

Computer-Aided Engineering and Secondary Use of Automotive Batteries

The 10th Advanced Automotive Battery Conference

Ahmad Pesaran Gi-Heon Kim Kandler Smith Jeremy Neubauer National Renewable Energy Laboratory

Orlando, Florida

David Howell* U.S. Department of Energy

NREL/PR-540-48145

Funded by Energy Storage R&D (David Howell), Vehicle Technologies Program, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Content

Computer-Aided Engineering for Automotive Batteries

- Accelerating design and development
- State-of-the-art
- Gaps and needs
- Future plans
- Secondary Use of PHEV and EV Batteries
 - New interest
 - Potential second use applications
 - Gaps and needs
 - Future activities

Computer-Aided Engineering of Automotive Batteries

The 10th Advanced Automotive Battery Conference Orlando, Florida

Gi-Heon Kim Kandler Smith <u>Ahmad Pesaran</u> National Renewable Energy Laboratory

May 19-21, 2010

David Howell* U.S. Department of Energy

NREL/PR-540-48145

Funded by Energy Storage R&D (David Howell), Vehicle Technologies Program U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Introduction – Battery CAE

- Computer-aided engineering (CAE) is a proven pathway, especially in automotive industry, to
 - Improve performance by resolving relevant physics in complex systems
 - Shorten product development design cycle and thus reduce cost
 - Provide an efficient manner for evaluating parameters for robust designs
- Most battery CAE models could be enhanced
 - Academic models include relevant physics details, but neglect engineering complexities
 - Industry models include relevant macroscopic geometry and system conditions, but use too much simplification in fundamental physics
- DOE- and private-industry-funded projects have demonstrated the value of battery CAE
 - Most in-house custom model codes, however, require expert-users
- Battery CAE capabilities need to be transferred to industry
 - In time to impact the transition toward sustainable electric mobility
 - Reduce the process of design, build, test, break, redesign, rebuild, retest,...

Multi-Scale Physics in Li-Ion Battery

Various physics interact across wide range of length and time scales

Present industry needs

 Performance & Life Models: Coupling electrode-level performance/life with cell/pack-level heat/current transport
 Safety Models: Coupling electrode-level chemical

- reactivity and cell/pack-level heat transport
- Need to include both <u>science</u> and <u>engineering</u>

•First Principals Material Evaluation •Electrode Architecture Design

NREL Battery Modeling Portfolio

(diverse, but not integrated)

Model	Length Scale pm nm μm mm m	Geometry	Physics / Application
Vehicle/component (PSAT/ANL & Advisor/NREL	.)	Lumped	 Drivetrain power balance / Drive cycle Battery usage & requirements Control strategy design
Battery cost		Lumped	 Empirical System cost (\$/kW, \$/kWh)
Battery life		Lumped	 Empirical Life prediction (<i>t</i>, N_{cyc}, T, ΔDOD, SOC)
Equivalent circuit (e.g. PNGV, FreedomCar)		Thermal/electrical network	 Electrical & thermal Performance, design, safety evaluation
Electro-thermal (FEA) & fluid-dynamics (CFD)		1-D, 2-D, & 3-D	 Electrical, thermal & fluid flow Performance, detailed cooling design Commercial software (restrictive assumptions)
Electrochemical- thermal ("MSMD")		1-D, 2-D & 3-D	 Electrochemical, electrical & thermal Performance, design
Electrochemical- thermal-degradation ("MSMD-life")		1-D, 2-D & 3-D	 Electrochemical, electrical & thermal Cycling- & thermal-induced degradation Performance, design, life prediction
Thermal abuse reaction kinetics		Thermal network, 2-D & 3-D	 Chemical & thermal Safety evaluation
Internal short circuit		3-D	 Chemical, electrical, electrochem. & thermal Safety evaluation
Molecular dynamics		3-D	Atomic & molecular interactions Material design

Battery CAE : What Should One Expect?

- Multi-scale Physics Interaction: Integrate different scale battery physics in computationally efficient manner
- Flexibility: Provide a modularized multi-physics platform

 Enable user choice from multiple submodel options
 with various physical/computational complexity
- **Expandability**: Provide an expandable framework to "add new physics of interest" or to "drop physics of insignificance/indifference"
- Validation and Verification: The correct equations are solved and they are solved accurately

Length-Scale Mapping for Li-ion Battery Models

(Examples and not a complete list)

Example Electrode-Scale Performance Model

Charge Transfer Kinetics at Reaction Sites $j^{Li} = a_{s}i_{o} \left\{ \exp\left[\frac{\alpha_{a}F}{RT}\eta\right] - \exp\left[-\frac{\alpha_{c}F}{RT}\eta\right] \right\}$ $i_{0} = k(c_{e})^{\alpha_{a}}(c_{s,\max} - c_{s,e})^{\alpha_{a}}(c_{s,e})^{\alpha_{c}} \quad \eta = (\phi_{s} - \phi_{e}) - U$

Species Conservation

$$\begin{split} \frac{\partial c_s}{\partial t} &= \frac{D_s}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_s}{\partial r} \right) \\ \frac{\partial (\varepsilon_e c_e)}{\partial t} &= \nabla \cdot \left(D_e^{eff} \nabla c_e \right) + \frac{1 - t_+^o}{F} j^{\text{Li}} - \frac{\mathbf{i}_e \cdot \nabla t_+^o}{F} \end{split}$$

$$\begin{split} & Charge\ Conservation \\ & \nabla \cdot \left(\sigma^{e\!f\!f} \nabla \phi_s \right) - j^{\text{Li}} = 0 \\ & \nabla \cdot \left(\kappa^{e\!f\!f} \nabla \phi_e \right) + \nabla \cdot \left(\kappa^{e\!f\!f}_D \nabla \ln c_e \right) + j^{\text{Li}} = 0 \end{split}$$

Energy Conservation $\rho c_{p} \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + q'''$ $q''' = j^{Li} \left(\phi_{s} - \phi_{e} - U + T \frac{\partial U}{\partial T} \right) + \sigma^{eff} \nabla dt$

- Pioneered by Newman's group (*Doyle, Fuller, and Newman 1993*) Dualfoil (cchem.berkeley.edu/jsngrp/fortran_files/Intro_Dualfoil5.pdf)
- Captures lithium diffusion dynamics and charge transfer kinetics porous media
- Predicts *current/voltage response* of a battery
- Provides design guide for thermodynamics, kinetics, and transport across electrodes
- Difficult to resolve *heat* and *electron current* transport in large cell systems

Extending Newman's model to Thermal-EChem 3D NREL's Multi-Scale Multi-Dimensional (Domain) Model Approach

Virtual Design Evaluation Integrated Battery – Vehicle Approach

Need to Develop Modular Plug-and-Play Modeling Design Concepts

Future Plans – Battery CAE

- Integrating various models in one single platform for industry to use
- Bottom-up model validation and demonstration study
- Enhancing physics models

• Enhancing solver capability & solution schemes

Future Development

A New Activity – CAE for Batteries

- In the last several years, DOE's Vehicle Energy Storage Program has been funding battery modeling as part of its
 - Exploratory Battery Activity (BATT)
 - Applied Battery Research Activity (ABR)
 - Battery Development Activity
- DOE has been evaluating approaches to <u>integrate</u> these battery modeling activities and make them more <u>accessible</u> as <u>design tools</u> for industry
- In April 2010, DOE initiated implementing the Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) activity
 - Objective is to incorporate existing and new models into software battery modeling suites/tools
 - Goal is to shorten design cycle and optimize batteries (cells and packs) for improved thermal uniformity, safety, long life, low cost

CAEBAT Operating Structure and Plans

- Operate similarly to BATT and ABR activities
- Include several National Laboratories
- One Lab coordinating the activities for DOE (NREL for CAEBAT)
- Include <u>competitive</u> collaborations with universities and industry (cell developers, pack integrators, vehicle makers, and software venders)
- Include structured tasks and subtasks dealing with materials/components, cells, packs, and open software architecture
- Seek collaboration with federal, state, and private organizations for leveraging resources
- Conduct annual planning, progress, and review meetings

Elements of CAEBAT Structure

CAEBAT Program

Planned Activities – CAEBAT Program

- Interact with other, National Labs, industry, and universities
- Develop detailed description of tasks and overall program plan
- Conduct model development and integration in National Labs and later by industry and universities
- Issue Request for Proposals (RFP) in July, receive proposals, review them, and select awardees by end of September
 - Multi-year, multi-partner projects
- More to come.....

Secondary Use of PHEV and EV Batteries – Opportunities & Challenges

The 10th Advanced Automotive Battery Conference Orlando, Florida

May 19-21, 2010 Jeremy Neubauer <u>Ahmad Pesaran</u> National Renewable Energy Laboratory

David Howell* U.S. Department of Energy

Funded by Energy Storage R&D (David Howell), Vehicle Technologies Program U.S. Department of Energy

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by Midwest Research Institute • Battelle

Background – Battery Secondary Use

- It is a common belief that batteries in PHEVs and EVs expect to reach the end of their useful life when their capacity, energy, and/or power capabilities drop by 20% to 30%.
 - The reason is to have a vehicle that performs roughly the same at the beginning and end of the life of the battery.
- At the end-of-life, the "retired" PHEV or EV battery may still have reasonable energy capabilities for other applications such as stationary use.
- Secondary use of EVs (mostly NiMH) batteries was briefly studied in the past, but no implementation occurred
 - 1997 ANL study sponsored by USABC
 - 2002 Sentech study sponsored by SNL/DOE
 - "Electric Vehicle Battery 2nd Use Study" by Southern California Edison
- Due in part to the limited market of PHEV/EVs at the time, no second use programs have been implemented yet
 - Sensitivity to uncertain degradation rates in second use
 - High cost of battery refurbishment and integration
 - Low cost of alternative energy storage solutions
 - Lack of market mechanisms and presence of regulation
 - Perception of used batteries

New Interest in Battery Secondary Use

- New opportunities and dynamics for secondary use of "retired" electric drive vehicle batteries
 - Recent strong interest in PHEVs and EVs for reducing emissions, energy security, peak oil, and high price of oil.
 - Improved performance and life Li-Ion batteries, but still with high cost
 - Growing use of renewable solar and wind electricity; increased market penetration may benefit from energy storage
 - New trends in utility peak load reduction, energy efficiency, and load management
 - Smart grid, grid stabilization, low-energy buildings, and utility reliability has the need for energy storage such as batteries
 - Large investment in battery manufacturing for green economy
 - Reducing the initial cost of batteries by the value obtained in second use applications.

Current Second Use Activities

- **AEP & EPRI**... considering a Community Energy Storage (CES) appliance, which they've stated is *"the ideal secondary market we have been seeking for* used PHEV batteries"
- **UC Davis**... with funding from CEC has released an RFP titled "Second Life Applications and Value of Traction Lithium Batteries" to investigate profitable second use strategies and develop a Home Energy Storage Appliance (HESA)
 - The California Center for Sustainable Energy and its partners were selected for an Award
- UC Berkeley/CEC... investigated strategies to overcome the battery cost of plug-in vehicles by the value of integrating post-vehicle battery to grid
- Rochester Institute of Technology... funded by NYSERDA to investigate the second use of lithium ion batteries
- **Nissan**... has partnered with Sumitomo to initiate a business plan centered on recovering and reselling used automotive batteries
- **Enerdel** ... is working with Itochu to develop energy storage systems for apartment buildings to *"help develop a secondary market"* for used batteries
- **Better Place**... is "evaluating ... second life applications for used batteries" in partnership with Renault-Nissan
- **NREL**... funded by DOE to investigate the potential and value of PHEV/EV battery in second use and obtain data on performance of used batteries

NREL: Uniquely Positioned to Investigate Second Use

National Renewable Energy Laboratory

NREL Battery Secondary Use Project

Objective

 Evaluate the merits and value of end of vehicle life batteries for use in other applications – address challenges

Potential Benefits

- Reducing the (first) cost of batteries for PHEV and EV applications
- Reducing the cost and environmental impacts of recycling and disposal of batteries before their "true" end of life.
- Providing advanced inexpensive batteries for nonvehicle applications such as renewable electricity and home use

Approach

Phase 1: Assess the Merit Some Second Use Applications

- Off-Grid Stationary
 - Backup Power
 - Remote Installations

- Grid-Based Stationary
 - Energy Time Shifting
 - Renewables Firming
 - Service Reliability / Quality
 - Home Energy Appliance

- Mobile
 - Commercial Idle Off
 - Utility & Rec. Vehicles
 - Public Transportation

Phase 1: Assess the Merit Application Identification

- All applications are considered, but highvalue / high-impact ones are most desirable
- Accurate use profiles and economic data are needed
- Application value and impact will be estimated before progressing to a detailed investigation
- For each application, consider...
 - How does a battery retired from automotive service perform when subjected to the second use profile?
 - What are the projected revenues and costs?
 - What are the safety concerns and liabilities?
 - How do the performance, life, and cost of a second use battery compare with those of competing technologies?
 - What are the regulatory issues or other barriers specific to this application?
 - Is the scale of this application well suited to the expected availability of retired PHEV/EV batteries?

Numerous grid-connected applications at consumer to power plant levels, ranging from T&D support to energy time shifting

Secondary mobile applications may also prove valuable

Phase 1: Optimizing Use Strategies

- For a given second use application, there can be many different ways to implement it
- Changing these variables can have a significant impact on total lifetime value and general feasibility
- In this segment, the use strategy of the battery is optimized via the developed tools and practical considerations

Phase 1: Optimizing Use Strategies

- For a given second use application, there can be many different ways to implement it
- Changing these variables can have a significant impact on total lifetime value and general feasibility
- In this segment, the use strategy of the battery is optimized via the developed tools and practical considerations

Phase 2: Verify Performance Conduct Long-Term Testing

- Subject the aged batteries to the expected use profile and conditions of the second use application to verify performance and degradation predictions and lifetime valuations
- Lab testing for precise control of conditions
- Field testing for final demonstration

NREL's Distributed Energy Resources Test Facility could serve as a venue for this phase

Phase 3: Facilitate Implementation of Second Use Projects

- **Disseminate study findings** to inform the market of the potential profitability of the second use of traction batteries
- Provide validated tools and data to industry
- **Develop design and manufacture standards** for PHEV/EV batteries that facilitate their reuse
- Propose regulatory changes to encourage the reuse of retired traction batteries in other applications

Planned Work – Battery Second Use

- NREL is currently seeking partners to investigate the reuse of retired PHEV/EV traction batteries to reduce vehicle cost and emissions as well as our dependence on foreign oil.
- A Request for Proposal (RFP) was issued in April 2010 seeking a subcontractor to accomplish the aspects of this effort.
 - You can find RFP No. RCI-0-40458 at <u>www.nrel.gov/business_opportunities</u>
 current solicitations.
 - Proposals are due near the end of May 2010 (extended to early June 2010).
 - If you have questions regarding the RFP, please contact Kathee Roque at <u>Kathee.Roque@nrel.gov</u>.
- A workshop to solicit industry feedback on the entire process is also being planned.
- Aged batteries will be tested in 2-3 suitable second-use applications.
- Hope to answer the questions, "Do PHEV/EV batteries have any value for other application? What are the barriers?"

Concluding Remarks

- Computer-Aided Engineering for Automotive Batteries
 - DOE is supporting efforts to bring industry and National Labs together to develop a suite of software tools for accelerating the design of cells and packs.
 - A new program has been initiated to bring all the modeling together
 - NREL has multiple modeling tools and will be collaborating with partners to integrate them for industry use.
 - NREL will be issuing RFPs for collaboration in this area
- Secondary Use of PHEV and EV Batteries
 - DOE is supporting efforts to evaluate the second use of retired lithium ion batteries to identify if second use batteries could reduce the initial cost of PHEV and EV batteries.
 - NREL is involved technically and will collaborate with partners.
 - NREL has issued an RFP for collaboration