanged but Is altered
In this movement, three things can happen: two matches can switch pairs, a matched pair can replace one of its units
with an unmatched pair, or a matched pair can be dropped and replaced with another matched pair.

Variation 1: Two matches switch pairings: Randomly select two matched pairs, (ai, bj) and (ak, bl), with
probability 2/(nms(nms − 1)) and switch the pairings: (ai, bl) and (ak, bj). That is, change I(ai, bj) and I(ak, bl)
from one to zero and I(ai, bl) and I(ak, bj) from zero to one. The reverse move is to undo the switch. The acceptance
probability of the MH algorithm is the minimum of one and

(P (il∣M, s)P (kj ∣M, s)P (ij ∣U, s)P (kl∣U, s)) / (P (ij ∣M, s)P (kl∣M, s)P (il∣U, s)P (kj ∣U, s)) .

It would be possible to select two matched pairs with non uniform probabilities, but doing so could be com-
putationally expensive. Given that two pairs need to be switched, the probability that pairs (ai, bj) and (ak, bl)
are to be switched is P (il∣M, s)P (kj ∣M, s)P (ij ∣U, s)P (kl∣U, s) divided by the sum of products of this sort over
nms(nms − 1)/2 − 1 sets of two pairs (all sets of two pairs except (i, j) and (k, l)). If nms is large, this could be a
large number of computations. The MH acceptance probability is

min ( 1,

∑∑
(i′,j′) ∕=(i,j),(k′,l′)∕=(k,l) P (i′l′ ∣M, s)P (k′j′ ∣M, s)P (i′j′ ∣U, s)P (k′l′ ∣U, s)∑∑
(i′,l′)∕=(i,l),(k′,j′)∕=(k,j) P (i′j′ ∣M, s)P (k′l′ ∣M, s)P (i′l′ ∣U, s)P (k′j′ ∣U, s)

) .

A less computationally intense approach would randomly choose one matched pair, say (ai, bj), with uniform
probability (1/nms) and a second matched pair with non-uniform probability. Given that pair (ai, bj) is going to be
broken and switched with another pair from the current matches, one could select the pair (ak, bl) with probability

P (il∣M, s)P (kj ∣M, s)P (ij ∣U, s)P (kl∣U, s)∑
(k′,l′) ∕=(i,j) P (il′ ∣M, s)P (k′j ∣M, s)P (ij ∣U, s)P (k′l′ ∣U, s)

.

If a similar reverse move is considered, then the MH acceptance probability is

min ( 1,

∑
(k′,l′) ∕=(i,j) P (il′ ∣M, s)P (k′j ∣M, s)P (ij ∣U, s)P (k′l′ ∣U, s)∑
(i′l′) ∕=(k,j) P (i′j ∣M, s)P (kl′ ∣M, s)P (i′l′ ∣U, s)P (kj ∣U, s)

) .

Variation 2: A matched pair replaces one of its matching records with a nonmatching record: In this
move, a matched pair of records is randomly chosen and one of its component records is replaced with a record from
the same file in the same block that does not have a designated match. That is, suppose I(ai, bj) = 1 and the matched
pair (ai, bj) is chosen. One of the matched pairs can be chosen with uniform probability: 1/nms . A records ak in file
A without a match satisfies

∑
j′ I(ak, bj′) = 0. A record bl in file B without a match satisfies

∑
i′ I(ai′ , bl) = 0. There

are nas + nbs − 2nms nonmatched records in block s. One option is to choose a nonmatched record randomly. The



reverse move would involve switching to the initial pairings. If the A-record ai is replaced through random selection
with A-record ak, the MH acceptance probability is the minimum of one and

P (kj ∣M, s)P (ij ∣U, s)/ (P (ij ∣M, s)P (kj ∣U, s)) .

If the B-record bj is replaced through random selection with B-record bl, the MH acceptance probability is the
minimum of one and

P (il∣M, s)P (ij ∣U, s)/ (P (ij ∣M, s)P (il∣U, s)) .

Another way to choose the replacement record is to compute the probability given current parameter values that
a particular nonmatching record is a match, assuming that pair (ai, bj) is a nonmatching pair. The probability the
matching pair is (ak, bj), where record ak currently does not have a match, is

P (kj ∣M, s)/

(∑
k′

P (k′j ∣M, s) +
∑
l′

P (il′ ∣M, s)

)
,

where the sums are over A-records without a match (k′) and B-records without a match (l′). The MH algorithm
acceptance probability is the minimum of one and∑

k′ P (k′j ∣M, s) +
∑
l′ Pil′ ∣M, s)∑

i′ P (i′j ∣M, s) +
∑
j′ P (kj′ ∣M, s)

.

The summations in the denominator are over records that would not have matches if (ak, bj) were a match.
The probability that the matching pair is (ai, bl), where record bl currently does not have a match, is

P (il∣M, s)/

(∑
l′

P (il′ ∣M, s) +
∑
k′

P (k′j ∣M, s)

)
,

where the sums are over A-records without a match (k′) and B-records without a match (l′). The MH algorithm
acceptance probability is the minimum of one and∑

l′ P (il′ ∣M, s) +
∑
k′ Pk′j ∣M, s)∑

i′ P (i′l∣M, s) +
∑
j′ Pij′ ∣M, s)

.

The summations in the denominator are over records that would not have matches if (ai, bl) were a match.

Variation 3: A matched pair is deleted and two unmatched records are paired: The last move that will
be contemplated is the deletion of a matched pair and the joining of two unmatched records. If (ai, bj) is a match
and ak and bl are unmatched records, the move entails setting I(ai, bj) = 0 and I(ak, bl) = 1. This is in effect almost
the combination of the first two moves: removal of a match and addition of a new match other than the one that was
removed. The match to be removed could be chosen using uniform probabilities or with probabilities as described for
Move 1. The nonmatching pairs to be linked together can be chosen using uniform probabilities or with probabilities
similar to those described in Move 2. An acceptance probability for the MH algorithm can be computed as the
product of appropriately modified probabilities associated with Moves 1 and 2.

The choice of how often to consider various moves: If there is good matching information in most blocks and
drawn parameter values are in ranges that are appropriate for identifying matches, then it is possible that accepted
changes in I and nms , s = 1, . . . , S will oscillate among likely match/nonmatch configurations with an occasional
unlikely configuration now and then. In any particular block, members of the set of likely configuations could differ
from each other in several ways. The Metropolis-Hastings/Gibbs sampling algorithm should explore the posterior
distribution of parameters and match/nonmatch configurations if moves that correspond to differences between likely
configuations in a block are used more often in that block. Thus, an adaptive procedure can be recommended. In
block s, start the iterative simulation and try each type of move each iteration for the first several iterations. After a
specified number of iterations, increase the frequency with which moves that result in accepted changes and decrease
the frequency with which moves that do not result in accepted changes are attempted. An alternative that would
be simpler to implement would be to attempt one move, randomly selected from the possible types of moves, each
iteration of the algorithm. That is, it is not necessary to try each type of move every iteration. Practical experience
and monitoring of the algorithm in a particular application will be necessary before any further recommendations
can be made.


