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Abstract

Peaks in the spectrum of a stationary time series indicate the presence of periodic phenomena, such as
seasonal and cyclical components. Extending the approach of McElroy and Holan (2009), this paper con-
structs nonparametric peak-estimators via windowing the periodogram with the same sinusoidal function
used to define seasonal autocovariances. We also utilize a multiple testing procedure that controls the
familywise error rate, as in Hochberg (1988) and McElroy and Holan (2009). The application of these
methods is exceedingly simple, requiring only a few lines of computer code; therefore the method can
be used to quickly evaluate series for residual seasonality. Simulation studies demonstrate the good size
and power of the procedure, and an extensive data study further illustrates the method.
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1 Introduction

The detection of peaks in the spectrum of a time series has several important applications. Peaks are
indicative of periodic or quasi-periodic behavior in the time series, and can be associated with a wide range
of phenomena: trends, cycles, seasonality, or trading day effects. In this paper we focus on seasonality,
where the peak locations are always known ahead of time, but there remains a question of whether the
spectrum has significant mass at these seasonal frequencies. In the context of a federal agency such as the
U.S. Census Bureau that seasonally adjusts thousands of economic time series each month, the statistician
engaged in production is interested in having a quick and powerful tool to assist with handling seasonality
nonparametrically. In particular one wants to know: (1) is the original (or raw) series seasonal; (2) does the
output of my seasonal adjustment procedure have residual seasonality?

With regard to the first question, only series exhibiting seasonality should be seasonally adjusted. Given
the sensitivity and importance of published series, the decision to seasonally adjust should not be made
subjectively. Current practice at the U.S. Census Bureau often utilizes examination of spectral plots and the
use of Visual Significance (VS) to gauge seasonality of the raw data – see the discussion in Findley, Monsell,
Bell, Otto, and Chen (1998). As for the second question above, if the series has just been adjusted with some
method (such as X-12 ARIMA or TRAMO-SEATS) the statistician wants to know if the seasonality has
been adequately removed – otherwise it may be necessary to do some additional modeling and refinement
of the inputs to the software. Common practice at the U.S. Census Bureau is again to use VS and spectral
plots to directly assess this. The proposed method of this paper aims to improve upon the non-statistical
VS procedure.

Earlier work on this topic can be found in McElroy and Holan (2009), which is broader in some ways
than the present work. As noted, VS uses the spectrum but does not associate a statistical significance, or

∗Statistical Research Division, U.S. Census Bureau, 4600 Silver Hill Road, Washington, D.C. 20233-9100,
tucker.s.mcelroy@census.gov

†Department of Statistics,University of Missouri-Columbia, 146 Middlebush Hall, Columbia, MO, 65211-6100,
holans@missouri.edu

1



p-value, to the resulting decision problem; the spectral diagnostics of McElroy and Holan (2009) – referred to
as MH tests – rectify this using measures of slope and convexity. The paper at hand simplifies this to a single
measure (for each peak), thus simplifying the distribution theory. Instead of having two tests to measure the
slope and convexity of a peak, we now use a single measure that essentially computes a weighted spectral
mass – and is very intuitively related to the sample autocovariance estimate at seasonal lags. Specifically,
the measure we propose assesses the portion of the lag 12 seasonal autocovariance associated with a given
seasonal frequency (spectral peak). Since there are multiple spectral peaks involved, we utilize the same
method as McElroy and Holan (2009) to address this multiple testing problem. The issue is that when
several independent tests are considered collectively, it is likely that some will grant significant p-values
simply due to chance; classically one way this is addressed is by using the Family-Wise Error Rate (FWER)
method proposed by Hochberg (1988).

There are other approaches to spectral peak detection in the literature – see the discussion in McElroy and
Holan (2009) – but the only ones commonly used in the seasonal adjustment community (leaving aside model-
based diagnostics) are VS, the M7 and M8 statistics of X-12 ARIMA, and the tests for stable seasonality
of Lytras, Feldpausch, and Bell (2007). These latter tests are not based explicitly on the spectrum, and
don’t have an ability to discriminate between the various seasonal peaks (i.e., they are all or nothing).
We here focus upon procedures that can give detailed information on each seasonal peak: VS, MH, and
the diagnostics of this paper. We begin by motivating our statistics through the very intuitive notion of
seasonal lag autocovariances, thereby relating the time domain to the spectral density. Section 2 develops
this construction into our spectral peak test statistics, and we also discuss a practical solution to the multiple
testing problem in this context. Then Section 3 explores the size and power of our tests by evaluating them
on the 130 series investigated in McElroy and Holan (2009). Section 4 summarizes our findings: the size
and power of the procedure are extremely similar to those of McElroy and Holan (2009) when using the
TH kernel, and ignoring the slope test. Therefore, based on interpretation and ease of implementation, we
recommend the simplified procedure of this paper for detecting seasonality.

2 Theory

This section discusses the basic methodology for spectral peak testing in this paper. We first discuss the
construction of spectral peak test statistics (Section 2.1), and then discuss some theory for the joint testing
problem (Section 2.2).

2.1 Spectral Peak Test Statistics

Let Xt be a stationary mean zero time series. (We develop the theory for the null hypothesis – see below –
that there are no peaks, or that the spectrum is locally flat; therefore it suffices to consider the time series
to be stationary, since a nonstationary time series will not have a flat spectrum. In practice, the method
can and will be applied to nonstationary time series.) To focus the discussion, suppose that this is sampled
at a monthly frequency, but generalizations to quarterly data will be obvious. We start by observing that
the theoretical autocovariance at lag 12 is given by

γ12 =
1
π

∫ π

−π

f(λ) cos(12λ) dλ,

where f is the spectral density of the process. It is well-known (Findley et al., 1998) that the spectral
density f of a seasonal process will have peaks at some or all of the so-called seasonal frequencies, namely
πj/6 for j = 1, 2, 3, 4, 5, 6 (the seasonal frequency at π cannot be identified as a peak due to aliasing, and
so will be omitted from further discussion). Due to its oscillating shape, the function cos(12λ) amplifies
any of these peaks (as well as the trend frequency at λ = 0), but dampens the function f in-between the
seasonal frequencies. If f has seasonal troughs rather than peaks (a phenomenon not uncommon in seasonally
adjusted time series – see McElroy (2008)), these will likewise be amplified to produce a negative value for
γ12. Essentially, cos(12λ) acts as a spectral window to extract periodic information from f .

However, because cos(12λ) takes on negative values, it is possible for a spectral peak in one location to
be more or less canceled out by a spectral trough at another seasonal frequency. In order to isolate the
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behavior at each seasonal frequency, we will divide cos(12λ) up into disjoint bands A1, A2, A3, A4, A5, such
that Aj = [πj/6− π/6, πj/6 + π/6]

⋃
[−πj/6− π/6,−πj/6 + π/6]. The union of these five sets covers all of

[−π, π], except for the territory covered by the zero and π frequencies. Then the parameter

ρj =
1
2π

∫

Aj

f(λ) cos(12λ) dλ

measures the peak/trough of f at frequency πj/6. We pursue estimation of these parameters nonparamet-
rically, and the simplest estimator is obtained by plugging in the periodogram In(λ) = n−1|∑n

t=1 e−iλt|2,
based on a sample of size n. This results in a consistent estimator under very mild conditions (without
having the confusion of bandwidth selection that plagues nonparametric spectral density estimation), but
we motivate the choice even further. The lag 12 sample autocovariance is simply

R12 =
1
π

∫ π

−π

In(λ) cos(12λ) dλ,

from which it is plain that the estimator

ρ̂j =
1
π

∫

Aj

In(λ) cos(12λ) dλ

is very natural. Furthermore, using the periodogram provides peak/trough estimates that are asymptotically
independent, as the following theorem demonstrates.

Theorem 1 Suppose that the time series is a sample from a causal linear process with fourth moments.
Then as n →∞ √

n
(ρ̂j − ρj)√

2
π

∫
Aj

I2
n(λ) cos2(12λ) dλ

L=⇒ N (0, 1)

jointly in j = 1, 2, 3, 4, 5, i.e., the statistics are asymptotically independent.

Remark 1 The conditions can be relaxed somewhat: we require that the fourth cumulants of the process
vanish and that either condition (B) or (HT) of Taniguchi and Kakizawa (2000, Section 3.1.1) hold, and also
that Assumption 1 (8) of Chiu (1988) holds. See the Appendix of McElroy and Holan (2009) and the above
papers for more details.

In order to apply this result to peak/trough detection, we must first formulate a null hypothesis. Noting
that a flat spectrum on the set Aj produces ρj = 0, we let the null denote the hypothesis that no peak or
trough is present; a large positive (negative) value of ρj indicates a peak (trough). Hence for peak detection
we have

H
(j)
0 : ρj = 0

H(j)
a : ρj > 0

for j = 1, 2, 3, 4, 5, with the inequality flipped for trough detection. Note that if the spectrum is linear on Aj ,
then ρj will also be zero; it will be nonzero when there is some change in the convexity of f on the interval.

Under each of these null hypotheses, Theorem 1 shows that test statistic defined by

Tj =
√

n
ρ̂j√

2
π

∫
Aj

I2
n(λ) cos2(12λ) dλ

is asymptotically standard normal. Now these statistics are very easy to compute. Let X = (X1, X2, · · · , Xn)′

be the data vector, and R = (R1−n, · · · , R0, · · · , Rn−1)
′ be the vector of sample autocovariances, where

Rk = n−1
∑n−|k|

t=1 XtXt+|k|. Then the statistic is

Tj = n−1/2 X ′Γ(cos(12·)1Aj )X√
R′Γ(cos2(12·)1Aj )R

,
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where Γ(g) is the Toeplitz matrix associated to g, such that the j, kth entry corresponds to the inverse Fourier
Transform of g at index j − k. In the cases of g given by cos(12·)1Aj

and cos2(12·)1Aj
respectively, these

matrix entries are just the corresponding autocovariances (given below), and the matrices have dimensions
n and 2n− 1 respectively. Direct calculation yields

Γk,l(cos(12·)1Aj ) =





2(k−l)
π cos(2πj(k − l)/12) sin(π(k − l)/12)/(144− (k − l)2) (k − l) 6∈ 12Z

1/12 (k − l) = ±12
0 else

Γk,l(cos2(12·)1Aj
) =





(k−l)
π cos(2πj(k − l)/12) sin(π(k − l)/12)/((k − l)2 − 576)
+ sin(π(k − l)/12)/(π(k − l)) cos(πj(k − l)/6) (k − l) 6∈ 12Z

1/12 (k − l) = 0
1/24 (k − l) = ±24
0 else

This enables one to easily encode the entire procedure.

2.2 Joint Peak Testing

We have five peak tests used simultaneously, which can lead to spurious conclusions if the p-values are not
interpreted appropriately; this is a well-known multiple testing problem. This issue was addressed in McElroy
and Holan (2009) by using the FWER approach of Hochberg (1988) and Benjamini and Hochberg (1995);
we use the same method here, detailed as follows. Suppose that we test each of the five peaks individually,
as discussed in the previous section, and obtain five p-values. Order these such that p(1) ≤ p(2) ≤ p(3) ≤
p(4) ≤ p(5), where p(i) is the ith largest p-value with corresponding null hypothesis H(i) (note the different
notation from the previous section, where the superscript on the hypothesis refers to a specific peak, but
now the subscript refers to the ordering of the p-values). Then if the FWER is specified at level α (e.g.,
α = 0.05), let k be the largest i for which p(i) ≤ i/(6− i) α. The procedure then indicates that all H(i) are
rejected for i ≤ k.

This Hochberg Family-Wise Error Rate (H-FWER) procedure will make a Type I error, i.e., identify at
least one seasonal frequency as having a peak when none are actually present, with probability α, so long as
the test statistics are independent. Moreover, its statistical power is greater than other methods (Benjamini
and Hochberg, 1995). By Theorem 1 the test statistics are asymptotically independent, and hence the size
will be approximately correct. The size of the procedure in McElroy and Holan (2009) was inexact due to
the two stage testing procedure (i.e., the slope testing aspect).

We also remark here that some practitioners do not regard the fifth seasonal frequency as relevant
(Findley, 2006), and hence our peak testing procedure could then be based only on the first four seasonal
frequencies. The H-FWER method could then be adapted in an obvious fashion.

3 Empirical Studies

First we consider finite sample size and power for the test statistics Tj using AR(2) processes for the
alternative with various frequency locations. This is discussed in 3.1; then in 3.2 we revisit the 130 series of
McElroy and Holan (2009), illustrating our peak detection method in practice.

3.1 Size and Power

To evaluate the performance of our diagnostics we conducted several simulations. The first set of simulations
examines size (level) for the single peak diagnostic. The results here are straight-forward to obtain, and are
similar to the convexity size results for the Tukey-Hanning (TH) kernel of McElroy and Holan (2009). We
simulated 10,000 Gaussian white noise series, and evaluated our peak testing method, with results reported
in Table 1. While there are some discrepancies for small samples sizes, the convergence is reasonable for
n = 360.
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Next, we consider the empirical power for our single peak diagnostic. As usual, this depends on the
chosen α-level for Type I error, as well as on the dynamic range and spectral mass of the underlying peak.
We consider α = .05, .10 and peaks parametrized by a parameter φ as follows: consider the AR(2) process
given by

(1− 2φ cos ωB + φ2B2)Xt = εt (1)

with white noise variance σ2, associated with some fixed frequency ω ∈ [0, π]. The spectrum associated
with the process in (1) is given by f(λ) = σ2 |1− 2φ cos ωe−iλ + φ2e−2iλ|−2, which is maximized at λ0 =
cos−1(cos ω(1 + φ2)/2φ). Therefore one can explore the power of a peak-testing procedure by simulating
from (1) with various choices of φ, ω, and σ. Naturally, ω can be set to πj/6 for j = 1, 2, 3, 4, 5 so long as φ
is fairly close to unity, since then ω will approximately correspond to the peak location. Table 2 presents the
result of 10,000 simulations of various sample sizes, from the AR(2) cycle model given in (1) with peak at
µ = π/6. The peak strength is parametrized through φ = .85, .90, .95. Clearly Ha is true for these processes,
and it should be easier to reject H0 as φ is increased towards unity.

As expected, the power of our diagnostic increases with sample size and peakedness, ranging from .145
(α = .05) in small samples having a weak spectral peak to perfect power in larger samples having a more
pronounced spectral peak (see Table 2). Note that in this procedure the innovation variance is set equal
to one, but it is immaterial due to the normalization of the diagnostic. In summary, the single peak test
possesses decent size and power properties.

Although the individual peak testing scenario provides the foundation for our joint testing framework,
as noted, the joint testing framework provides important methodology for applications in federal statistics.
The application of importance is the evaluation of effective seasonal adjustment through the exploration of
residual seasonality. Thus, it is of particular interest to know how our multiple testing approach performs in
simulation. Therefore, in order to investigate the size and power associated with our joint test, we simulated
10,000 repetitions from a Gaussian white noise process and from an AR(25) model obtained as a fit to the
Current Employment Series (Employed Males, aged 16 to 19). Our goal in the power study was to construct
a process with (stationary) spectral peaks that are realistic, or close to what might be found in practice; in
order to have results comparable to McElroy and Holan (2009), we use the same Data Generation Process.

We used α = .05, and considered various sample sizes as in our single peak studies. The five single peak
test statistics were evaluated on the white noise and AR(25) data respectively, standard normal p-values
were calculated, and the H-FWER method discussed in Section 2.2 was applied. If any peaks were detected,
this indicated a Type I error for the white noise, but was a correct decision for the AR(25); in this way the
empirical size and power were calculated, displayed in Table 3. The size is slowly approaching the nominal
level – the discrepancy is essentially due to the lack of independence of the single peak tests in finite sample.
The power is exceptional; this is the noted advantage of the H-FWER method. It is also worth contrasting
this fairly simple situation with the complexity of McElroy and Holan (2009), where the presence of the
slope tests greatly confuses the interpretation of size and power.

3.2 Data

We also considered 130 time series, 65 from the U.S. Census Bureau and 65 from OECD; these are the same
data considered in McElroy and Holan (2009), and are repeated here to facilitate comparisons of the two
methods. These series consist of 35 U.S. Manufacturing series, 10 U.S. Housing series, 10 U.S. Import/Export
series, and 10 U.S. Retail series; there are also 22 German series, 15 Euro-area series, 11 French series, and
17 Great Britain series from OECD, covering the sectors of manufacturing, retail, wholesale, foreign trade,
unemployment, and industry. For every series, we computed the seasonal peak tests for both the raw
data (logged) and the seasonally adjusted data (logged) – using the x11 specification of X-12-ARIMA. We
employed the H-FWER procedure at α = .05, .10. For both the raw and seasonally adjusted data, a single
trend difference was used (as is the case for the VS diagnostic) before applying the seasonal peaks test.

For Tables 4-9, each cell entry lists which seasonal frequencies were found to have a significant peak, with
j corresponding to πj/6 for j = 1, 2, 3, 4, 5; an entry of ∅ indicates that no peaks were detected. These tables
are simpler than the corresponding ones in McElroy and Holan (2009), which also contain results for VS
and other seasonality diagnostics. The set of columns corresponding to the “Original Data” heading can be
seen as giving empirical power (for each subset of series), assuming that each series is indeed seasonal and
has seasonal spectral peaks. That is, the Total “correct” number gives the proportion of times our method
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correctly identified seasonality, and hence this proportion is a crude proxy for empirical power. The set of
columns for “SA Data” gives an empirical size (for each subset of series), assuming that seasonal adjustment
has indeed removed the spectral peaks. These are rough considerations, since we do not really know a priori
whether the SA Data has been adequately adjusted.

Our procedure indicates a few cases (when α = .10) where the adjustment may be inadequate, but these
are within the scope of the expected proportion of Type I errors. For the raw series, the empirical power (i.e.,
total proportion correct) for our method is at least .69, with higher power for the α = .10 level, as expected.
These results are quite similar to those of McElroy and Holan (2009) using the TH kernel, although there
are a few differences.

4 Conclusion

This paper proposes test statistics that are much simpler to implement than those of McElroy and Holan
(2009), and yet serve to identify seasonal peaks with statistical significance. Our approach to the multiple
testing problem is the same, but because there is now only one test rather than two, the results are easier
to interpret; actual size and power results are similar to those of the convexity test of McElroy and Holan
(2009).
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Size - Single Peak Test
α = .05 α = .10

n Size mean st. dev. Size mean st. dev.
120 .014 -.011 .892 .075 -.010 .884
144 .020 -.022 .895 .076 -.022 .889
180 .032 -.050 .929 .082 -.010 .903
288 .037 -.021 .940 .088 -.022 .942
360 .033 -.060 .961 .092 -.005 .942

Table 1: Simulated size results for α = .05 and α = .10 based on 10,000 repetitions of Gaussian white noise,
at various sample sizes.

Power - Single Peak Test
α = .05 α = .10

n φ = .85 φ = .90 φ = .95 φ = .85 φ = .90 φ = .95
120 .145 .319 .701 .363 .614 .905
144 .188 .457 .799 .410 .698 .950
180 .286 .586 .911 .489 .783 .981
288 .472 .824 .995 .652 .916 .999
360 .551 .907 1.00 .740 .961 1.00

Table 2: Simulated power results for α = .05 and α = .10 based on 10,000 repetitions of a Gaussian AR(2)
process, at various sample sizes and peak strengths.

Size and Power - Joint Test
α = .05 α = .10

n Size Power Size Power
120 .002 .892 .048 .997
144 .003 .952 .051 1.00
180 .005 .991 .062 1.00
288 .015 1.00 .083 1.00
360 .021 1.00 .086 1.00

Table 3: Simulated size and power results for joint peak testing, with α = .05 and α = .10 based on 10,000
repetitions of Gaussian white noise and a multi-peak AR(25) process, at various sample sizes. The H-FWER
procedure (Section 2) was used to determine rejection of the null hypotheses.



Manufacturing Series
α = .05 α = .10

series Original Data SA Data Original Data SA Data
M1 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M2 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M3 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M4 ∅ ∅ ∅ ∅
M5 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
M6 ∅ ∅ 1,2,3 ∅
M7 ∅ ∅ 1,2,4 ∅
M8 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M9 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M10 ∅ ∅ ∅ ∅
M11 ∅ ∅ 1,2,3,5 ∅
M12 1,2,3,4 ∅ 1,2,3,4,5 ∅
M14 ∅ ∅ 1,2,3,4 ∅
M15 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M16 1,2,3,4 ∅ 1,2,3,4 ∅
M17 ∅ ∅ 1,2,3,4,5 ∅
M18 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M19 ∅ ∅ ∅ ∅
M20 ∅ ∅ 1,2,3,4,5 ∅
M21 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M22 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M23 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M24 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M25 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M26 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M27 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M28 ∅ ∅ ∅ ∅
M29 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M30 2,3,4,5 ∅ 1,2,3,4,5 1,3,4,5
M31 ∅ ∅ 1,2,3 ∅
M32 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M33 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M34 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M35 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M36 1,2,3,4,5 ∅ 1,2,3,4,5 ∅

Total “correct” 24/35 35/35 31/35 33/35

Table 4: Data analyses for 35 Manufacturing Series (U.S. Census Bureau) comparing our multiple peak
diagnostic. Our multiple peak diagnostic uses the H-FWER method to control the FWER at α = .05 and
α = .10.



Housing Series
α = .05 α = .10

series Original Data SA Data Original Data SA Data
MW1Fam 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
MWTot 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
NE1Fam 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
NETot 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
S1Fam 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
STot 1,2,4,5 ∅ 1,2,3,4,5 ∅

US1Fam 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
USTot 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
W1Fam 1,2,4,5 ∅ 1,2,3,4,5 ∅
WTot 1,2,4,5 ∅ 1,2,4,5 ∅

Total “correct” 10/10 10/10 10/10 10/10
Import/Export Series

α = .05 α = .10
series Original Data SA Data Original Data SA Data
M00120 ∅ ∅ 1,2,3,4,5 ∅
M00190 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M3000 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
M3010 2,3,4,5 ∅ 1,2,3,4,5 ∅
M12060 1,2,3,4,5 ∅ 1,2,3,4,5 ∅

X3 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
X00300 2,3,4,5 ∅ 2,3,4,5 ∅
X3020 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
X3022 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
X10140 1,2,3,4,5 ∅ 1,2,3,4,5 ∅

Total “correct” 9/10 10/10 10/10 10/10
Retail Series

α = .05 α = .10
series Original Data SA Data Original Data SA Data

s0b441x0 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44000 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44100 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44130 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44200 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44300 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44312 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44400 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44410 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
s0b44500 1,2,3,4,5 ∅ 1,2,3,4,5 ∅

Total “correct” 10/10 10/10 10/10 10/10
Grand Total

“correct” 29/30 30/30 30/30 30/30

Table 5: Data analyses for 30 U.S Census Bureau Series (10 Housing, 10 Import/Export and 10 Retail Sales)
comparing our multiple peak diagnostic. Our multiple peak diagnostic uses the H-FWER method to control
the FWER at α = .05 and α = .10.



OECD DEU
α = .05 α = .10

series Original Data SA Data Original Data SA Data
PRMNCG03 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNCS01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNIG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNVG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLMNCD01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLMNCN01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLMNDM01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLMNEX01 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
SLMNIG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLMNTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLRTCR01 1,2,3,4,5 ∅ 1,2,3,4,5 4,5
SLRTTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLRTTO02 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLWHTO01 1,2,3,4,5 ∅ 1,2,3,4,5 2,3,4
SLWHTO02 1,2,3,4,5 ∅ 1,2,3,4,5 2,3,4
UNLVRG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
UNLVSUMA 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
UNLVSUTT 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
UNRTRG01 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
XTEXVA01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
XTIMVA01 2,3,4,5 ∅ 1,2,3,4,5 ∅

Total “correct” 22/22 22/22 22/22 15/22

Table 6: Data analyses for 22 German OECD Series comparing our multiple peak diagnostic. Our multiple
peak diagnostic uses the H-FWER method to control the FWER at α = .05 and α = .10.



OECD EMU
α = .05 α = .10

series Original Data SA Data Original Data SA Data
PRCNTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRINTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNCG03 1,2,3,4,5 4 1,2,3,4,5 4
PRMNCS01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNIG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNVG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLMNCN02 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLMNIG02 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
SLMNTO02 1,2,3,4,5 ∅ 1,2,3,4,5 2,3,4,5
SLMNVG02 1,2,3,4,5 2 1,2,3,4,5 1,2,3,4,5
SLRTTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLRTTO02 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
XTEXVA01 1,2,3,4,5 ∅ 1,2,3,4,5 2,4,5
XTIMVA01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅

Total “correct” 15/15 13 /15 15/15 10/15

Table 7: Data analyses for 15 Euro-area OECD Series comparing our multiple peak diagnostic. Our multiple
peak diagnostic uses the H-FWER method to control the FWER at α = .05 and α = .10.
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OECD FRA
α = .05 α = .10

series Original Data SA Data Original Data SA Data
PRAFAG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRCNTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNCG01 1,2,3,4,5 4 1,2,3,4,5 4
PRMNCS01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNIG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNTO01 1,2,3,4,5 3,4,5 1,2,3,4,5 1,2,3,4,5
PRMNVE01 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
SLRTCR01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLRTTO02 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
XTEXVA01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
XTIMVA01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅

Total “correct” 11/11 9 /11 11/11 8/11

Table 8: Data analyses for 11 French OECD Series comparing our multiple peak diagnostic. Our multiple
peak diagnostic uses the H-FWER method to control the FWER at α = .05 and α = .10.

OECD GBR
α = .05 α = .10

series Original Data SA Data Original Data SA Data
PPIAMP01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PPIAMP02 3 ∅ 1,2,3,4,5 ∅
PPIPFU01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRINTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNCG02 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNCG03 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNCS01 2,4 ∅ 2,3,4,5 ∅
PRMNIG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNTO01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNVE02 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNVE03 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
PRMNVG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
SLRTCR03 1,2,3,4,5 2,3,4,5 1,2,3,4,5 1,2,3,4,5
SLRTTO02 1,2,3,4,5 ∅ 1,2,3,4,5 1,2,3,4,5
UNLVRG01 1,2,3,4,5 ∅ 1,2,3,4,5 ∅
XTEXVA01 2,3,4,5 ∅ 1,2,3,4,5 ∅
XTIMVA01 2,3,4,5 ∅ 1,2,3,4,5 ∅

Total “correct” 17/17 16/17 17/17 15/17

Table 9: Data analyses for 17 Great Britain OECD Series comparing our multiple peak diagnostic. Our
multiple peak diagnostic uses the H-FWER method to control the FWER at α = .05 and α = .10.


