

Overview

- Week 2
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT

• Week 4

- Profiles, Patterns, Motifs, and Domains
- Structures: VAST, Cn3D, and de novo Prediction
- Multiple Sequence Alignment

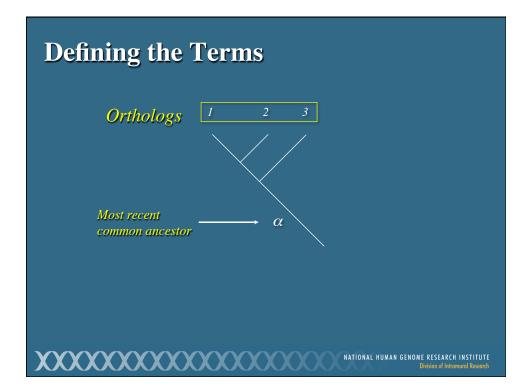
Defining the Terms

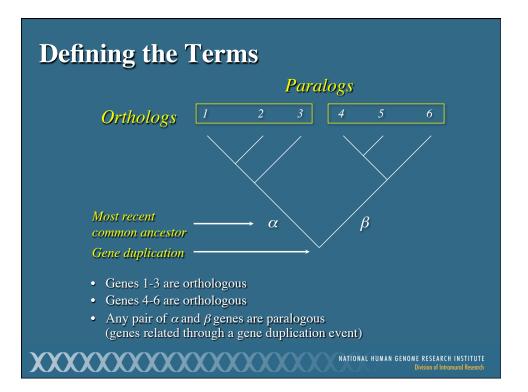
- The quantitative measure: *Similarity*
 - Always based on an observable
 - Usually expressed as percent identity
 - Quantify changes that occur as two sequences diverge (substitutions, insertions, or deletions)
 - Identify residues crucial for maintaining a protein's structure or function
- High degrees of sequence similarity *might* imply
 - a common evolutionary history

• possible commonality in biological function

<section-header><list-item><list-item><list-item><list-item><list-item><list-item>

Defining the Terms


- The term "homolog" may apply to the relationship:
 - between genes separated by the event of speciation (*orthology*)
 - between genes separated by the event of genetic duplication (*paralogy*)


Defining the Terms

- Orthologs
 - Sequences are direct descendants of a sequence in a common ancestor
 - Most likely have similar domain structure, three-dimensional structure, and biological function
- Paralogs
 - Related through a gene duplication event

 Provides insight into "evolutionary innovation" (adapting a pre-existing gene product for a new function)

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Global Sequence Alignments

- Sequence comparison along the entire length of the two sequences being aligned
- Best for highly-similar sequences of similar length
- As the degree of sequence similarity declines, global alignment methods tend to miss important biological relationships

Local Sequence Alignments

- Sequence comparison intended to find the most similar regions in the two sequences being aligned ("paired subsequences")
- Regions outside the area of local alignment are excluded
- More than one local alignment could be generated for any two sequences being compared
- Best for sequences that share some similarity, or for sequences of different lengths

Scoring Matrices

- Empirical weighting scheme representing physicochemical and biological characteristics of nucleotides and amino acids
 - Side chain structure and chemistry
 - Side chain function
- Amino acid-based examples:
 - Cys/Pro important for structure and function
 - Trp has bulky side chain
 - Lys/Arg have positively charged side chains

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Scoring Matrices

- *Conservation:* What residues can substitute for another residue and not adversely affect the function of the protein?
 - Ile/Val both small and hydrophobic
 - Ser/Thr both polar
 - Conserve charge, size, hydrophobicity, other physicochemical factors
- *Frequency:* How often does a particular residue occur amongst the entire constellation of proteins?

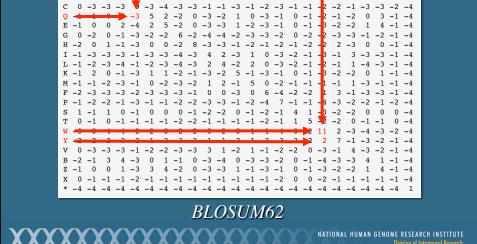
NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Scoring Matrices

- Why is understanding scoring matrices important?
 - Appear in all analyses involving sequence comparison
 - Implicitly represent particular evolutionary patterns
 - Choice of matrix can strongly influence outcomes of analyses

Matrix Structure: Nucleotides

• Simple match/mismatch scoring scheme:

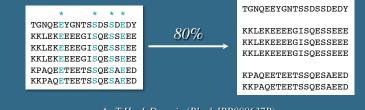

Match +2Mismatch -3

	Α	т	G	С
А	2	-3	-3	-3
т		2	-3	-3
G	-3	-3	2	-3
С	-3	-3	-3	2
_				

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

• Assumes each nucleotide occurs 25% of the time

Vlat	/Iatrix Structure: Proteins						
	$\begin{array}{cccc} A & R \\ A & 4 & -1 \\ R & -1 & 5 \\ N & -2 & 0 \\ D & -2 & -2 \\ C & 0 & -3 \\ Q & -1 & 1 \\ E & -1 & 0 \\ \end{array}$	-3 -3 0 2 -	-3 0 0 -3 -4 -3 5 2 -4 2 5 -4 2 5 -4 -4 -4 -4 -4 -4 -4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$


BLOSUM Matrices

- Henikoff and Henikoff, 1992
- <u>Blocks Substitution Matrix</u>
 - Look only for differences in conserved, ungapped regions of a protein family ("blocks")
 - Directly calculated, using no extrapolations
 - More sensitive to detecting structural or functional substitutions
 - Generally perform better than PAM matrices for local similarity searches (*Henikoff and Henikoff, 1993*)

BLOSUM n

- Calculated from sequences sharing no more than *n*% identity
- Contribution of sequences > n% identical clustered and weighted to 1

A+T Hook Domain (Block IPB000637B)

<section-header><list-item><list-item><list-item><list-item><list-item>

Which one to choose?

BLOSUM		% Similarity
90	Short alignments, highly similar	70-90
80	Best for detecting known members of a protein family	50-60
62	Most effective in finding all potential similarities	30-40
30	Longer, weaker local alignments	< 30
$\infty \infty \infty \infty$	NATIONA	L HUMAN GENOME RESEARCH INSTITUTE Division of Intramural Research

So many matrices...

No single matrix is the complete answer for all sequence comparisons

Further Reading

Unit 3.5 Current Protocols in Bioinformatics

- PAM Matrices
- **BLOSUM Matrices**
- Specialized Scoring Matrices

XXXXXXXXXXXX

OVERVIEW	amino acids, called the PAM 1 matrix. Higher	
Every program for searching protein se-	PAM matrices are derived by multiplying the PAM 1 matrix by itself a defined number of	
quences against a database includes a choice of a "protein-scoring matrix," also called a	FAM 1 matrix by itself a defined number of times. Thus, a PAM 160 matrix is the result of	
"weight matrix." Weight matrices add sensitiv-	performing 160 matrix multiplications of the	
ity to the search, while statistical significance	PAM I matrix against itself. Similarly, the PAM	
adds selectivity (see CNT 4.1). Virtually every	250 matrix is derived by multiplying the PAM	
user chooses the default, typically PAM 250 or BLOSUM62. Despite the fact that the choice	 matrix against itself 250 times. Biologically, the PAM 50 matrix means that 	
of matrix can strongly influence the outcome	in 100 amino acids there have been 50 substi-	
of the analysis, most users do not know why a	tations, while the PAM 250 matrix means there	
particular matrix should be used. In general,	have been 2.5 amino acid replacements at each	
scoring matrices implicitly represent a particu- lar theory of protein sequence evolution. This	site (see UNF 3.) regarding insertions and dele- tions). This sounds unusual, but remember that	
unit provides guidance in the choice of a scor-	over evolutionary time, it is possible that an	
ing matrix, as understanding the assumptions	alanine was changed to a glycine, then to a	
underlying the PAM and BLOSUM scoring	valine, and then back to an alanine. These silent	
matrices can aid in making the proper choice. The selection of PAM matrices is covered first,	substitutions are derived from observed amino acid frequency data in protein families and	
after which the selection of BLOSUM matrices	superfamilies.	
is discussed, and finally a brief overview of the		
wide variety of specialized scoring matrices is	Choosing a PAM Matrix	
provided.	It is extremely important to note that PAM matrixes are derived from protein sequence	
PAM MATRICES	data available in the late 1960s and early 1970s.	
PAM, a rearranged acronym derived from	Most proteins known at that time were small,	
Accepted Point Mutation (Dayhoff, 1978) is a	globular, and hydrophilic. If the researcher be-	
probabilistic model for amino acid replacement derived by comparing the frequencies of re-	lieves their protein contains substantial hydro- phobic regions, such as membrane-spanning	
placement in closely related sequences to the	helices or sheets, the PAM matrices are less	
frequency expected from the completely ran-	useful than others described in this unit. Day-	
dom replacement of amino acids. The basis of this scoring system is the observation that the	hoff et al. (1978) were the first to define the terms protein family and superfamily. A protein	
this scoring system is the observation that the evolution of protein sequences is a nonrandom	terms protein family and superfamily. A protein family is defined as sequences 85% identical or	
process-i.e., some amino acid replacements	greater to each other. A protein superfamily is	
occur much more frequently than others, espe-	defined as sequences related from 30% identi-	
cially in related sequences. Amino acid substi- tutions tend to conserve charge, size, and hy-	cal or greater to each other. A protein superfa- mily may contain many protein families. The	
drophobicity among other characteristics. One	user should be aware that while the terms "furn-	
would expect that the substitution of glycine	ity" and "superfamily" are widely used in biol-	
for alanine (CH3 versus H) would have less of	ogy, most of the time the original definition of	
an effect on a protein's structure and function than the substitution of alarine for threenine	Duyhoff and collaborators is not being used (see below).	
(CH ₄ versus substituted indole ring). The infer-	(accident).	
ence is that if two aligned sequences manifest	Locating all potential similarities: PAM 259	
a higher than expected prevalence of these char-	The most widely used PAM matrix is PAM	
acteristic replacements, the sequences are re- lated. An excellent discussion of the derivation	250 (Fig. 3.5.1). It has been chosen because it is capable of accurately detecting similarities	
and use of the PAM matrices is given in George	in the 30% range (i.e., superfamilies), that is,	
et al. (1990).	when the two proteins are up to 70% different	
PAM matrices are the result of computing the probability of one substitution per 100	from each other (George et al., 1990). Another way to think about this is that the PAM 250	
the prosureinty of one substitution per 100	way to think about this is that the 1968 250	Finding Similarities and
		Inferring Homologies
Contributed by David Wheeler		3.5.1
Carrent Protocols in Bioinformatics (2003) 3.5.1-3.5.6		3.5.1
Copyright © 2003 by John Wiley & Sons, Inc.		

NATIONAL HUMAN GENOME RESEARCH INSTITUTE Division of Intramural Research

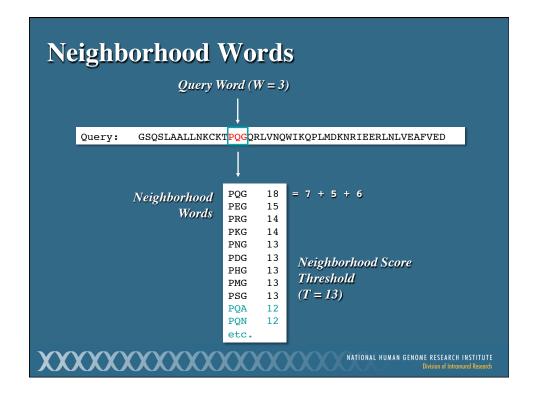
Gaps

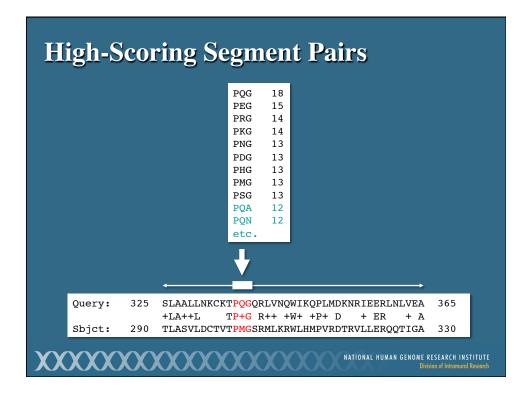
- Used to improve alignments between two sequences
- Compensate for insertions and deletions → gaps represent biological events
- Must be kept to a reasonable number, to not reflect a biological implausible scenario
 (~1 gap per 20 residues good rule-of-thumb)
- Cannot be scored simply as a "match" or a "mismatch"

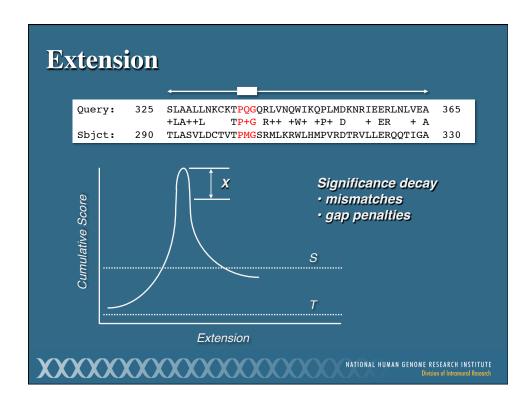
Affine Gap Penalty

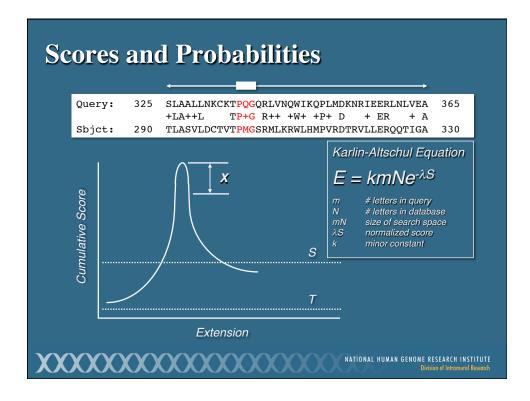
Fixed deduction for introducing a gap *plus* an additional deduction proportional to the length of the gap

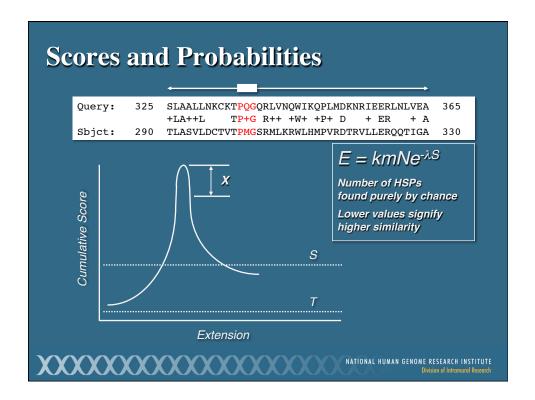
Deduction for a gap = G + Ln

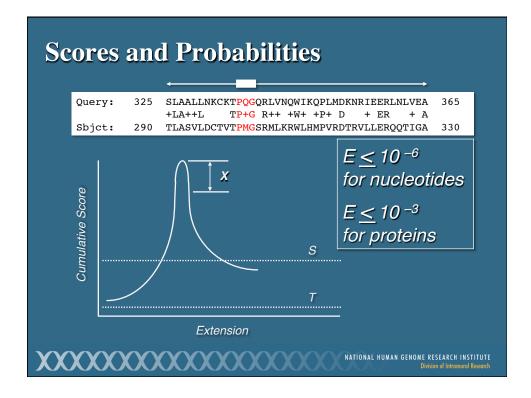

	protein 11	nucleotide 5	gap-opening penalty	where
1	1	2	gap-extension penalty	
			length of the gap	
			L	and
		NATIONAL HUMAN GE		

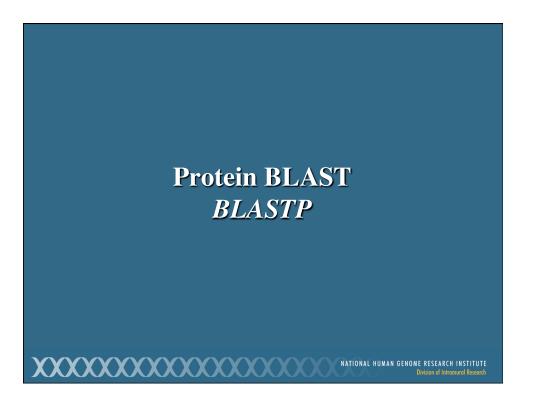

BLAST

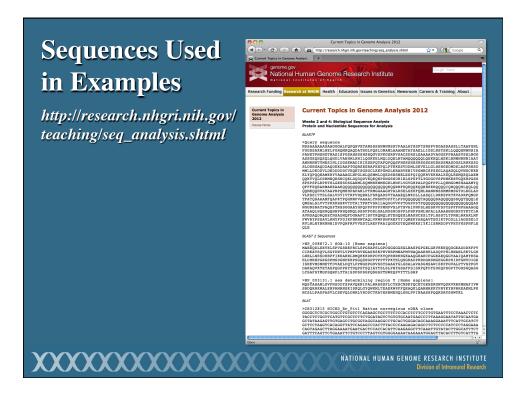

- <u>Basic Local Alignment Search Tool</u>
- Seeks high-scoring segment pairs (HSP)
 - Pair of sequences that can be aligned with one another
 - When aligned, have maximal aggregate score (score cannot be improved by extension or trimming)
 - Score must be above score threshold *S*
 - Gapped or ungapped
- Results not limited to the "best HSP" for any given sequence pair

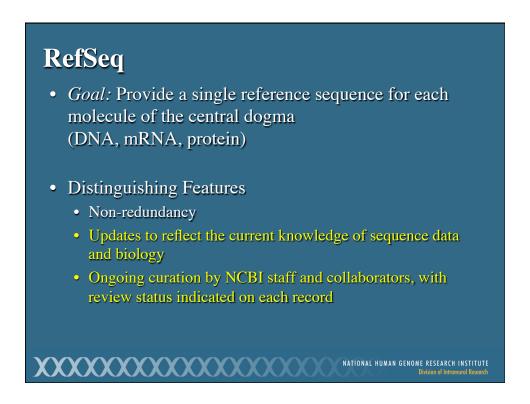

BLAST Algorithms

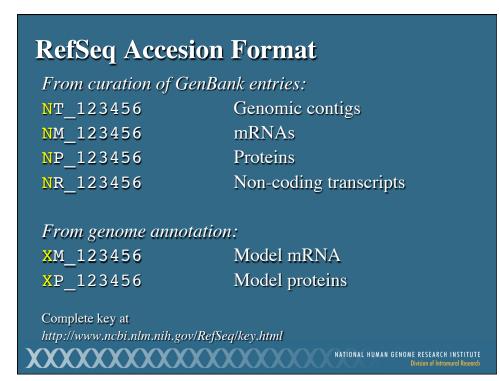

Program	Query Sequence	Target Sequence
BLASTN	Nucleotide	Nucleotide
BLASTP	Protein	Protein
BLASTX	Nucleotide, six-frame translation	Protein
TBLASTN	Protein	Nucleotide, six-frame translation
TBLASTX	Nucleotide, six-frame translation	Nucleotide, six-frame translation
XXXXXX		NATIONAL HUMAN GENOME RESEARCH INSTITUTE Division of Intrumural Resourch





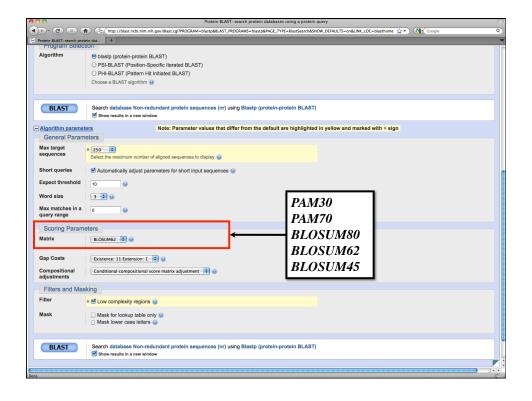


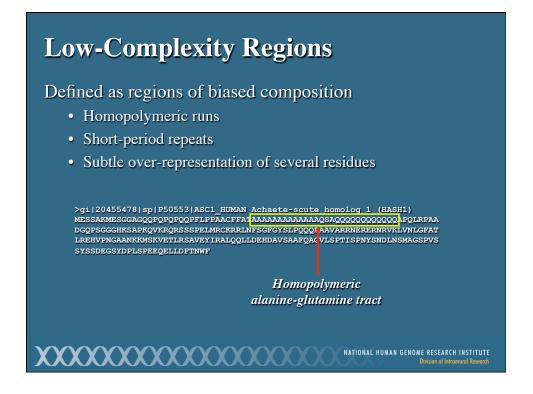



All Databa	ses 😯	Search
chnology Information	Welcome to NCBI	Popular Resources
ite Map (A-Z)		PLAST
Il Resources	The National Center for Biotechnology Information advances scier health by providing access to biomedical and genomic information	
hemicals & Bioassays		Gene
ata & Software	About the NCBI Mission Organization Research RSS Feeds	Genome
NA & RNA	Get Started	Nucleotide
omains & Structures		OMIM
enes & Expression	Tools: Analyze data using NCBI software Downloads: Get NCBI data or software How-To's: Learn how to accomplish specific tasks at NCBI	Protein
ienetics & Medicine		PubChem
enomes & Maps	Submissions: Submit data to GenBank or other NCBI database	
lomology		PubMed Central
iterature		SNP
	3D Structures	
roteins	Explore three-dimensional structures of pro-	NCBI News
equence Analysis	teins, DNA, and RNA molecules. Examine sequence-structure relationships, active sites,	New NCBI Newsletter
axonomy	molecular interactions, biological activities of	Information on the new Genome Site, a new
raining & Tutorials	bound chemicals, and associated biosystems.	16S BLAST database, updates to Sequin,
ariation	II 1 2 3 4 5 6 7	NCBI will continue to operate SRA 13 Oct 2011 Subsequent to an announcement in February 2011 that NCBI was planning to phase out the

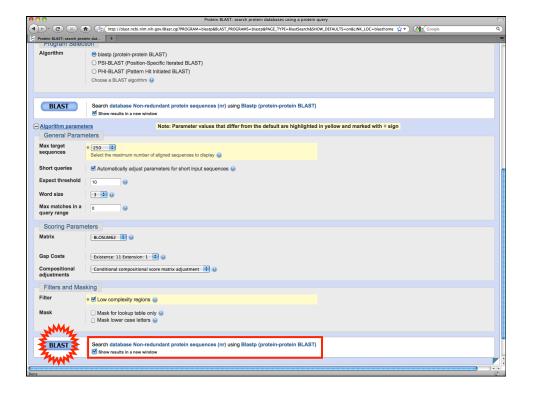
0 0 BLAST: Basic Local Alignment Search Tool					
Compared State of the format and the format an	ih.gov/BLAST				
NCBI/BLAST Home BLAST finds regions of similarity between biological sequences. more Item Aligning Multiple Protein Sequences? Try the COBALT Multiple Alignment Tool. (05) BLAST Assembled RefSeq Genomes	News SOAP BLAST A SOAP based BLAST service is available. Mon, 18 Jul 2011 08:00:00 EST D: Mones BLAST news				
Choose a species genome to search, or <u>list all genomic BLAST databases</u> .					
protein failed Search protein database using a protein query blastx Search protein database using a translated nucleotide query blastx Search translated nucleotide database using a protein query blastx Search translated nucleotide database using a protein query blastx Search translated nucleotide database using a translated nucleotide query blastx Search translated nucleotide database using a translated nucleotide query blastx Search translated nucleotide database using a translated nucleotide query Choose a type of specialized Search (or database name in parentheses.) Search translated for primers with Prime-BLAST • Make specific primers with Prime-BLAST • Search translated for architecture (cdan) • Find sequences with similar conserved domains in your sequence (cds) • Find sequences with similar conserved domains in conserved domains and architecture (cdan) • Search herge-search threes • Search herge-search threes • Search herge-search primersion profiles (GEO) • Search herge-search herge (BeLAST) • Search herge-search primersion profiles (GEO) • Search herge-search primersion profiles (GEO) • Search herge-search herge (BeLAST) • Search herge (BeLAST) • Search herge (BeLAST)					

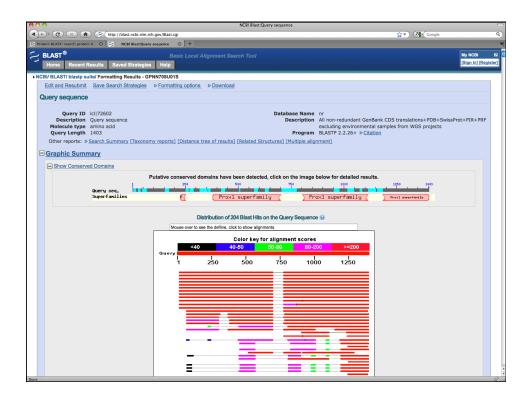
000		databases using a protein query		C
	S (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp	&PAGE_TYPE=BlastSearch&SHOW_DEFAUL	TS=on&LINK_LOC=blasthome 😭 🔻 🕄 🚷 Google	Q
Protein BLAST: search pro	tein dat 📜 🕂			1
ELAST [®]	Basic Local Alignment Search Tool			NCBI 🛛
Home Recent	t Results Saved Strategies Help		in the second	ign In] [Register]
NCBI/ BLAST/ blastp	suite Standard Pr	otein BLAST		
blastn blastp blas	t <u>tx tblastn</u> t <u>blastx</u>			
Enter Query Se	Equence BLASTP programs search protein da	tabases using a protein query. more.	Reset page Box	okmark
Enter accession n	umber(s), gi(s), or FASTA sequence(s) 😡 <u>Clear</u>	Query subrange 😡		
POLICY sequence WISHAAAAAGGGLIPOPOSYSTANSSSSINNINSSTPALATHEPTSNSPYSGASSASSLLTAAFC From NLFQGSSARKLINELFQQWKQAQDATSGLIPOSUDBANKLAANAPTATSASELLJGSLNSTFSKLLQQQHINN NSIJAANSTNSMISTINSSISSSSSSSSSSSSSSSSSSSSSSSSSS				
Or, upload file	(Browse)			
SOD THE	Query sequence Enter a descriptive title for your BLAST search (e)			
Align two or mo				
Choose Search Database Orgianism Optional Exclude Optional Entrez Query Optional Program Select Algorithm	Non-redundant protein sequences (nr)	nr refseq swissprot pat	rotein databases includ Non-redundant Reference Sequences SWISS-PROT Patents Protein Data Bank	le:
	O PHI-BLAST (Position-specific iterated BLAST)	pdb	Protein Data Bank	
	Choose a BLAST algorithm 😣	env_nr	Environmental sampl	les
BLAST Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST) Show results in a new window				

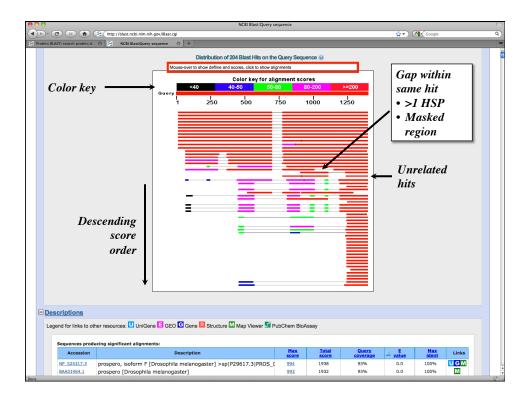



00	Protein BLAST: search protein databases using a protein query		
() · C × (🎓 🛞 🛞 http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=Blast5earch&SHOW_DEFAULTS=on&LINK_LOC=blasthome 🏠 🔻 🚱		Q
Protein BLAST: search pro	otein dat		-
∠ BLAST [®]	Basic Local Alignment Search Tool	My NCBI	2
· >		Sign In] [Regis	ster]
	suite Standard Protein BLAST		
NCBI/ BLAST/ blastp			_
blastn blastp blas		a dan da	
Enter Query S	BLASTP programs search protein databases using a protein query. more Reset page B	<u>Bookmark</u>	
	number(s), gi(s), or FASTA sequence(s) 😣 <u>Clear</u> Query subrange 😣		
>Query sequenc	SOLFOPOSVSTANSSSSNNNNSSTPAALATHSPTSNSPVSGASSASSLLTAAFG From		
NLFGGSSAKMLNEL	JFGROMKOAQDATSGLPQSLDNAMLAAAMETATSAELLIGSLNSTSKLLQQQHNN STNASISPGSAHSSSHSHQGVSPKGSRRVSACSDRSLEAAAADVAGGSPPRAASV To		
SSLNGGASSGEQHQ	SOLQHDLVAHHMLRNILQGKKELMQLDQELRTAMQQQQQQLQEKEQLHSKLNNN *		
Or, upload file	TTTHESINLIDDSENADIKIKSEPOTAPOPOOSPHGSSHSSRSGSGSGSHSSMAS '		
Job Title	(Browse)		
505 1116	Query sequence Enter a descriptive title for your BLAST search 😡		
Align two or mo			
Choose Searc			
Database	Non-redundant protein sequences (nr)		
Organism Optional	Enter exception name as id, constalations will be automated		
	Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.		
Exclude	Models (XM/XP) Uncultured/environmental sample sequences		
Optional Entrez Query			
Optional	Enter an Entrez query to limit search 😡		
Program Selec	stion		
Algorithm	blastp (protein-protein BLAST)		
	O PSI-BLAST (Position-Specific Iterated BLAST)		
	○ PHI-BLAST (Pattern Hit Initiated BLAST) Choose a BLAST algorithm		
	Choose a BLAS i algonitim 🧐		
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)		ų
	Show results in a new window		
Algorithm parame	sters		
<u> </u>) 4 6

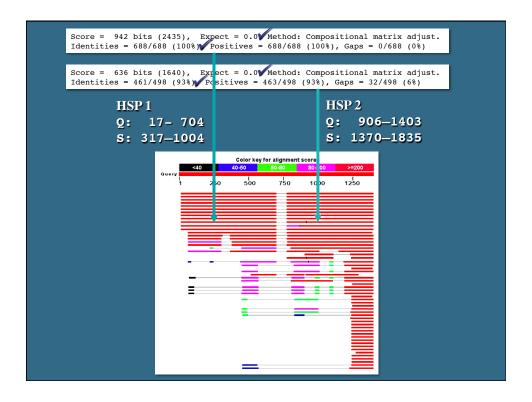
00	Protein BLAST: search protein databases using a protein query	0				
• • • • • • • • • • • • • • • • • • •	🕑 😒 (http://blast.ncbl.nlm.nih.gov/Blast.cg)?PROGRAM=blastp&BALST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome 🏠 🔻 🔀 🖉 Google	٩				
	Protein ILXXT: search protein dat. +					
Algorithm	© Blastip (protein-protein BLAST) ○ PSHBLAST (Poation-Specific Iterated BLAST) ○ PH-BLAST (Pattern Hit Initiated BLAST) Choose a BLAST algorithm 🔮					
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)					
General Paramet						
Max target sequences	Select the maximum number of aligned sequences to display					
Short queries	S Automatically adjust parameters for short input sequences 🤢	n				
Expect threshold	10 😺					
Word size	3 4 9					
Max matches in a query range	0 0					
Scoring Parame	aters					
Matrix	BLOSUM62 💽 🤪					
Gap Costs	Existence: 11 Extension: 1 📑 😡					
Compositional adjustments	Conditional compositional score matrix adjustment 😢 ⊌					
Filters and Mas	king					
Filter	♦ 🗹 Low complexity regions 😡					
Mask	□ Mask for lookup table only 🅡 □ Mask lower case letters 🌚					
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)					
		+				
Done		3 1				


O Protein BLAST: search protein databases using a protein query						
💶 🕑 🕐 🍙 🔗 [http://blast.ncbi.nlm.nih.gov/Blast.cgi?RROGRAMS=blastp&RAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=blasthome 😭 🔻 🚱 🤤						
🔁 Protein BLAST: search protein dat 🕴						
Algorithm						
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)					
Algorithm paramet	ters Note: Parameter values that differ from the default are highlighted in yellow and marked with + sign					
General Param	neters					
Max target sequences	250 Select the maximum number of aligned sequences to display					
Short queries	C Automatically adjust parameters for short input sequences 😡					
Expect threshold	E value threshold					
Word size	Reports all hits with E < 10					
Max matches in a query range	0 0					
Scoring Param	neters and the second se					
Matrix	BLOSUM62 🔹 🕹					
Gap Costs	Existence: 11 Extension: 1 🔹 😡					
Compositional adjustments	Conditional compositional score matrix adjustment					
Filters and Mas	sking					
Filter	€ I Low complexity regions 🕑					
Mask	☐ Mask for lookup table only 🚱 ☐ Mask lower case letters 😖					
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST) Show results in a new window					
Done))4(k ()					




00	Protein BLAST: search protein databases using a protein query	\bigcirc
	🎓 🕐 😤 (http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=Blasts&arch&SHOW_DEFAULTS=on&LINK_LOC=blasthome 🏫 🔻 🔇 🖓 Coogle	2
Protein BLAST: search prot	tein dat +	Ξ
Program Selec	uon	ľŕ
Algorithm	blastp (protein-protein BLAST)	
	O PSI-BLAST (Position-Specific Iterated BLAST)	
	O PHI-BLAST (Pattern Hit Initiated BLAST)	
	Choose a BLAST algorithm 😣	
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)	
	Show results in a new window	
Algorithm paramet	ters Note: Parameter values that differ from the default are highlighted in yellow and marked with sign	
General Param		
	leters	
Max target	◆ <u>250</u> €	
sequences	Select the maximum number of aligned sequences to display 🚱	
Short queries	C Automatically adjust parameters for short input sequences 😡	
	Automatically avjust parameters no anot input sequences w	
Expect threshold	10 😡	
Word size	3 4	
WOLD SIZE		
Max matches in a	0 😡	
query range		
Scoring Param	eters	
Matrix		
maura	LUSUMDZ V	
Gap Costs	Existence: 11 Extension: 1 🔹 😡	
Compositional	Conditional compositional score matrix adjustment	
adjustments		
Filters and Mas	sking	
Filter		
Filter		
Mask	🗌 Mask for lookup table only 💀	
	Mask lower case letters 😡	
BLAST	Search database Non-redundant protein sequences (nr) using Blastp (protein-protein BLAST)	
	Show results in a new window	L
	· · · · · · · · · · · · · · · · · · ·	r A v
) () ()	•
Done		2 1

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>



	NCBI Blast:Query sec	Juence			\$\frac{1}{2} \text{.}	Google	
ST: search protein d.					м.	aut dooyie	
ST: search protein d	. O CBI BlastQuery sequence O +						
criptions							
	her resources; 🙂 UniGene 🖪 GEO 🖸 Gene 😫 Structure 🕅 Map Viewer 📓 Pul				0	.0 m	eans
ind for links to ot		< 10-1	1000				
Accession	equences producing significant alignments: Accession Description Max Total Query score score Query						Links
NP 524317.3	prospero, isoform F [Drosophila melanogaster] >spIP29617.3IPROS [994	1938	93%	value 0.0	Max ident 100%	UGM
BAA01464.1	prospero [Drosophila melanogaster]	993	1932	93%	0.0	100%	Μ
CAA77802.1	prospero [Drosophila melanogaster]	993	1936	93%	0.0	100%	M
AAF05703.1	homeodomain transcription factor Prospero [Drosophila melanogaster]	990	1821	93%	0.0	100%	
XP 001980573.1	GG18089 [Drosophila erecta] >gb EDV49531.1 GG18089 [Drosophila	989	1885	93%	0.0	99%	GM
AAA28841.1	Pros protein [Drosophila melanogaster]	982	1811	93%	0.0	97%	M
XP 002097201.1		981	1885	93%	0.0	97%	GM
NP 788636.2	prospero, isoform G [Drosophila melanogaster] >gb[AAN13500.3] pro	944	1862	93%	0.0	100%	UGM
AAT94492.1	LD37627p [Drosophila melanogaster]	943	1858	93%	0.0	100%	M
NP 731565.3	prospero, isoform E [Drosophila melanogaster] >gb[AAN13501.3] pro	942	1864	93%	0.0	100%	UGM
XP 002031631.1		935	1987	93%	0.0	98%	GM
XP 001954214.1		904	1673	93%	0.0	92%	GM
XP 001359985.2		869	1499	89%	0.0	83%	GM
	GK11290 [Drosophila willistoni] >gb EDW80945.1 GK11290 [Drosophila willistoni]	845	1532	85%	0.0	83%	GM
XP 002053284.1		821	1429	85%	0.0	79%	GM
XP 001994360.1		809	1374	84%	0.0	80%	GM
XP 002000130.1		804	1392	84%	0.0	80%	GM
XP 001655942.1		571	770	62%	0.0	85%	UGM
Q9U6A1.1	RecName: Full=Homeobox protein prospero >qb/AAF06660.1/AF1904	430	1299	75%	4e-124	79%	Μ
XP 002103874.1		372	600	26%	1e-111	100%	UGM
1XPX A	Chain A. Structural Basis Of Prospero-Dna Interaction: Implications Fo	347	347	11%			
XP 309606.5	AGAP004052-PA [Anopheles gambiae str. PEST] >gb EAA05345.5 AG	382	915	54%	10	97 =	1.1
EFA07555.1	prospero [Tribolium castaneum]	365	706	38%	4e-	-91 =	- 4 ×1
1MD A	Chain A, Crystal Structure Of The Homeo-Prospero Domain Of D. Mela	315	315	10%	4e-97	97%	S
XP 971664.2	PREDICTED: similar to homeobox protein prospero/prox-1 [Tribolium (342	702	38%	4e-97	89%	UG
XP 002019831.1		341	783	49%	2e-96	93%	GM
NP 001164363.1		346	700	38%	3e-96	97%	UGM
XP 002427668.1		345	705	45%	4e-96	74%	G
EHJ71784.1	hypothetical protein KGM_10139 [Danaus plexippus]	311	311	10%	1e-95	92%	_
XP 003395765.1		335	698	37%	3e-93	97%	GM
XP 003489214.1		335	697	37%	3e-93	97%	GM
XP_392355.4	PREDICTED: hypothetical protein LOC406073 [Apis mellifera]	333	700	38%	1e-92	97%	UGM
BAH83641.1	prospero [Bombyx mori]	298	298	10%	4e-91	91%	GM
XP 002410204.1		301	425	26%	7e-86	83%	UG

		4.77	1.04		5. 10		
CAG09138.1 XP 003087794.1	unnamed protein product [Tetraodon nigroviridis]	<u>175</u> 174	175 174	10% 7%	5e-48 3e-46	55% 75%	G
AAC59781.1	., P	174	174	7% 9%	3e-46 1e-41	57%	
XP 002575867.1	prospero_like protein [Takifugu rubripes]	167	167	10%	4e-41	49%	UG
XP_002373887.1 XP_003314467.1	homeobox protein prospero/prox-1/ceh-26 [Schistosoma mansoni] >e PREDICTED: prospero homeobox protein 2 isoform 1 [Pan troglodytes	160	160	8%	4e-41 1e-40	56%	UGM
BAC04278.1	unnamed protein product [Homo sapiens]	157	157	8%	2e-40	55%	GM
EHB15430.1	Prospero homeobox protein 2 [Heterocephalus glaber]	157	157	8%	2e-40 2e-40	53%	Giu
XP 002805213.1	PREDICTED: prospero homeobox protein 2 [necerocephalus glabel]	160	160	8%	3e-40	56%	UGM
XP_003260805.1	PREDICTED: prospero homeobox protein 2 Isoform 2 [Macada Mulatta PREDICTED: prospero homeobox protein 2-like [Nomascus leucogenys	160	160	8%	3e-40	56%	GM
XP 002824990.1	PREDICTED: prospero homeobox protein 2-like [Nomascus leucogenys PREDICTED: prospero homeobox protein 2-like isoform 2 [Pongo abeli	160	160	8%	4e-40	56%	GM
NP_001073877.2	prospero homeobox protein 2 isoform 2 [Homo sapiens] >qb[EAW811	158	158	8%	2e-39	55%	UGM
BAB17311.1	Prox 1 [Cynops pyrrhogaster]	161	203	16%	3e-38	63%	
XP 003149047.1	hypothetical protein LOAG_13494 [Loa loa] >gb[EF015022.1] hypothe	145	145	7%	5e-38	61%	G
EFN67531.1	Homeobox protein prospero [Camponotus floridanus]	157	422	23%	2e-36	97%	
EDL02840.1	RIKEN cDNA 1700058C01, isoform CRA_a [Mus musculus]	154	154	8%	2e-36	56%	
GAA51489.1	prospero homeobox protein 2 [Clonorchis sinensis]	147	147	14%	1e-35	37%	Acc
CAI15309.1	prospero homeobox [[Homo sapiens]	154	198	15%	2e-35	65%	(for n
EFB18550.1	hypothetical protein PANDA_009835 [Alluropoda melanoleuca]	152	197	16%	6e-35	58%	0011
CAG09167.1	unnamed protein product [Tetraodon nigroviridis]	150	190	18%	4e-34	47%	
EFZ18533.1	hypothetical protein SINV_16510 [Solenopsis invicta]	126	126	4%	1e-31	89%	
EHJ71783.1	prospero [Danaus plexippus]	141	383	36%	3e-31	86%	
EGW02786.1	Prospero homeobox protein 2 [Cricetulus griseus]	101	101	5%	4e-23	59%	
CAG13403.1	unnamed protein product [Tetraodon nigroviridis]	100	100	4%	8e-23	59%	
XP 003150096.1	hypothetical protein LOAG 14553 [Loa loa] >gb[EF013973.1] hypothe	105	105	3%	8e-22	88%	G
EGI67129.1	Homeobox protein prospero [Acromyrmex echinatior]	104	385	21%	1e-19	97%	-
EFN87731.1	Homeobox protein prospero [Harpegnathos saltator]	104	387	21%	1e-19	97%	
EHH63774.1	hypothetical protein EGM 16808 [Macaca fascicularis]	99.8	99.8	4%	2e-19	58%	
EHH28047.1	hypothetical protein EGK_18383 [Macaca mulatta]	99.8	99.8	4%	2e-19	58%	
AAD30180.1	homeobox prospero-like protein [Homo sapiens]	97.4	97.4	4%	1e-18	57%	G
<u>JC5496</u>	Prox 1 protein 671 - chicken	80.1	183	19%	3e-12	50%	_
XP 003366161.1		57.0	57.0	1%	1e-07	81%	G
CAF94749.1	unnamed protein product [Tetraodon nigroviridis]	<u>43.5</u>	43.5	3%	0.006	44%	
NP_001100671.1	prospero homeobox protein 1 [Rattus norvegicus] >gb EDL94973.1 r	44.7	44.7	8%	0.19	32%	_
CAP58279.1	Prox1 protein [Xenopus (Silurana) tropicalis]	42.0	42.0	8%	1.2	29%	Dai
AAF13029.1	transcription factor Prox1 [Notophthalmus viridescens]	40.4	40.4	7%	3.0	31%	Rej
YP 004342610.1	hypothetical protein Arcve_1902 [Archaeoglobus veneficus SNP6] >gb	38.1	38.1	2%	5.1	52%	G
ABG29070.1	transcription factor Prox1 [Pleurodeles walt]	38.9	38.9	7%	6.7	31%	· _
							· · · · · · · · · · · · · · · · · · ·

000		NCBI Blast:Query sequence	
		http://blast.ncbi.nlm.nih.gov/Blast.cgi	Google Q
Protein BLA	ST: search protein d 🔅	S NCBI BlastQuery sequence	म
	Query 557 Sbict 857	LAEMQOKYVQLCSRMEQESecqeldqdveqeqedMSSDHIELSPSPTLTGDGDVSP LAEMQOKYVQLCSRMEQESECQELDODOVEGCOEPDNGSDHIELSPSPTLTGDGDVSP LAEMOGYVQLCSRMEGESECQELDODOVEGCOEPDNGSDHIELSPSPTLTGDGDVSP	616
	Query 617	NHKEETGQERpgssspspsplkpktslgESSDSGANMLSQMMSKMMSGKLHNPLVGVGHP	676
	Sbjct 917	NHKEETGQERPGSSSPSPSPLKPKTSLGESSDSGANMLSQMMSKMMSGKLHNPLVGVGHP	976
	Query 677 Sbjct 977	ALPOGFPPLLQHMGDMSHAAAMYQQFFF 704 ALPOGFPPLLQHMGDMSHAAAMYQQFFF 1004	No definition line \rightarrow
		36 bits (1640), Expect = 0.0, Method: Compositional matrix adju = 461/498 (93%), Positives = 463/498 (93%), Gaps = 32/498 (6%)	Second HSP identified
	Query 906 Sbjct 1370	$\begin{array}{l} \texttt{PONGPTPATQSAAAMFQAFKTPQGMNPVAAAALVNSWTGFCLPPDqqqqtqtaqqqsa} \\ \texttt{P} & \texttt{P+P} & \texttt{+AAAMFQAFKTPQGMNPVAAAALVNSWTGFCLPPDQQQQQTAQQQQSA} \\ \texttt{PINFSPTAAAMFQAFKTPQGMPVAAAALNSWTGFCLPPDQQQQQTAQQQQSA} \end{array}$	965
	Query 966 Sbjct 1427	dggdgssgdtgglEQNEALSLVYTPKKRHKVPDTRITPRTVSRILADDgvvpptsgpp 00000SSQ0T000LEONEALSLVYTPKKRHKVTDTRITPRTVSRILADDgvvpPtsGPP 00000SSQ0T000LEONEALSLVYTPKKRHKVTDTRITPRTVSRILADDgvvPT6GPP	1025 – Gap 1486 a Low-
	Query 1026 Sbjct 1487	<pre>stpqqqqqqqqqqqqqqqqqqqASMGGNSNATPAQSPTRSSGGAYHppppppppmmp STPQ0000000000000000000ASNGGNSNATPAQSPTRSSGAAYHP0PPPPPPMMP STPQ00000000000000000ASNGGNSNATPAQSPTRSSGAAYHP0PPPPPPMMP</pre>	1085 Complexity
	Query 1086 Sbjct 1547	eq:vslptsvalppslheskvpspysprpnphaaaggataaglhghhghhghngsmglsss vslptsvalppslheskvpspysprpnphaaaggataaglhghhghnghhgsmQlsss vslptsvalppslheskvpspysprpnphaaaggataaglhghhghlghhqgsglsss vslptsvalppslheskvpspysprpnphaaaggataglhghhghlghhqgsglsss vslptsvalppslheskvpspysprpnphaaaggataglhghhghghghghghghghghghghghghghghghghg	1145
	Query 1146 Sbjct 1607	PPGSLGALMDSRDSPPLPHPPSMLHPALLAAAHHGGSPDYKTCLRAVMDACOROSECNSA	1205
	Query 1206 Sbjct 1667	DMQFDGMAPT SSTLTPMHLRKAKLMFFWVRY	1265
	Query 1266		1325
	Sbjct 1698	PSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIKTPDDLLIAG PSSAVLKMYFPDIKFNKNNTAQLVKWFSNFREFYYIQMEKYARQAVTEGIKTPDDLLIAG	1757
	Query 1326	DSELYRVLNLHYNRNNHIEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKKSIYKIISRM DSELYRVLNLHYNRNNHIEVPQNFRFVVESTLREFFRAIQGGKDTEQSWKKSIYKIISRM	1385
	Sbjct 1758	DSELYRVLNLHYNRNNHIEVPONFRFVVESTLREFFRAIOGGKDTEOSWKKSIYKIISRM	1817
	Query 1386 Sbjct 1818	DDPVPEYFKSPNFLEQLE 1403 DDPVPEYFKSPNFLEQLE DDPVPEYFKSPNFLEQLE 1835	
Done			

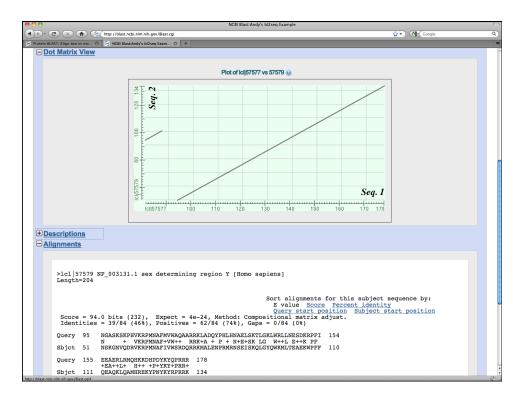
Suggested BLAST Cutoffs						
	<i>E</i> -value	Sequence Identity				
Nucleotide	$\leq 10^{-6}$	\geq 70%				
Protein	$\leq 10^{-3}$	≥25%				
 Do not use these cutoffs blindly! Pay attention to alignments on either side of the dividing line Do not ignore biology! 						
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		NATIONAL HUMAN GENOME RESEARCH INSTITUTE Division of Intromural Research				

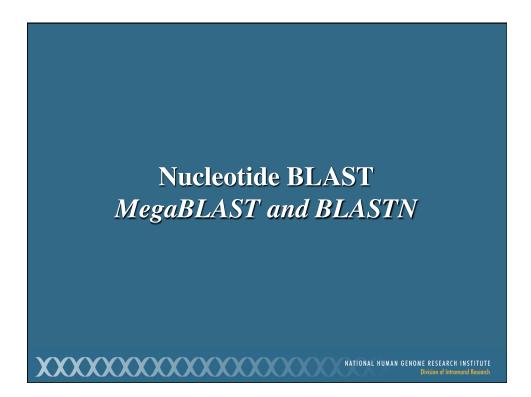
Database Searching Artifacts

- Low-complexity regions
- Repetitive elements
 - LINEs, SINEs, retroviral repeats
 - Choose "Filter: Species-Specific Repeats" with BLASTN
 - RepeatMasker http://www.repeatmasker.org
- Low-quality sequence hits

- Expressed sequence tags (ESTs)
- Single-pass sequence reads from large-scale sequencing (possibly with vector contaminants)

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>


00			BLAST: Basic Loca	l Alignment Search Tool		
	(S http://blast.ncbi.nlm.nih.	gov/Blast.cgi?CMD=Web&PAGE_				
BLAST: Basic Local Alignment		and the second second second second second second second	http:/	//www.ncb	oi.nlm.nil	n.gov/BLAST
 <u>Human</u> <u>Mouse</u> <u>Rat</u> 		Oryza sativa Bos taurus Danio rerio	P II	Pan troglodytes Microbes		Tip of the Day
Arabidopsis ti Basic BLAST Choose a BLAST p nucleotide blast protein blast blastx tblastn	rogram to run. Search a nucleotide da <i>Algorithms:</i> blastn, Search protein databas <i>Algorithms:</i> blastp, Search protein databas	Drosophila melanoga dabase using a nucleotide megablast, discontiguous r e using a protein query ps-blast, ph-blast e using a translated nucle eotide database using a p	equery megablast eotide query	 <u>Apis mellifera</u> 		Use Genomic BLAST to see the genomic context If you are interested in the evolution of a particular gene or gene family it is often intelesting to examine the intro-exon structure even across species.
tblastx	Search translated nucl	eotide database using a tr		otide query		
Make sg Search 1 Find seg Find seg Find seg Search 1 Search 1 Search 1 Screen 1 Align tw Search 1 Search 1	becialized search (or datal wecific primers with Primer trace archives served domains in your upences with similar coms, sequences that have <u>gens</u> munoglobulins (IgBLA using <u>SNP flanks</u> sequence for <u>vector contr</u> . o (or more) sequences us	sequence (cds) arved domain architecture expression profiles (GEG ST) amination (vecscreen) ing BLAST (bl2seq) tets in PubChem BioAssay mic libraries	e (cdart) O)			
 Needlen Search 	nan-Wunsch <u>Global Sequ</u> Ref <u>SeqGene</u> WGS sequences grouped	ence Alignment Tool				8


Protein BLAST: Align two or more sequences using BLAST							
()»· () () ()	E) 🛞 (http://blast.ncbi.nlm.nih.gov/Blast.cgi??ROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&BLAST_SPEC=blast2seq 🏫 🔻 🚷 🚱 Google		٩				
Protein BLAST: Align two or r	more						
Se BLAST®	Basic Local Alignment Search Tool	My NCBI	2				
·	nt Results Saved Strategies Help	[Sign In] [Registe	97]				
NCBI/ BLAST/ blastp	Align Sequences Protein BLAST						
blastn blastp blas	Istx tblastn tblastx						
Enter Query Se	BLASTP programs search protein subjects using a protein query. more Reset of Rese	age Bookmark					
	number(s), gi(s), or FASTA sequence(s) 😥 <u>Clear</u> Query subrange 🤢						
	30X-10 [Homo sapiens]						
PVCIREAVSQVLSG	YDWTLVPMPVRVNGASKSKPHVKRPMNAFMVWAQAARRKLADQYPHLHNAELSK						
	KRPFIEEAERLRMQHKKDHPDYKYQPRRRKNGKAAQCEAECPGGEAEQGGTAAIQ JEGSPMSDGNPEHPSGQSHGPPTPPTTFKTELQSGKADPKRDGRSMGEGGKPHID						
	ISNMETFDVAELDOYLPPNGHPGHVSSYSAAGYGLGSALAVASGHSAWISKPPGV 👎						
Or, upload file	(Browse)						
Job Title	Andy's bl/2seq Example						
	Enter a descriptive title for your BLAST search 😡						
Align two or mo	ore sequences 😣						
>NP_003131.1 s MQSYASAMLSVFNS WSRDQRRKMALENP	Umber, gl, or FASTA sequence Clear Subject submange From From Clear Subject submange Top						
Or, upload file	(Browse) 🚱						
Program Selec	ction						
Algorithm	blastp (protein-protein BLAST) Choose a BLAST algorithm						
BLAST	Search protein sequence using Blastp (protein-protein BLAST)						
	Show results in a new window						
+ Algorithm parame	eters						
			1 1				
Done			3				

000	Protein BLAST: Align two or more sequences using BLAST	C
<▶· @ × ♠	🛞 (http://blast.ncbi.nim.nih.gov/Blast.cgi7PROGRAM=blastp8BLAST_PROGRAMS=blastp8PAGE_TYPE=BlastSearch8SHOW_DEFAULTS=on8BLAST_SPEC=blast2seq 🏫 🔻 🚷 Google	Q
Protein BLAST: Align two or m	ore+ Choose a BLAST algorithm 🥹	
BLAST	Search protein sequence using Blastp (protein-protein BLAST) 愛 Show results in a new window	
Algorithm paramet	ers Note: Parameter values that differ from the default are highlighted in yellow and marked with sign	
 General Param 	eters	
Max target sequences	□100 Select the maximum number of aligned sequences to display 🥹	
Short queries	✓ Automatically adjust parameters for short input sequences	
Expect threshold	10	
Word size	3 3	
Max matches in a query range	0	
Scoring Parame	eters	
Matrix		
Gap Costs	Existence: 11 Extension: 1 - C G	
Compositional	Conditional compositional score matrix adjustment	
adjustments	BLOSUM62	
Filters and Mas	king	
Filter	€ © Low complexity regions ⊕ BLOSUM45	
Mask	□ Mask for lookup table only 🍪 □ Mask lower case letters 🥪	
BLAST	Search protein sequence using Blastp (protein-protein BLAST)	
) 4 (4
		64

O O NCBI Blast:Andy's bl2	seq Example						C
● ▶ · C × ♠ S http://blast.ncbi.nlm.nih.gov/Blast.cgi				☆ ▼) (Soogle Google		q
🗧 Protein BLAST: Align two or mo 🛛 🚬 NCBI Blast:Andy's bl2seq Exam 🕲 🕇							
Search Too Basic Local Alignment Search Too						My NCBI	2
Home Recent Results Saved Strategies Help						[Sign In] [Re	gister]
NCBI/ BLAST/ blastp suite-2sequences/ Formatting Results - GR3U63S2112							
Edit and Resubmit Save Search Strategies > Formatting options > Download							
Blast 2 seque	ncer						
Andy's bl2seq Example	sinces						
Query ID Icl[57577 Description NP_008872.1 SOX-10 [Homo sapiens] Molecule type amino acid Query Length 466	Molecule type Subject Length	NP_003131 amino acid 204	1 sex determ		n Y [Homo sap	iens]	
Other reports: > Search Summary [Taxonomy reports] [Multiple alignment]							
⊖ Graphic Summary							
O <u>oraphic outminary</u>							
Distribution of 2 Blast Hits on the	e Query Sequence	99					
Mouse over to see the define, click to show alignments							
Color key for al	ignment scores	5					
	-80 80-2	200 >	>=200				
90 180 	270	360	450				
€ <u>Dot Matrix View</u> □ <u>Descriptions</u>							
Legend for links to other resources: U UniGene \Xi GEO 🖸 Gene 🗳 Structure 🖾 Map Vie	ewer 🗾 PubChem	BioAssay					
Sequences producing significant alignments:							
Accession Description	Max score	Total score	Query coverage	△ <u>E</u> value	Max ident	Links	
57579 NP_003131.1 sex determining region Y [Homo sapiens]	94.0	109	19%	4e-24	46%		
ne de la companya de							

0 O NCBI Blast-Andy's bl2seg Example							
) > C (X) (A (S (http://blast.ncbi.nlm.nih.gov/Blast.cgi				☆ ▼) (Google		_
Protein BLAST: Align two or mo 💿 🔀 NCBI Blast:Andy's bl2seq Exam 💿 🕇							
Dot Matrix View							
© Descriptions							
Legend for links to other resources: UniGene G GEO G Gene S Structure Map Viewer	Maria						
Legend for links to other resources: D UniGene E GEO D Gene Structure D Map Viewer	PubChem	BioAssay					
Sequences producing significant alignments:							
Accession Description	Max score	Total score	Query coverage		Max ident	Links	
57579 NP_003131.1 sex determining region Y [Homo sapiens]	94.0	109	19%	4e-24	46%		
Carry and the							
⊖ <u>Alignments</u>							
E t Que Score = 94.0 bits (232), Expect = 4e-24, Method: Composition Identities = 39/84 (46%), Positives = 62/84 (74%), Gaps = 0/6	alue <u>Sc</u> ery start al matri 4 (0%)	ore <u>Per</u> positio x adjust	nis subject cent ident: <u>Subject</u>	ity -	-		
Query 95 NGASKSKPHVKRPMNAFMVWAQAARRKLADQYPHLHNAELSKRLGKLWRI N + VKRPMNAFVW++ RRK+A + P + N+E+SK LG W+4 Sbict 51 NSKGNVODRVKRPMNAFIVWSRDORKMALENPRMRNSEISKOLGYOWK	L E++K P	F					
Ouery 155 EEAERLRMOHKKDHPDYKYOPRRR 178							
sbjct 111 QEAQKLQAMHREKYPNYKYPRRK 134							
SUJUL III QEAQADQAMIKEAIPNIAIKEKKA 134							
Score = 15.4 bits (28), Expect = 1.9, Method: Compositional matrix adjust. Identities = 3/7 (43%), Positives = 5/7 (71%), Gaps = 0/7 (0%)							
Query 82 GYDWTLV 88							
GY W ++ Sbjct 95 GYQWKML 101							

000	BLAST: Basic Local Alignment Search Tool	0
BLAST [®] Home Recent	Basic Local Align http://www.ncbi.nlm.ni	ih.gov/BLAST
NCBI/ BLAST Home		News
BLAST finds regio	ns of similarity between biological sequences. more	
	New Aligning Multiple Protein Sequences? Try the COBALT Multiple Alignment Tool.	SOAP BLAST A SOAP based BLAST service is
BLAST Assem	oled RefSeq Genomes	available. Mon, 18 Jul 2011 08:00:00 EST
Choose a species g	enome to search, or list all genomic BLAST databases.	B More BLAST news
Human	<u>Oryza sativa</u> Gallus gallus	
<u>Mouse</u> Rat	Bos taurus Danio rerio Danio rerio Microbes	Tip of the Day
<u>Arabidopsis th</u>		Use Genomic BLAST to see the genomic context
Basic BLAST		 If you are interested in the evolution of
Choose a BLAST pr	ogram to run.	a particular gene or gene family it is
		often intetesting to examine the intro-exon structure even across
nucleotide blast	Search a nucleotide database using a nucleotide query Algorithms: blastn, megablast, discontiguous megablast	species.
		🖹 More tips
protein blast	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast	
blastx	Search protein database using a translated nucleotide query	
tblastn	Search translated nucleotide database using a protein query	
tblastx	Search translated nucleotide database using a translated nucleotide query	
Specialized BL	AST	
Choose a type of sp	ecialized search (or database name in parentheses.)	
	acific primers with Primer-BLAST	
	race archives	
	served domains in your sequence (cds) uences with similar conserved domain architecture (cdart)	
	equences that have gene expression profiles (GEO)	
	mmunoglobulins (lgBLAST)	-
Done Search u	sing <u>SNP flanks</u>	•

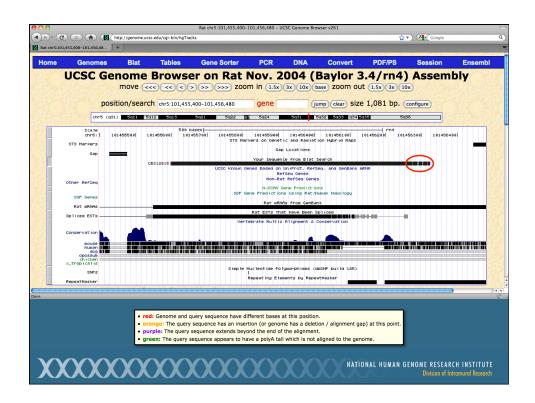
0 0	Nucleotide BLAST: Search nucleotide databases using a nucleotide query	
BLAST	/blast.ncbi.nim.nin.gov/slast.cgi/PROGRAM-blastn&BLAST_PROGRAMS=megaBlast&PACE_IYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC C CC Coogle Besic Local Alignment Search Tool	
	ent Results Saved Strategies Help	[Sign in] [Register]
NCBI/ BLAST/ blast	n suite	
blastn blastp	blastx tblastn tblastx	
Enter Query	BLASTN programs search nucleotide databases using a nucleotide query. more	Resetpage Bookmark
Enter accession	number, gl, or FASTA sequence 😡 Clear Query subrange 😣	
	From	
	То	
	A	
Or, upload file	Choose File no file selected	
Job Title	Enter a descriptive title for your BLAST search 😡	
Align two or m	Inner a descriptive rule for your blacks i search 🥶	
Choose Sear		
Database	Human genomic + transcript O Mouse genomic + transcript O Others (nr etc.):	
	(Human genomic plus transcript (Human G+T) 🗘 😣	
Exclude	Models (XM/XP) Environmental sample sequences	
Optional Entrez Query		
Optional	Enter an Entrez query to limit search 😡	
Program Sele	ction	
Optimize for	Highly similar sequences (megablast)	
	O More dissimilar sequences (discontiguous megablast)	
	O Somewhat similar sequences (blastn) Choose a BLAST algorithm	
BLAST	Search database Human G+T using Megablast (Optimize for highly similar sequences)	
	Show results in a new window	
Algorithm paran		
General Para Max target		
sequences	Select the maximum number of aligned sequences to display (9)	
Short queries	S Automatically adjust parameters for short input sequences 😡	
Expect threshold		
Word size		
Word alze		
Scoring Para	neters	
Match/Mismatch		

Nucleotide-Based B	LAST	Algor	ithms
	W	+/	Gaps
Optimized for aligning very long and/or	highly similar	sequences (3	> 95%)
MegaBLAST (<i>default</i>)	28	1, -2	Linear
Better for diverged sequences and/or cro	oss-species com	parisons (<	80%)
Discontiguous MegaBLAST	11	2, -3	Affine
BLASTN	11	2, -3	Affine
Finding short, nearly exact matches (<2	20 bases)		
BLASTN E = 1000, all filtering off	7	2, -3	Affine
		NATIONAL HUMAN GEN	OME RESEARCH INSTI Division of Intramural Re

BLAT

- "BLAST-Like Alignment Tool"
- Designed to rapidly-align longer nucleotide sequences (L ≥ 40) having > 95% sequence similarity
- Can find exact matches reliably down to L = 33
- Method of choice when looking for exact matches in nucleotide databases
- 500 times faster for mRNA/DNA searches
- May miss divergent or shorter sequence alignments
- Can be used on protein sequences

When to Use BLAT

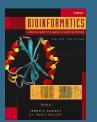

- To characterize an unknown gene or sequence fragment
 - Find its genomic coordinates
 - Determine gene structure (the presence and position of exons)
 - Identify markers of interest in the vicinity of a sequence
- To find highly-similar sequences
 - Identify gene family members
 - Identify putative homologs
- To display a specific sequence as a separate track

C SC Genome Br	http://ganoma.ucsa.adu
UCSC	Genome Bioinformatics
Genomes	- Blat - Tables - Gene Sorter - PCR - VisiGene - Proteome - Session - FAQ - Help
Genome	About the UCSC Genome Bioinformatics Site
ENCODE	Welcome to the UCSC Genome Browser website. This site contains the reference sequence and working draft assemblies for a large collection of genomes. It also provides portals to the ENCODE and Neandertal projects.
Neandertal Blat Table	We encourage you to explore these sequences with our tools. The Genome Browser zooms and scrolls over chromosomes, showing the work of annotators worldwide. The Gene Sorter shows expression, homology and other information on groups of genes that can be related in many ways. Blat quickly maps your sequence to the genome. The Table Browser provides convenient access to the underlying database. VisiGene lets you browse through a large collection of <i>in situ</i> mouse and frog images to examine expression patterns. Genome Graphs allows you to uload and disolav enome-wide data sets.
Browser Gene Sorter In Silico PCR	The UCSC Genome Browser is developed and maintained by the Genome Bioinformatics Group, a cross-departmental team within the Center for Biomolecular Science and Engineering (CBSE) at the University of California Santa Cruz (UCSC). If you have feedback or questions concerning the tools or data on this website, feel free to contact us on our public mailing list.
Genome Graphs	News ≥ News Archives ►
Galaxy VisiGene	To receive announcements of new genome assembly releases, new software features, updates and training seminars by email, subscribe to the genome-announce mailing list.
Proteome	3 January 2012 - Roadmap Epigenomics Now Available through Data Hub at Washington University
Browser Utilities Downloads	We are pleased to announce the release of the Roadmap Epigenomics data on the UCSC Genome Browser through our Data Hub function. The Roadmap Epigenomics Project is part of the The NIH's Common Fund's Epigenomics Program. It was launched with the goal of producing a public resource of human epigenomic data to catalyze basic biology and disease-oriented research. The Consortium leverages experimental pipelines built around next-generation sequencing technologies to map DNA methylation, histone modifications, chromatin accessibility and small RNA transcripts in stem cells and primary ex vivo tissues selected to
Release Log Custom Tracks	represent the normal counterparts of tissues and organ systems frequently involved in human disease. The Consortium expects to deliver a collection of normal epigenomes that will provide a framework or reference for comparison and integration within a broad array of future studies.
Microbial Genomes Mirrors	All data were produced and processed by the Roadmap Epigenomics Mapping Consortium, and will be periodically updated. Genome Browser tracks were constructed and hosted by VizHub at Washington University in St. Louis. Tracks are available at UCSC Genome Browser via the Data Hub function, or follow this link. The Roadmap Epigenomics Mapping Consortium is responsible for the quality of the data.
Archives	19 December 2011 - Variant Call Format (VCF) Now Supported in Genome Browser
Training	We are pleased to announce that the UCSC Genome Browser now supports Variant Call Format (VCF), VCF is a flexible and extendable line-oriented text format developed by the 1000 Genomes Project for releases of single purcleotide variants, indels, conv

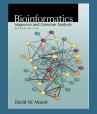
Rat BLAT Search	http://genome.ucsc.edu/cgi-bin/hgBlat				☆▼) 🚷 Google	
nat boxt search						
Home Genomes [·]	Tables Gene Sorter PCR	Session FAQ	Help			
at BLAT Search						
at BLAT Search						
3LAT Search	Genome					
Genome:	Assembly:	Query type:	Sort output:	Output type:		
Rat	Nov. 2004 (Baylor 3.4/rn4)	DNA 🔹	query,score 🝷	hyperlink 💌		
	r_Pit1 Rattus norvegicu					
	GTGTCTCAGAAGCTGCTTTCTCC CGCTCTTCTGGATAGTCTGTGTGT					
	CCTGCGGTAGGCAAGGCCTGCAG					
	TATCCAGAGCCCACTTTACCCC					
	ATGAATGACTCCACCACATTCA					
	TCTGTCCCTTAGTCGTGGGGAA GAGAAATGGAAAATCATGCCCA					
	TAGCTCAGTCATGGAGTGCTTG					
	GAAACGGGAGGAGTGGAGGCAT					
	CCTACTGAGGGAATGGATAAGCO AGTTTGGAAAATGATAAAATACO					
IGICATCACGIAAGAAA	NGI I I GGAAAAI GA I AAAI ACC	ANIGGGAIGGAICC	CCITIAAACCATC	-		
	MAL					
	<u> </u>	eeling lucky clear				
	uence to find ne location in			ices may be		
earched if separate	d by lines starting with '>'	followed by the s	equence name.			
	than pasting a sequence,	you can choose to	o upload a text fi	ile containing		
he sequence.						
Jpload sequence:	(Browse)	submit file				
only DNA sequences	of 25,000 or fewer bases	and protein or tra	anslated sequence	e of 10000 or		
, sequences	processed. Up to 25 seque	nces can be subm	nitted at the sam	e time. The		
ewer letters will be	e sequence submissions is					
	e sequence submissions is					
otal limit for multipl	ners, use In-Silico PCR for	h				

) (▶- (ट) () (♠) (http://genome.ucsc.ec	to fact this the Dise			Rat	BLAT Results				^ -)	Google	
Rat BLAT Results	http://genome.ucsc.ed +	lu/cgi-bin/hgBlat			_					ਸ*)	Google	
Rat BLAT Results												
Home Genomes	Tables Gene	Sorter PC	R Sessi	on F	AQ	Help						
at BLAT Resu	te											
at DEAT Resul	13											
BLAT Sear	ch Results	5										
ACTIONS	QUERY	SCORE	START E	ND QS	IZE	IDENTITY	CHRO	STRA	ND START	END	SPAN	
rowser details		710				98.1%	5		101455599		725	
rotser details		29				89.2%	2	+	38736251	38736287	37	
ro ser details		25				93.2%	3	+		22960374	29	
ro <mark>ser details</mark>		22				100.0%	1		122930956		24	
ro <mark>ser details</mark> roser details		21				100.0%	17	- 7		33248166	21	
ro ser details ro ser details		21				100.0% 95.7%	3 1	+	46857920 157973111	46857942	23 23	
ro ser details		21 20				95.78	2			240446891	23	
ro ser details ro ser details		20				95.5%			240446870 216323127		22	
											20	
ro ser details ro ser details		20 20		74	768	100.0% 95.5%	1		56102029 186587336		20	
to set details	CB312015	20	400 4	/4	/00	93.36	2	τ.	10020/220	10020/22/	22	

0	10/			Ra	t BLAT Results						
	http://genome.ucsc.ed	u/cgi-bin/hgBlat							<u>भ</u> र	Google	
Rat BLAT Results	+										
Home Genomes	Tables Gene	Sorter PC	R Session	FAQ	Help						
					noip						
at BLAT Resul	ts										
BLAT Searc	h Poculte										
JLAT Searc	in Results	•									
ACTIONS	QUERY	SCORE	START EN	QSIZE	IDENTITY	CHRO	STRA	ND START	END	SPAN	
rowser details		710	1 73		98.1%	5		101455599		725	
rowser details		29	501 53		89.2%	2	+		38736287	37	
rowser det ls		25	501 52		93.2%	3	+		22960374	29	
rowser det ils rowser det ils		22 21	341 36 202 22		100.0% 100.0%	1 17		122930956	33248166	24 21	
cowser det ils		21	706 72		100.0%	3			46857942	23	
rowser det ils		21	552 57		95.7%	1		157973111		23	
cowser det ils		20	277 29		95.5%	2		240446870		22	
cowser det ils		20	442 46		100.0%			216323127		20	
rowser det ils		20	508 52		100.0%	ĩ			56102048	20	
rowser det ils		20	453 47		95.5%	2		186587336		22	


00	User Sequence vs Genomic
)D⁺CX (🏦 🛛 🔀 (http://genome.ucsc.edu/cgi-bin/hgc?a=101455598&g=htcUserAli&i=/trash/hgSs.fbgSs.genome_68bf_b92da0.psix+%2Ftrash%ZFbgSs%ZFhgSs_genome_分 💎 🔇 💽 (Google
User Sequence vs Ger	
lignment	Alignment of CB312815 and chr5:101455599-101456323
CB312815	Click on links in the frame to the left to navigate through the alignment. Matching bases in cDNA and genomic
	sequences are colored blue and capitalized. Light blue bases mark the boundaries of gaps in either sequence (often
CB312815	splice sites).
Rat.chr5	
block1 together	cDNA CB312815
	GGGGCTCTCG CTGGCCTGTG TCTCAGAAGC TGCTTTCTCC ACCTCTTCCT 50
	TGTGAATTTC CTAAACTCTC TACCTCTGGT TCATGTTCGC TCTTCTGGAT 100
	AGTCTGTGTG CAATGAGCCC TTAAAGGAAT ATTGCAATGA GCTATAAGAG 150
	TTGTGAGCCT GCGGTAGGCA AGGCCTGCAC TGGGACAGCA AAGGAAATTT 200
	CATTGCATCT GCTCCTAAGT CACAGGTTAT CCAGAGCCCA CTTTACCCCA 250
	AGAGACAGCC TCTCCCCCAT CCCTAGGAAA CAGTAGAGCT TAGGAAAATG 300
	AATGACTCCA CCACATTCAA GAGGCTTCAA ATTGTATACT TGGCATTTCT 350
	GATTTCAGTT CTGAAATTCT GTCCCTTAGT CGTGGGGAAA ATAAGAAATG 400
	GAGTTACACC TTGTCATTTA AAAAACCATT GAATTAAGAG AAATGGAAAA 450
	TCATGCCCAC ATAAAACATG TATGGAAGTG TTCATGTTTT GATCATGGCG 500
	GGGGATATAG CTCAGTCATG GAGTGCTTGC ATAGCAATGT GCATAATCCG 550
	AGGTTCAAGC CCCAGCACCG AAAAAGAGAA aCGGGAGGAG TGGAGGCATT 600
	CACAGCAGCG TTTTCAGTAT AGGCGCAAAG GGGAAGGAGT TTAAACACCT 650
	ACTGAGGGAA TGGATAAGCG GAGTGCCCTT GTCTATACTC GGGgatgGCT 700
	AGTCATCAcg taAGAAAAGT TTGgaAAATG ATAaaatacc aatgggatgg 750
	atcccttta aaccatcc
	Genomic chr5 :
	cttggaagaa ggtaactata cattaatata gagccctctt tttctttgca 101455548
	ggcccaggac acacaggacg gatgtttcca agtcactcca gggacagcat 101455598
	GAGGCTCTCG CTGGCCTGTG TCTCAGAAGC TGCTTTCTCC ACCTCTTCCT 101455648
	TGTGAATTTC CTAAACTCTC TACCTCTGGT TCATGTTCGC TCTTCTGGAT 101455698
	AGTCTGTGTG CAATGAGCCC TTAAAGGAAT ATTGCAATGA GCTATAAGAG 101455748
	TTGTGAGCCT GCGGTAGGCA AGGCCTGCAC TGGGACAGCA AAGGAAATTT 101455798
	CATTGCATCT GCTCCTAAGT CACAGGTTAT CCAGAGCCCA CTTTACCCCA 101455848
	AGAGACAGCC TCTCCCCCAT CCCTAGGAAA CAGTAGAGCT TAGGAAAATG 101455898
	AATGACTCCA CCACATTCAA GAGGCTTCAA ATTGTATACT TGGCATTTCT 101455948
	GATTTCAGTT CTGAAATTCT GTCCCTTAGT CGTGGGGAAA ATAAGAAATG 101455998
	GAGTTACACC TTGTCATTTA AAAAACCATT GAATTAAGAG AAATGGAAAA 101456048

	User Sequence vs Genomic	C
▲)►) * C × A User Sequence vs Genor		Q
Alignment	Side by Side Alignment	
Alignment of CB312815 Rat.chr5 block1 together	Side by Side Anglinkent 000000001 ggggctctcgdtggcctgtgtctcagaagdtgctttctccacctctcct 000000050 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	


FASTA

- Identifies regions of local alignment
- Employs an approximation of the Smith-Waterman algorithm to determine the best alignment between two sequences
- Method is significantly different from that used by BLAST
- Online implementations at http://fasta.bioch.virginia.edu http://www.ebi.ac.uk/fasta33

Further Reading

Chapter 11 Assessing Pairwise Sequence Similarity: BLAST and FASTA

Chapter 6 Sequence Database Searching for Similar Sequences