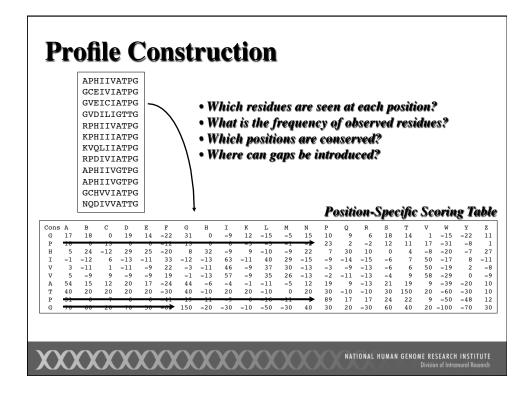
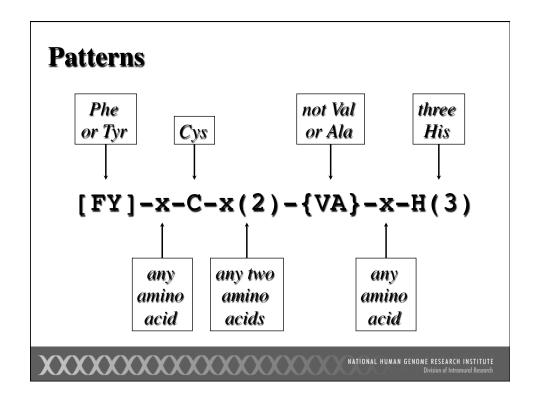


Overview

- Week 2
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 4
 - Profiles, Patterns, Motifs, and Domains
 - Structures: VAST, Cn3D, and de novo Prediction
 - Multiple Sequence Alignment




Sequence Comparisons

Profiles

- Numerical representations of multiple sequence alignments
- Depend upon patterns or motifs containing conserved residues
- Represent the common characteristics of a protein family
- Can find similarities between sequences with little or no sequence identity
- · Allow for the analysis of distantly-related proteins

Pfam

- Collection of multiple alignments of protein domains and conserved protein regions (regions which probably have structural or functional importance)
- Each Pfam entry contains:
 - Multiple sequence alignment of family members
 - Protein domain architectures

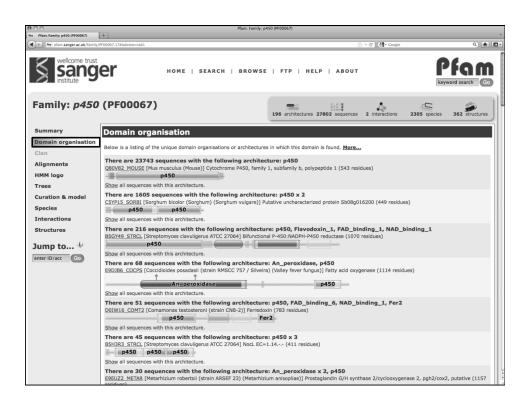
- Species distribution of family members
- Information on known protein structures
- · Links to other protein family databases

Pfam

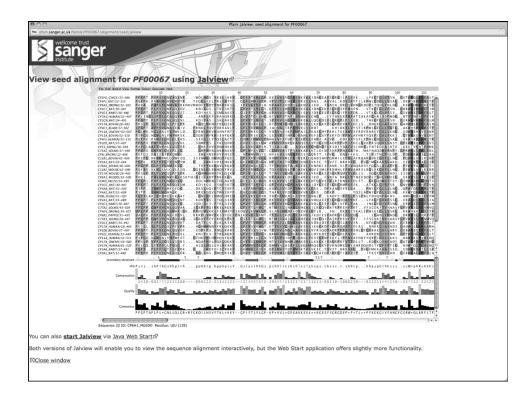
- Pfam A
 - Based on *curated* multiple alignments ("seed alignment")
 - Hidden Markov models (HMMs) used to find all detectable protein sequences belonging to the family
 - Given the method used to construct the alignments, hits are highly likely to be true positives
- Pfam B
 - · Automatically generated from database searches
 - Deemed "lower quality", but can be useful when no Pfam A family is identified

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

000	_	Pfam: Home page		
Res Pfam: Home page	F		hater Ile fam. a an	and as all
Mu pfam.sanger.ac.uk			http://pfam.san	iger.ac.uk
wellcome trust Sange institute	PC HOME SEA	RCH BROWSE FTP	HELP ABOUT	Pfam keyword search CO
	Pfam 26.0 (November 2011, 1	13672 families)		
	The Pfam database is a large collection and hidden Markov models (HMMs)		ented by multiple sequence alignments	
	Proteins are generally composed of on combinations of domains give rise to that occur within proteins can therefor	he diverse range of proteins foun	d in nature. The identification of domains	
		es cover a large proportion of the prehensive coverage of known pr cally generated entries are called	sequences in the underlying sequence oteins we also generate a supplement using Pfam-B . Although of lower quality, Pfam-B	
	Pfam also generates higher-level group entries which are related by similarity		is clans . A clan is a collection of Pfam-A HMM.	
	QUICK LINKS	YOU CAN FIND DATA IN PFA	AM IN VARIOUS WAYS	L
	SEQUENCE SEARCH	Analyze your protein sequence	for Pfam matches	
	VIEW A PFAM FAMILY	View Pfam family annotation ar		
	VIEW A CLAN	See groups of related families		
	VIEW A SEQUENCE	Look at the domain organisatio	n of a protein sequence	
	VIEW A STRUCTURE	Find the domains on a PDB stru	ucture	
	KEYWORD SEARCH	Query Pfam by keywords		
	JUMP TO		Go Example	
		Enter any type of accession or ID to j UniProt sequence, PDB structure, etc	ump to the page for a Pfam family or clan,	
		Or view the <u>help</u> pages for mor	e information	
	Recent Pfam <u>blog</u> d ² posts		⊠Hide this	1
http://irp.nih.gov/our-research	What are these new families with	2, 3, 4 endings? 27 (posted 19	January 2012)	3

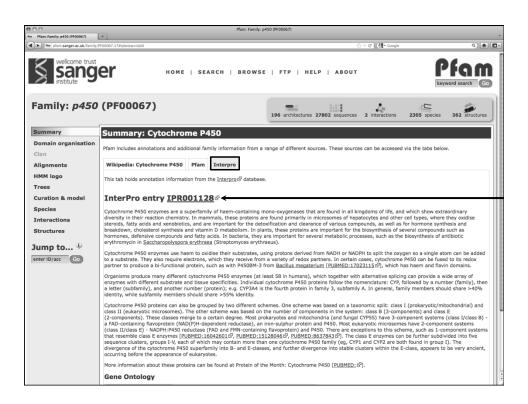

000		Pfam: Home page	
Re Pfam: Home page	+		-
● ► Pfam.sanger.ac.uk		☆ ♥ C 🛛 🚷 • Google	۹) 🖨 🗖 -
wellcome tru Sang		ARCH BROWSE FTP HELP ABOUT	Pfam keyword search GO
	Pfam 26.0 (November 2011,	13672 families)	
	The Pfam database is a large collecti and hidden Markov models (HMM	on of protein families, each represented by multiple sequence alignments s). Less	
	combinations of domains give rise to	one or more functional regions, commonly termed domains . Different the diverse range of proteins found in nature. The identification of domains ore provide insights into their function.	
	families. Although these Pfam-A entr database, in order to give a more co the <u>ADDA</u> ³ database. These automa	Pfam-A and Pfam-B. Pfam-A entries are high quality, manually curated les cover a large proportion of the sequences in the underlying sequence mprehensive coverage of known proteins we also generate a supplement using tically generated entries are called Pfam-B. Although of lower quality, Pfam-B functionally conserved regions when no Pfam-A entries are found.	
		upings of related families, known as clans . A clan is a collection of Pfam-A y of sequence, structure or profile-HMM.	
	QUICK LINKS	ANALYZE YOUR PROTEIN SEQUENCE FOR PFAM MATCHES	
	SEQUENCE SEARCH	Paste your protein sequence here to find matching Pfam families.	
	VIEW A PFAM FAMILY	Go Example	
	VIEW A CLAN		
	VIEW A SEQUENCE		
	VIEW A STRUCTURE		
	KEYWORD SEARCH	This search will use and an E-value of 1.0. You can set your own search parameters and perform a range of other searches here.	
	JUMP TO		
	Recent Pfam <u>blog</u> ^ह posts	⊠Hide this	
	What are these new families with	n 2, 3, 4 endings? 🖓 (posted 19 January 2012)	
	Some users have been contacting us	about the new families that are appeared in Pfam release 26.0. As pointed	
	out by one of our users: Pfam v26 in	cludes, in addition to DDF. Top. 1, the following new families:	

Compared and the sequence of the sequence of the sequence (these or **) sequences will not be accepted Compared as valid sequences that we apply our sequences on the sequence (these or **) sequences of the sequence (these or **) sequences containing of the characters will not be accepted Compared to the sequence (these or **) sequences containing of these tests. Note that ** or was previously accepted as a valid sequence character, but is not allowed in the latest version of MMMER. Sequence index the ** or poly our sequence to be rejected. If not the sequence (these or **) sequences that the sequence (these or **) sequences containing of these tests. Note that ** or sequence, sequence there are varied of these tests. Note that although we do allow FASTA-style header lines on a sequence, sequence, sequence these the sequence (these the sequence) setting in your sequence. You can see an example of a sequence that will successfully pass all of the validation tests by clicking the <i>Example</i> button below the search form. Search options	Compared contribution of the sequence of	Pfam; Search Pfam	+		Pfam: Search Pfam				
Sequence Sequence search Bath search Find Plam families within your sequence of interest. Paste your protein sequence into the box below, to have it searched for matching Plam families. Less Sequence validation Sequence validation Domain architecture We check all sequences before running a search. In order to avoid problems with the validation of your sequence, you should use only plain, unformatted text. DNA sequence = seguence length must be less than 10,000 relidues Taxonomy	Sequence Sequence search Reyword Functional similarity Commain architecture Diverse sequence of interest. Pasts your protein sequence into the box below, to have it searched for matching Pfam families. Less Data sequence Sequence and the validation checks that we apply to sequences: Taxonomy It is sequence muning a search. In order to avoid problems with the validation of your sequence, you should use only plain, unformatted text. It is sequence muning a search. In order to avoid problems with the validation of your sequence, you should use only plain, unformatted text. It is sequence muning a search. In order to avoid problems with the validation of your sequence, you should use only plain, unformatted text. It is sequence muning a search. In order to avoid problems with the validation of your sequence, you should use only plain, unformatted text. It is sequence nature to a sequence that the sequence cancel upplate the sequence cancel upplate the sequence cancel upplate the secuence that the sequence cancel upplate the secuence that the pasts of the sequence. Note that although we do allow FASTA-style header lines on a sequence, and a sequence to upplate the secuestful pass all of the set texts. Note that the level the text weight of the secuence that will only to kore Pharm-A families on your sequence to be rejected. If in doubt, plasse remove header lines the secuence that weight may to gene cancel the secuence that weight pass all of the sect head to the secuence that the secuestful pass all of the sect head to the secuestful pass all of the sect head to the secuence that the sevalue of 1.0, but you can also use the gathering thresh						습 호 C (왕 Coogle		Q 🛖 🖪
Batch search Keyword Functional similarity Domain architecture DNA sequence validation Taxonomy Jump to ψ enter ID/acc Co	Batch search Keyword Functional similarity Orden architecture NA sequence validation We check all sequences before running a search. In order to avoid problems with the validation of your sequence, you should use only plain, unformatted text. Here are some of the validation checks that we apply to sequences: Sequence must be a protein sequence; nucleotide sequences will not be accepted Sequence that "-" was previously accepted as a valid sequence character, but is not allowed in the latest version of HMMER. FASTA-header but will be the sequence (lateress or "*s) sequences induces that we apply to sequences. You can see an example of a sequence that will successfully pass all of these tests. Note that although we do allow FASTA-style header lines a a sequence, apply on the sequence (lateress or "*s) sequences induces. You can see an example of a sequence that will successfully pass all of the validation tests by clicking the <i>Example</i> button below the search form. Search options The default threshold for the HMM search is an <i>E-value</i> of 1.0, but you can also use the <i>gathering threshold</i> for each HMM, or you can also search for Pfam-8 hits. Note that the Pfam-8 search will only look for Pfam-A families on your sequence but, by checking the box below, you can also search for Pfam-8 hits. Note that the Pfam-8 search will only look for Pfam-A families on your sequence but, by checking the box below, you can also search for Pfam-8 hamiles. Sequence PAGSOTISLAPETULIATATIFCLYPWVLRGTRYQVPKGLKSPFQGPWGLPFTGHNLTIGKNPHL SLTKLSQQYGQVQLGTRIGSTPWVLVGGDFKRQPPVLKSPFDFWLKYEPFLATITIKGKNPFL SLTKLSQQYGQVQLGTRIGSTPWVLVGGTKRQVPFKGLKSPFQGPWGLPFTGHNLTIGKNPFL SLTKLSQQYGQVQLGTRIGSTPWVLVGGTKRQVPFKGLKSPFQGPWGLPFTGHNLTIGKNPFL SLTKLSQQYGQVQLGTRIGSTPWVLKGGTKRQVPFKGLKSPFQGWGLPFTGHNLTIGKNPFL SLTKLSQQYGQVQLGTRIGSTPWVLKGGTKRQVPFKGLKSPFQGWGLPFTGHNLTIGKNPFL SLTKLSQQYGQVQLGTRIGSTPWVLGGCKRKGTLEETPAKWEYFFLATILLEQLEFTVPFQVXVGLTFSYGL KFKPNDVLSGLANGLTGGKKRGTENTSWSTYTENGSKDYPENYSGKANNELSKGTFFTWPFWFKSKRYFTNONTUNESLOFTGHTWNDVFFFVLKYDFKQKRGHKGENFFKRA				0 architectures	0 sequences	0 interactions	0 species	0 structures
Batch search Keyword Functional similarity Domain architecture Taxonomy Jump to↓ enter ID/Acc Cont Enter ID/Acc ID/Acc ID/Act	Batch search Keyword Functional similarity Domain architectur Taxonomy Jump to↓ enter ID/ac ▲ Taxonomy Sequence Jump to↓ enter ID/ac ▲ Cost All Sequence All Sequence Interest. Paste your protein sequence into the box below, to have it searched for matching Pfam families. Less Sequence analytic the sequence (terms of the validation checks that we apply to sequences Sequence analytic the sequence (terms of the validation checks that we apply to sequences will not be accepted to my residue yon bios all sequences and the sequence (terms of the sequence (terms of the validation of your sequence), you should use only plain, unformatted text. The sequence family sequence, nucleotide sequences will not be accepted to my residue yon bios all sequences, nucleotide sequences will not be accepted to my residue yon bios all sequence in the sequence (terms or *1); sequences containing other characters will not be accepted to my residue yon sequence that will sequences character, but is not allowed in the latest version of HMMER. FASTA-header lines are accepted as a valid sequence character, but is not allowed in the latest version of HMMER. FASTA-header lines are accepted as a valid sequence that the passe all of these tests. Note that allough we do allow FASTA-tyle header lines on a equence, some characters in header lines can still cause the sequence to be rejected. If in doub, please remove header lines before pasting in your sequence. You have nerable of a sequence that will successfully pass all of the validation tests by clicking the <i>Example</i> button below the search form. Beach search will only look for Pfam-A families on your sequence but, by checking the box below, you can also search for Pfam-B families. Sequence Page Page Page Page Page Page Page Page	Sequence	Sequence search						
	setting. Note that the E-value that you give must be positive and < 10.0. By default the search will only look for Pfam-A families on your sequence but, by checking the box below, you can also search for Pfam-B hits. Note that the Pfam-B search is now performed using HMMER, using automatically generated HMMs. We generate HMMs for only the 20,000 largest Pfam-B families. Sequence >Query_sequence MAPSQUTSILAPSELLLATAIFCLUPWVLRGTRTQVPKGLKSPPGPWGLPFIGHLTLGKNPHL SUFKKSQVQGNQUTKIGTGSTPVVLSGLNTIKQALVKQGDDFKGRPDLYSPFILTWOKSMTP NPDSGPVWAARRIAQDALKSPSILSDPTSVSGSULEEWSKEANHLISKPQKMAEVGHPE PVNQVVSUANYIGANCPCKNPPKSEEMILINVSSKDPUTWSGNAVDPFVLAYLENPDA LKRPKNPNDNPVLSLQKTVDEWIQPTKNSIQUTAGLPKISENYKDNGGLIPOEKIVHIVN DLFGGREPTVTNIFFILLINTEPKVPKILLUPTEPKVQKRIHEELDTVIGRONPPLSPEPLIE ITKTYSFVPFTIHSTGNTSILLUPTEPKVQKRIHEELDTVIGRONPPLSEPKJUTMD NTKIDKILESKVLAGLGKKRCIGEIPAKWEVPLFLAILLHQLEPTVPPQVXVDLTPSYGL NKPRTCEHVQAMPRFSK	Batch search Keyword Functional similarity Domain architecture DNA sequence	Find Pfam families within your Sequence validation We check all sequences before here are some of the validatio - sequence length must the - only residue symbols a Note that ^{-,-} was prev - FASTA-hader lines are If you have problems getting y a sequence, some characters i You can see an example of a s Search options	running a search. In order t n checks that we apply to see be less than 10,000 residues a protein sequence; nucleoti liowed in the sequence (lette liows) accepted at wall be remove accepted but will be remove rour sequence to upload, piece n header lines can still cause equence that will successfull;	o avoid problems with the val quences: is or "*"); sequences will not be accept sor "*"); sequences contain quence character, but is not al de check that it passes all of the sequence to be rejected. p pass all of the validation test	idation of your se oted ng other characte lowed in the later these tests. Note If in doubt, pleas ts by clicking the	quence, you should i ers will not be accept st version of HMMER that although we do e remove header lin Example button belo	use only plain, uni ted. e allow FASTA-style es before pasting ow the search form	formatted text. e header lines on in your sequence. h.


Image: Additional production of this results page. Show the detailed description of this results page. Show the detailed description of this results page. Show the search form to look for Pfam domains on a new sequence. Significant Pfam-A Matches Show or hide all alignments. Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Page Q (ptochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a	Plan: Sequence se	arch results +				Pfa	im: Sequence	search res	ults									
Mode y bank kit Revenue kit Provide kit Revenue kit <												습	∀ C'	(8) • Goog	gle		۹) 🖨 🗖	
Show the detailed description of this results page. We found 3 Pfam-A matches to your search sequence (1 significant and 2 insignificant) but we did not find any Pfam-B matches. 950 Show the search options and sequence that you submitted. Return to the search form to look for Pfam domains on a new sequence. Significant Pfam-A Matches Show to the search form to look for Pfam domains on a new sequence. Significant Pfam-A Matches Show or hide all alignments. HMM Bit Predicted active sites Show/hid Insignificant Pfam-A Matches Show or hide all alignments. Entry Clan Entry Entry Clan Entry for Alignment HMM Bit E-value Predicted Show/hid Show or hide all alignments. Entry Clan Entry for Alignment Fmile Evalue Predicted Show/hid Show or hide all alignments. Entry Clan Ent	well	tute		НОМЕ	SEA	RCH I	BROWSE	E F	TP	HELP	АВ	out				P	fgm ord search Go	
We found 3 Pfam-A matches to your search sequence (1 significant and 2 insignificant) but we did not find any Pfam-B matches. p150 Show the search options and sequence that you submitted. Return to the search options and sequence that you submitted. Singuificant Pfam-A Matches Show to the search form to look for Pfam domains on a new sequence. Singuificant Pfam-A Matches Show or hide all alignment. HMM Bit E-value Predicted active sites Show/hid Insignificant Pfam-A Matches Show or hide all alignment. HMM Bit E-value Predicted active sites Show/hid Show or hide all alignments. Predicted for Pfam-A Matches Show or hide all alignments. Predicted for Pfam-A Matches Show or hide all alignments. Predicted for Pfam-A Matches Show or hide all alignments. Predicted for Pfam-A Matches Show or hide all alignments. Predicted for Pfam-A Matches Predicted for Pfam-A Matches Show or hide all alignments. Predicted for Pfam-A Matches <td>Sequence</td> <td>search results</td> <td>;</td> <td></td>	Sequence	search results	;															
Piso Show the search options and sequence that you submitted. Return to the search form to look for Pfam domains on a new sequence. Significant Pfam-A Matches Show or hide all alignments. Predicted active sites Show or hide all alignments. Pisod Cytochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Sow or hide all alignments. Panily Description to provide alignment of the provide alignment of the alig			1 0															
Show the search options and sequence that you submitted. Return to the search form to look for Pfam domains on a new sequence. Significant Pfam-A Matches Show or hide all alignments. Family Description Entry type Clan Entry type Alignment HMM Bit score E-value Predicted active sites Show/hid alignment pdS0 Cytochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Image: Show/hid alignment Insignificant Pfam-A Matches Show or hide all alignments. Entry Clan Entry Clan Envelope Alignment HMM Bit E-value Predicted active sites Show/hid Yape or hide all alignments. Family Description Entry Clan Envelope Alignment HMM Bit E-value Predicted active sites Show/hid alignment Col Goig complex component 7 (COG7) Family Clan Envelope Alignment Entry Entry Clan Entry Statt End <th< td=""><td>We found 3 Pfa</td><td>am-A matches to your s</td><td>earch sequenc</td><td>e (1 sign</td><td>ificant ar</td><td>nd 2 insign</td><td></td><td></td><td>id not fi</td><td>nd any F</td><td>fam-B</td><td>match</td><td>es.</td><td></td><td></td><td></td><td></td></th<>	We found 3 Pfa	am-A matches to your s	earch sequenc	e (1 sign	ificant ar	nd 2 insign			id not fi	nd any F	fam-B	match	es.					
Return to the search form to look for Pfam domains on a new sequence. Significant Pfam-A Matches Show or hide all alignments. Entry Clan End start End From To Bit E-value Predicted Show//hid pd50 Cytochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Image: Since Sin					_		p4	50										
Significant Pfam-A Matches Show or hide all alignments. Family Description Entry type Clan End Start End From To Site E-value Predicted active sites Show/hid alignment pd50 Cytochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Image: Show/hide ali alignment Data n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Image: Show/hide ali alignment Show or hide ali alignments. Entry Clan Entry Clan Entry Clan Entry Entry Clan Entry To score E-value Predicted Show/hide ali alignment COGZ Golgi complex component 7 (COG7) Family Clo294 189 308 247 270 13.3 0.042 n/a Image: Score Sec8 excysts Sec8 excysts complex component 7 (COG7) Family Clo294 297 270 13.3 0.042 n/a <td></td> <td></td> <td></td> <td></td> <td>coquona</td> <td></td>					coquona													
Show or hide all alignments. Envelope Alignment HHH Bit score E-value Predicted active sites Show/hid alignment p450 Cytochrome P450 Domain n/a 41 505 41 500 I 857 84.e-103 n/a 8000 p450 Cytochrome P450 Domain n/a 41 505 41 500 1 857 84.e-103 n/a 8000 Insignificant Ham-A Matches Show or hide all alignments. Envelope Alignment HMH Bit From 500 core E-value Predicted active sites Show/hid COG2 Golgi complex component 7 (COG7) Family Clo224 189 308 247 276 11.0 0.065 n/a Show/hid Sec5 excyst complex component 7 (COG7) Family Clo224 189 308 247 276 11.0 0.065 n/a Show/hid Show/hid Show/hid Show/hid Show/hid Show/hid Show/hid Show/hid </td <td></td> <td></td> <td>an domains</td> <td>on a new</td> <td>sequenc</td> <td>~</td> <td></td>			an domains	on a new	sequenc	~												
Family Description type Clan Start End Start End From To score E-value active sites alignment pd50 Cytochrome P450 Domain n/a 41 505 41 500 1 457 344.2 8.1e-103 n/a Image: comparison of the all alignment Insignificant Pfan-A Matches Description Entry Clan Envelope Alignment HMH Bit E-value Predicted Show// alignment C0G7 Golgi complex component 7 (C0G7) Family Clo224 189 308 247 250 317 366 1.0 0.065 n/a Image: company Im																		
Insignificant Ffam-A Matches Entry type Clan Clan <th cols<="" td=""><td>Family</td><td>Description</td><td></td><td>Clan</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E-v</td><td>alue</td><td></td><td></td><td>Show/hide alignment</td></th>	<td>Family</td> <td>Description</td> <td></td> <td>Clan</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>E-v</td> <td>alue</td> <td></td> <td></td> <td>Show/hide alignment</td>	Family	Description		Clan									E-v	alue			Show/hide alignment
Show or hide all signments. Pamily Description Entry type Clan Entry type Allgram. HHH Bit Predicted Show// Show// COG7 Golgi complex component 7 (COG7) Family CL029 189 308 247 296 11.0 0.065 n/a Image: Show// Sec6 exocyst Sec8 exocysts complex component specific domain Domain CL029 189 308 247 27 2 70 1.33 0.042 n/a Image: Show//	<u>p450</u> Cy	tochrome P450	Domain	n/a	41	505	41	500	1	457	344	.2	8.10	e-103	r	n/a	Show	
Family Description Entry type Can Entry type Can Entry type Align=** HM Bit Bit Predicted active sites Show//i alignm COGZ Golgi complex component 7 (COG7) Family Clo22 180 304 End From To 50:0 1/2 active sites																		
Family Description type Clan End End Form To Score E-Value active sites alignme COG7 Golgi complex component 7 (COG7) Family CL0294 189 308 247 296 317 366 1.0 0.065 n/a Second Second Second Complex component 7 (COG7) Domain CL0294 280 247 290 313 30.042 n/a Second						Entry		Enve	lope	Alignm	ent	нм	1	Bit		Predicte	d Show/hide	
See6 exocyst See8 exocyst complex component specific domain Domain Clo295 246 248 249 277 42 70 13.3 0.042 n/a	Family		Description				Clan	Start	End	Start	End F	rom	то		E-value			
Comments or questions on the site? Send a mail to pfam-help@sanger.ac.uk	COG7	Golgi complex compor	nent 7 (COG7)			Family	CL0294	189	308	247	296 3	17	366	11.0	0.065	n/a		
	Sec8_exocyst	Sec8 exocyst complex	component sp	pecific do	main	Domain	CL0295	246	286	249	277	42	70	13.3	0.042	n/a	Show	
The Wellcome Trust				Comm	ents or qu					help@sa	nger.ac.	uk						
						The	Wellco	me T	rust									

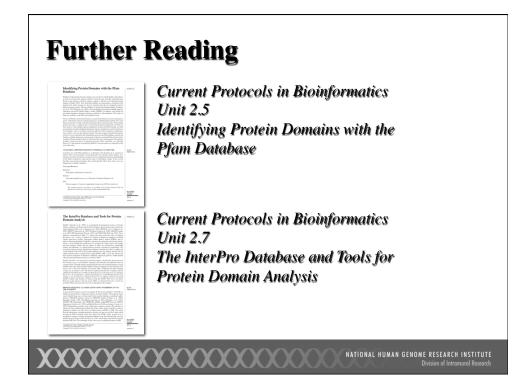
Pfam: Sequence	e search results +		Pf	am: Sequence	search res	ults								
· · · · · · · · · · · · · · · · · · ·	.sanger.ac.uk/search/sequence									 ⊂] (∦ • co	ogle		۹ 🖨 🗖
Sequence	e search results	1												
Hide the deta	iled description of this r	esults page.												
		hat were found. We separate Pfa athering threshhold for the Pfam												where the bits
		he significant matches to your so overlapping Pfam-A domains, wh							e you to	o a pag	e of info	rmation ab	out that domain	n. Note that some
		o match more than one Pfam-A fa is show, that with the lowest E-v		erlapping fa	amilies a	are part	t of the s	same cla	an. In ca	ises wi	nere two	members of	of the same cla	n match the same
ransfer exper	imentally determined a	n the enzymatic Pfam families ha tive site residue data from a seq ound in <u>the accompanying paper</u> i	uence within the sa											
		nts between your search sequence show individual alignments by cli												
This alignment	t row for each hit shows	the alignment between your seq	uence and the mate	hing HMM.	The alig	nment	t fragme	nt includ	les the	followi	ng rows:			
#HMM: c	onsensus of the HMM. (apital letters indicate the most o	onserved positions											
#MATCH: t	he match between the o	uery sequence and the HMM. A '	+' indicates a positi	ve score wh	nich can	be inte	erpreted	as a co	nservati	ve sub	stitution			
	osterior probability. The robability	degree of confidence in each ind	lividual aligned resid	due. 0 mea	ns 0-5%	o, 1 me	ans 5-1	5% and	so on; !	9 mear	ns 85-95	% and a '*'	means 95-100	1% posterior
# SEQ: q	uery sequence. A '-' inc	icate deletions in the query sequ	ence with respect to	0%	Column	s are o 100		accordir	ng to the	e poste	rior prot	ability		
You can bookn	nark this page and retu	n to it later, but please use the U	IRL that you can fin	d in the "Se	earch op	tions" s	section b	oelow. P	lease no	te that	t old resi	ults may be	removed after	one week.
We found 3 Pf	am-A matches to your s	earch sequence (1 significant an	d 2 insignificant) bu	it we did no	ot find a	ny Pfan	n-B mate	ches.						
			_	p45	0	_	-							
Show the sea	rch options and sequen	e that you submitted												
		Pfam domains on a new sequence	e.											
Significant Show or hide a	Pfam-A Matches Il alignments.													
	Family		Description								ntry ype		c	lan —
	p450	Cytochrome P450									main			1/a
FMATCH P PP 8	pgp lp++g++l lg ++	<pre>ihevlrklqkkygpifrlklgskpvvvl +h l+kl+++yg++++++gs+pvvvl HLSLTKLSQQYGDVLQIRIGSTPVVVLS</pre>	lsg + +k++l+k+g++	f+grpd ***977555	++ 5558	++gk++ 899998	+ f+ 88875556	+ w 6*****	Rr+ -	+l sf *****9	9999988	+ lee *	v +ea+ l+ k++	k e + +++++ +
nsignificar	nt Pfam-A Matches													
how or hide a	Il alignments.													
Family		Description	Entry type	Clan	Enve Start	lope End	Alignr Start	ment End	HM From	м То	Bit score	E-value	Predicted active sites	Show/hide alignment
<u>COG7</u>	Golgi complex comp	onent 7 (COG7)	Family	CL0294	189	308	247	296	317	366	11.0	0.065	n/a	Show
Sec8 exocvs	t Sec8 exocyst compl	ex component specific domain	Domain	CL0295	246	286	249	277	42	70	13.3	0.042	n/a	Show
endeys	_ see enceyse compr)	2 of the	Junard							2010	010112		

000	Pfam: Family	p450 (PF00067)	
Res Pfam: Family: p450 (PF00067)	+		
Pian pfam.sanger.ac.uk/family/	PF00067.17	☆ ♥ C (M * Goog	e Q 🛊 🗖
wellcome trust sang institute	er home search brows	E FTP HELP ABOUT	Reyword search GO
Family: <i>p450</i>	(PF00067)	196 architectures 27802 sequences 2 interactions	2305 species 362 structures
Summary	Summary: Cytochrome P450		
Domain organisation			
Clan	Pfam includes annotations and additional family information from	a range of different sources. These sources can be access	ed via the tabs below.
Alignments	Wikipedia: Cytochrome P450 Pfam Interpro		
HMM logo	This tab holds the annotation information that is stored in the Pfa	m database. As we move to using Wikipedia as our main	source of annotation, the contents of
Trees	this tab will be gradually replaced by the Wikipedia tab.		
Curation & model	Cytochrome P450		
Species	Cytochrome P450s are haem-thiolate proteins [6] involved in the		
Interactions	particularly well known for their role in the degradation of enviror classes, according to the method by which electrons from NAD(P)		Second Second
Structures	conservation is relatively low within the family - there are only 3 topography and structural fold are highly conserved. The conserved		Sal State
Jump to 🤄	four-helix bundle, helices J and K, and two sets of beta-sheets. T absolutely conserved cysteine that serves as the 5th ligand for th absolutely conserved EXXR motif in helix K. While prokaryotic P4X associated with microsomal membranes. Inter general enzymatic oxidation of non-activated hydrocarbons at physiological tempera	e haem iron), the proton-transfer groove and the Os are soluble proteins, most eukaryotic P450s are function is to catalyse regiospecific and stereospecific	
	Literature references		
	 Graham-Lorence S, Amarneh B, White RE, Peterson JA, Sii dimensional model of aromatase cytochrome P450. <u>PUBM</u> 		Example structure PDB entry 3P6N: Crystal Structure of Cytochrome P450cam crystallized in the
	 Degtyarenko KN, Archakov AI; , FEBS Lett 1993;332:1-8. P450-containing monooxygenase systems. <u>PUBMED:8405-</u> 		Adc1-C8-Dans View a different structure: 3P6N :
	 Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estab IC, Gotoh O, et al; , DNA Cell Biol 1993;12:1-51.: The P45 mapping, accession numbers, early trivial names of enzym 	0 superfamily: update on new sequences, gene	
	 Guengerich FP; , J Biol Chem 1991;266:10019-10022.: Re <u>PUBMED:2037557</u> c³ 	actions and significance of cytochrome P-450 enzymes.	
	 Nebert DW, Gonzalez FJ; , Annu Rev Biochem 1987;56:94 regulation. <u>PUBMED:3304150</u> 6³ 	5-993.: P450 genes: structure, evolution, and	
	6. Werck-Reichhart D, Feyereisen R; , Genome Biol 2000;1:R	EVIEWS3003.: Cytochromes P450: a success story.	


000		Pfarr	: Family: p450 (PF00067)				
Ne Pfam: Family: p450 (PF00067)	+				? ∀ C (M • Google		د. ۱۹۰۵ (۱۹۲۵)
wellcome trust Sange	or	DME SEARCH BF	OWSE FTP	HELP ABOUT		P	fam word search Go
Family: <i>p450</i>	(PF00067)		196 architectu	res 27802 sequences	2 interactions	2305 species	362 structures
Summary	Alignments						
Domain organisation							
Clan		w or download the sequence a k at a plain text version of the				t either the seed or	full alignment
Alignments	View options						
HMM logo		• Seed (50)	Full (27802)				
Trees	Alignment:		Metagenomics (2723)				
Curation & model	Viewer:	jalview 🛟					
Species	Formatting options						
Interactions		Q 5	E .!! (23002)				
Structures	Format:		Full (27802)				
Jump to 🕸			Alphabetical				
enter ID/acc Go	Sequence:		All upper case				
	Gaps:	Gaps as "." or "-" (mixed) 🗘					
	Download/view:	Download	View				
	Generate						
	Download options						
		en cause problems for the forr ressed, Stockholm-format file				alignment is probl	ematic, you can
	You can also download a FAS	TA format file containing the fu	III-length sequences for	r all sequences in the fu	ull alignment.		
		nents are generated using sequences and the "metaseq" metase		equence database. How	wever, we also gen	nerate alignments u	using sequences
	You can view alignments from gzip යි-compressed files.	n these two additional datasets	using the form above, or	r you can download alig	nments of <u>NCBI</u> o	r <u>metagenomics</u> se	quences, as
	Pfam alignments:		Full (27802) Metagenomics (2723)				

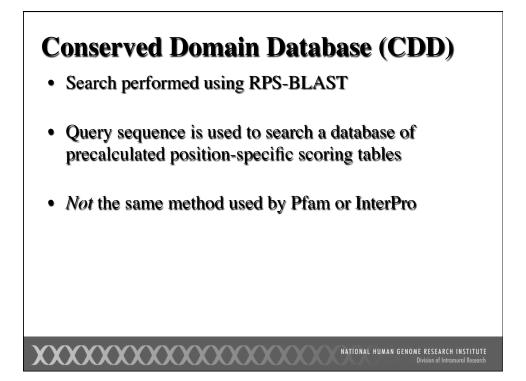
000		nily: p450 (PF00067)	
Pie Pfam: Family: p450 (PF00067)	+ 4	☆ ∀ C (S]• Google	۹ 🖨 🗖
wellcome trust sang institute	er home search brov	WSE FTP HELP ABOUT	Pfam keyword search (CO
Family: p450	(PF00067)	196 architectures 27802 sequences 2 interactions	2305 species 362 structures
Summary	Summary: Cytochrome P450		
Domain organisation	Pfam includes annotations and additional family information fro	m a range of different sources. These sources can be accessed	via the tabs below.
Alignments	Wikipedia: Cytochrome P450 Pfam Interpro		
HMM logo	This tab holds the annotation information that is stored in the	Pfam database. As we move to using Wikipedia as our main sou	rce of annotation, the contents of
Trees	this tab will be gradually replaced by the Wikipedia tab.	,	
Curation & model	Cytochrome P450		
Species	Cytochrome P450s are haem-thiolate proteins [6] involved in t		
Interactions	particularly well known for their role in the degradation of envi classes, according to the method by which electrons from NAD	(P)H are delivered to the catalytic site. Sequence	Real Section
Structures	conservation is relatively low within the family - there are only topography and structural fold are highly conserved. The conserved	erved core is composed of a coil termed the 'meander', a	San Starling
Jump to 🤃 enter ID/acc Go	four-helix bundle, helices J and K, and two sets of beta-sheets absolutely conserved cysteine that serves as the 5th ligand for absolutely conserved EXKR motif in helix K. While prokaryotic associated with microsomal membranes, their general enzyma oxidation of non-activated hydrocarbons at physiological temp	the haem iron), the proton-transfer groove and the 2450s are soluble proteins, most eukaryotic P450s are tic function is to catalyse regiospecific and stereospecific	
	Literature references		
	 Graham-Lorence S, Amarneh B, White RE, Peterson JA, dimensional model of aromatase cytochrome P450. <u>PUB</u> 	Simpson EK, , Protein Sci 1995,4.1005-1080 A unee-	emple structure B entry 3P6N: Crystal Structure of ochrome P450cam crystallized in the
	 Degtyarenko KN, Archakov AI; , FEBS Lett 1993;332:1 P450-containing monooxygenase systems. <u>PUBMED:84</u> 	-8.: Molecular evolution of P450 superfamily and pre	sence of a tethered substrate analog IC1-C8-Dans w a different structure: 3P6N
	 Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Es IC, Gotoh O, et al; , DNA Cell Biol 1993;12:1-51.: The mapping, accession numbers, early trivial names of en; 	P450 superfamily: update on new sequences, gene	
	 Guengerich FP; , J Biol Chem 1991;266:10019-10022.: <u>PUBMED:2037557</u> t²³ 	Reactions and significance of cytochrome P-450 enzymes.	
	 Nebert DW, Gonzalez FJ; , Annu Rev Biochem 1987;56: regulation. <u>PUBMED:3304150</u> ²³ 	945-993.: P450 genes: structure, evolution, and	
	6. Werck-Reichhart D, Feyereisen R; , Genome Biol 2000;	1:REVIEWS3003.: Cytochromes P450: a success story.	

Pfam: Family: p450 (PF00067)	Pfam: Family: p450 (PF00067)		
)		습 후 연 🛃 • Google	9 † E
Trees	This cap holds the annotation information that is stored in the Plant database. As we move to using writip this tab will be gradually replaced by the Wikipedia tab.		
Curation & model	Cytochrome P450		
Species	Cytochrome P450s are haem-thiolate proteins [6] involved in the oxidative degradation of various composi-		
Interactions	particularly well known for their role in the degradation of environmental toxins and mutagens. They can classes, according to the method by which electrons from NAD(P)H are delivered to the catalytic site. Seq		1995
Structures	conservation is relatively low within the family - there are only 3 absolutely conserved residues - but their topography and structural fold are highly conserved. The conserved core is composed of a coil termed the		
enter ID/acc Go	four-helix bundle, helices J and K, and two sets of beta-sheets. These constitute the haem-binding loog () absolutely conserved cystelm that serves as the Shi ligand for the haem iron), the porton-transfer groow absolutely conserved EXRR motif in helix K. While prokaryotic P450s are soluble proteins, most eukaryoti associated with microsomal membranes, their general enzymatic function is to catalyse regiospecific and coidation of non-activated hydrocarbons at physiological temperatures [5].	e and the c P450s are	
	Literature references		
	 Graham-Lorence S, Amarneh B, White RE, Peterson JA, Simpson ER; , Protein Sci 1995;4:1065-10 dimensional model of aromatase cytochrome P450. <u>PUBMED:7549871</u> c² 	080.: A three- PDB entry 3P6N: Cryst Cytochrome P450cam cr	
	 Degtyarenko KN, Archakov AI; , FEBS Lett 1993;332:1-8.: Molecular evolution of P450 superfamil P450-containing monooxygenase systems. <u>PUBMED:8405421</u>6³ 		ubstrate analog
	 Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coc IC, Gotoh O, et al; , DNA Cell Biol 1993;12:1-51.: The P450 superfamily: update on new sequence mapping, accession numbers, early trivial names of enzymes, and nomenciature. <u>PUMED:252828</u> 	on MJ, Gunsalus es, gene	
	 Guengerich FP; , J Biol Chem 1991;266:10019-10022.: Reactions and significance of cytochrome <u>PUBMED:2037557</u> c³ 	P-450 enzymes.	
	 Nebert DW, Gonzalez FJ; , Annu Rev Biochem 1987;56:945-993.: P450 genes: structure, evolution regulation. <u>PUBMED:3304150</u> c³ 	n, and	
	6. Werck-Reichhart D, Feyereisen R; , Genome Biol 2000;1:REVIEWS3003.: Cytochromes P450: a su PUBMED:11178272 G ²	ccess story.	
	External database links		
	HOMSTRAD: p450 ^다		
	PANDIT: PF00067 47		
	PRINTS: <u>PR00385</u> 년 ⁷ <u>PR00352</u> 년 ³ <u>PR00408</u> 년 ⁷ <u>PR00463</u> 년 ⁷ <u>PR00464</u> 년 ⁷ <u>PR00465</u> 년 ⁷		
	PROSITE: PDOC00081 E ³		
	Pseudofam: PF00067 G		
	SCOP: 2cpp 63		
	SYSTERS: p450 G ²		
	Comments or questions on the site? Send a mail to pfam-help@sanger.ac.uk The Wellcome Trust		


PHOSINE PHONE PHO	۹ 🖨 🗈
Home: ScanProsite ProRule Documents Downloads Links I Proceeding of the commentation procession Proceeding of the commentation procession Control P450's [1,2,3,5]] are a group of enzymes involved in the oxidative metabolism of a high number of natural compounds (such as steriods, faity acids, prostaglandins, leukor) dely faith and the Comminal part of P450's is involved in the oxidative metabolism of a high number of natural compounds (such as steriods, faity acids, prostaglandins, leukor) dely faith and the Comminal part of P450's is involved in binding the heme iron in the fifth coordination site. From a region around this residue, we developed at ten resident and acout they different families [4,5]. P450's are proteins of 400 to 500 conserved cysteline residue in the Comminal part of P450's is involved in binding the heme iron in the fifth coordination site. From a region around this residue, we developed at ten resident as specific to P450's. W W More Toylor P450's (bith commonly used, is incorrect as P450 are not electron-transfer proteins; the appropriate name is P450 heme-thiolate proteins. Partice Toylor P450's (bith commonly used, is incorrect as P450 are not electron-transfer proteins; the appropriate name is P450 heme-thiolate proteins. Partice Toylor P450's (bith cols and information) covered by this documentation: Partice Toylor P450's (bith cols and information) covered by the pattern: All, exceept for P450 IBith Common Nigand Spatterne (PATTERN). Contences around and this faith patterne in Nigand Spatterne (PATTERN). Cost and anome in Nigand Spatterne ID (Spatterne Ton) Nigand Spatterne Nigand Spatterne Nigand Spatterne I	Contact
Description: Cytochrome P450% [1,2,3,E1] are a group of enzymes involved in the oxidative metabolism of a high number of natural compounds (such as steroids, faity acids, prostaglandins, leuko) to 530 acids; the only excoption is Bacillus BM-3 (CYP102) which is a protein of 1048 residues that contains a N-terminal P450 domain followed by a reductase domain. P450% is not been contained and the contained of the contained protein of 1048 residues that contains a N-terminal P450 domain followed by a reductase domain. P450% is not been contained by a reductase domain. P450% is involved in binding the heme iron in the fifth coordination site. From a region around this residue, we developed a ten residuation are specific to P450%. New: The term toylochrome P450, while commonly used, is incorrect as P450 are not electron-transfer proteins; the appropriate name is P450 'heme- thiolate proteins'. Degreting is context by evalue. Degreting is context by evalue. Degreting is context by evalue. Degreting is context by evalue. December 2004 / Pattern and text revised. Extended (with tools and information) covered by this documentation: CYTOCHROME_P450, p5800066; Cytochrome P450 cysteline heme-Iron ligand signature (PATTERN). C is the heme iron ligand Signature (PATTERN) Cansensus pattern: 0. Lew copt for P450 liB10 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swise-Prot: 0. - Retrieve an alignment of Swise-Prot/TEMBL entries matching P5000086 - - Netrive the sequence logo from the alignment .	Funding
Cytochrome P450's [1,2,3,E1] are a group of enzymes involved in the oxidative metabolism of a high number of natural compounds (such as steroids, faity acids, prostaglandins, leukor stel) as well as drugs, carlindgens and mutagens. Based on sequence similarities, P450's have been classified into about fory different families [4,5], P450's have proteins of conserved cysteline residue in the C-terminal part of P450's is involved in binding the terme iron in the fifth coordination site. From a region around this residue, we developed a ten resid conserved cysteline residue in the C-terminal part of P450's is involved in binding the terme iron in the fifth coordination site. From a region around this residue, we developed a ten resid conserved cysteline residue in the C-terminal part of P450's is involved in binding the terme iron in the fifth coordination site. From a region around this residue, we developed a ten resid conserved cysteline residue in the C-terminal part of P450's is involved in binding the terme iron in the fifth coordination site. From a region around this residue, we developed a ten resid conserved cysteline residue in the C-terminal part of P450's is involved in binding the terme iron in the fifth coordination site. From a region around this residue, we developed a ten resid advector in cytochrome? P450, while commonly used, is incorrect as P450 are not electron-transfer proteins; the appropriate name is P450 heme-thiolate proteins'. Experit(s) to context versite December 2004 / Pattern and text revised. Experit(s) to context versite PROSITE method (with tools and information) covered by this documentation: CYTOCHROME_P450, PS00086; Cytochrome P450 cysteline heme-iron ligand signature (PATTERN) <i>C</i> is the heme iron ligand <i>C</i>	
etic) as well as drugs, actrologens and mutagens. Based on sequence similarities, P450's have been classified into about trivy different families [4,5]; P450's are proteins of 400 to 530 actis; the only exception is Basilia BW3 (CPVID) which is a protein of 1048 residues that contains are Neterninal P450 do anno hourd by different families [4,5]; P450's are proteins of 400 to 530 conserved cysteine residue in the C-terminal part of P450's is involved in binding the heme iron in the fifth coordination site. From a region around this residue, we developed a ten resis ignature specific to P450's. Note: The term bytochrome' P450, while commonly used, is incorrect as P450 are not electron-transfer proteins; the appropriate name is P450 'heme- thiolate proteins'. Beyret(s) is contact by email: Deglyteeriko KN. Tart update: Percent excert and text revised. Technologies and information) covered by this documentation: CYTOCHROME_P450, P500086; Cytochrome P450 cysteline heme-iron ligand signature (PATTERN) <i>Consensus pattern:</i> <i>CYTOCHROME_P450, P500086; Cytochrome</i> P450 cysteline heme-iron ligand signature (PATTERN) <i>Costs from is first</i> of this class detected by the pattern: ALL, except for P450 IB10 from mouse, which has Lys in the first position of the pattern <i>Other sequence(s) detected in Swiss-Prot</i> : 9. * Retrieve an alignment to Swiss-Prot/TEMBL entries matching P500086 * Retrieve a list of all Swiss-Prot/TEMBL entries matching P500086	
The term 'cytochrome' P450, while commonly used, is incorrect as P450 are not electron-transfer proteins; the appropriate name is P450 'heme- thiolate proteins'. Expert(s) is context by email: Degiyaernko K.N. Last update: December 2004 / Pattern and text revised. Technical section: PROSTE method (with tools and information) covered by this documentation: CYTOCHROME_P450, P500066; Cytochrome P450 cyteline heme-Iron ligand signature (PATTERN) Consensus pattern: CYTOCHROME_P450, P500066; Cytochrome P450 cyteline heme-Iron ligand signature (PATTERN) Consensus pattern: C (FTOCHROME_P450, P500066; Cytochrome P450 eysteline heme-Iron ligand signature (PATTERN) C and the meme iron ligand C is the heme iron ligand Other sequence(s) detected in Swiss-Prot up pattive hits: Citudata format, color, condensed view / Clustal format, plain text / Fasta format · Retrieve the sequence logo from the alignment · Retrieve the sequence logo from the alignment · Retrieve the sequence logo from the alignment · Retrieve to all Swiss-Prot/TIFABLE entries matching P500086 · Settive an alignment of all Swiss-Prot/TIFABLE entries matching P500086	amino teins. A
Expert(s) to contact by email: Degtysarenko K.N. Lat upden: December 2004 / Pattern and text revised. Technical section: PROSITE method (with tools and information) covered by this documentation: PROSITE method (with tools and information) covered by this documentation: PROSITE method (with tools and information) covered by this documentation: PROSITE method (with tools and information) covered by this documentation: PROSITE method (with tools and information) covered by this documentation: PROSITE method (with tools and information) covered by this documentation: CorteoncleRDME_P450, PS00086; Cytochrome P450 cytotine heme-iron ligand signature (PATTERN) <i>Consensus pattern:</i> <i>C is the heme iron ligand</i> <i>C is the heme </i>	
Degyarenko K.N. Lest update: December 2004 / Pattern and text revised. Technical section: PROSITE method (with tools and information) covered by this documentation: CYTOCHROME_F9450, PS00086; Cytochrome P450 cysteine heme-tron ligand signature (PATTERN) Consensus pattern: [FW]-[S G NH]-x-[G D]-[F]-[R KHPT]-{P}-C-[LIVMFAP]-[G AD] Sequences known to belong to this class detected by the pattern: ALL, except for P450 IBI0 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swiss-Prot: 9. • Retrieve an alignment of Swiss-Prot/TrEMBL entries matching PS00086 • Retrieve the sequence logo from the alignment • Taxonomic tree view of all Swiss-Prot/TrEMBL entries matching PS00086	
La tuqudan: December 2004 / Pattern and text revised. Technical section: PROSITE method (with tools and information) covered by this documentation: CYTOCHROME_P450, PS00086; Cytochrome P450 cysteline heme-iron ligand signature (PATTERN) Consensus pattern: [FW]-[S & NH]-x-[G D]-{F}-[R KHPT]-{P}-C-[LIVM FAP]-[G AD] C is the heme iron ligand Consensus pattern: 0 there sequence(s) detected in Swiss-Prot: 9. •Retrieve an alignment of Swiss-Prot/TrEMBL entries matching PS00086 •Retrieve a list of all Swiss-Prot/TrEMBL entries matching PS00086	
December 2004 / Pattern and text revised. Technical section: PROSTE method (with tools and information) covered by this documentation: CYTOCHROME_P450, PS00086; Cytochrome P450 cysteine heme-iron ligand signature (PATTERN) Consensus pattern: City of the section is the section of the section of the pattern: ALL, except for P450 IBI0 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swiss-Prot: 9 Retrieve an alignment of Swiss-Prot/TicBML entries matching PS00086 Retrieve and is dis Swiss-Prot/TicBML entries matching PS00086 Retrieve of al Swiss-Prot/TicBML entries matching PS00086	
Technical section: PROSITE method (with tools and information) covered by this documentation: CYTCOHROME_P450, PS00086; Cytochrome P450 cysteline heme-iron ligand signature (PATTERN) Consensus pattern: C FW)-1 S 0 NH]-x-1 G D]- {F}-{RKHPT}-{P}-C-{LIVMFAP}-{GAD} Case the heme iron ligand C is the heme iron ligand Other sequences known to belong to this class detected by the pattern: ALL, except for P450 IB10 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swiss-Prot: • Retrieve an alignment of Swiss-Prot true positive hits: Clustal format, color, condensed view / Clustal format, plain text / Fasta format • Retrieve the sequence logo from the alignment • Taxonmic tree view of all Swiss-ProtTEMBL, entries matching PS00086 • Retrieve and is of all Swiss-ProtTEMBL entries matching PS00086 • Retrieve and is of all Swiss-ProtTEMBL entries matching PS00086	
PROSITE method (with tools and information) overed by this documentation: CYTOCHROME_P450, PS00086; Cytochrome P450 cystelne heme-fron ligand signature (PATTERN) Consensus pattern: [FW]-[S G N H]-x-[G D]-{F}-[R K H PT]-{P}-C-[L I V M F A P]-[G A D] C is the heme iron ligand Sequences known to belong to this class detected by the pattern: ALL, except for P450 IB10 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swiss-Prot: 8. • Retrieve an alignment of Swiss-Prot/TrEMBL entries matching PS00086 • Retrieve alist of all Swiss-Prot/TrEMBL entries matching PS00086	
CYTOCHROME_P450, PS00086; Cytochrome P450 cysteine heme-iron ligand signature (PATTERN) Consensus pattern: [FW]-[S 0 NH]-x-[O]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD] O is the heme iron ligand O is the heme iron ligand Sequences known to belong to this class detected by the pattern: L, except for P450 IB10 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swiss-Prot: 9. • Retrieve an alignment of Swiss-Prot True positive hits: Clustal format, color, ordenesed view / Clustal format, color / Clustal format, plain text / Fasta format • Retrieve the sequence logo from the alignment • Taxonomic tree view of all Swiss-Prot/TrEMBL entries matching PS00086 • Retrieve allis of all Swiss-Prot/TrEMBL entries matching PS00086 • Retrieve 1 sits of all Swiss-Prot/TrEMBL entries matching PS00086	
Consensus pattern: [FW]-ISGNH]-x-[QD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD] Of shift herme iron ligard Of shift herme iron ligard Sequences known to belong to this class detected by the pattern: ALL, except for P450 IIB10 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swiss-Prot: 9. • Retrieve an alignment of Swiss-Prot true positive hits: Clustal format, color, oclustal format, color / Clustal format, color / Clustal format, color / Clustal format. • Retrieve the sequence logo from the alignment • Taxonomic tree view of all Swiss-Prot/TEMBL entries matching PS00086 • Retrieve alls of all Swiss-Prot/TrEMBL entries matching PS00086 • Retrieve alls of all Swiss-Prot/TEMBL entries matching PS00086	
Consensus pattern: [FW]-ISGNH]-x-[QD]-{F}-[RKHPT]-{P}-C-[LIVMFAP]-[GAD] Of shift herme iron ligard Of shift herme iron ligard Sequences known to belong to this class detected by the pattern: ALL, except for P450 IIB10 from mouse, which has Lys in the first position of the pattern Other sequence(s) detected in Swiss-Prot: 9. • Retrieve an alignment of Swiss-Prot true positive hits: Clustal format, color, oclustal format, color / Clustal format, color / Clustal format, color / Clustal format. • Retrieve the sequence logo from the alignment • Taxonomic tree view of all Swiss-Prot/TEMBL entries matching PS00086 • Retrieve alls of all Swiss-Prot/TrEMBL entries matching PS00086 • Retrieve alls of all Swiss-Prot/TEMBL entries matching PS00086	
Other sequence(s) detected in Swiss-Prot: 9. • Retrieve an alignment of Swiss-Prot true positive hits: Clustal format, color. condensed wiew / Clustal format, color / Clustal format, color / Clustal format, color in Clustal f	
Clustal format, color, condensed view / Clustal format, color / Clustal format, plain text / Fasta format - Retrieve the sequence logo from the alignment - Taxonomic tree view of all Swiss-Pro/TFEMBL entries matching PS00086 - Retrieve a list of all Swiss-Pro/TrEMBL entries matching PS00086	
• view ligand binding statistics Matching PDB structures: 14KD 1BU7 1BVY 1C6J [ALL]	

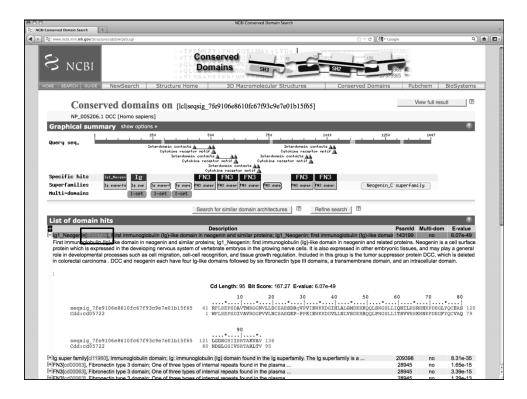
PR001128 Cytochrome P	450 +			8	PR001128 Cytochrome P4	0				
	interpro/DisplayIproEntry?	ac=IPR001128					1	ר מי		۹ 🖨 🗖 -
MBL-EBI			Enter Text H	ere		Find	Help Feedback			
Databases Tools	Researc	h Training	Industry	About Us	Help					
Databases	nesearc	n naining	liidusuy	About Os	нөр		Site Index 🔊 🍏			
EBI > Databases > Int	lerPro					Course	h 📦 InterPro:		>	An
Jump to: InterPros	Scan Databases	Documentation	FTP site Help	Advance	d search	Search			0	STATES A
IPR001128 Cyte	ochrome P450									den.
-										
Protein matches	1									
	Overview: Detailed:	sorted by AC sorted by AC		ed by name, ed by name,	of known structure of known structure					
UniProtKB	Table:		ning proteins, of ki			protonia	man opiloo Tanamo			
Matches: 32036 proteins	Architectures									I
	Accession List									
	Matches in Bio	Mart								I
Accession @	IPR001128 Cyt_P	450								
Туре 😡	Family									
	Database ID	1	Name	Proteins						
	Gene3D G30	DSA:1.10.630.10	Cyt_P450	31749						I
Signatures 😡			p450	30868						
<u>oignatares</u>			P450	20865						
	SuperFamily SSI		Cytochrome_P450	31431						
	Signatures in E	soMart			D			10 1 0		
InterPro Relation	IPR002397 Cytoch	aromo P450 P.ola	<u></u>		Parent-Cl	uld Re	elationship.	s (Subfami	lies)	
	IPR002399 Cytoch	nrome P450, mitod	hondrial		C1:11			-: C - 41	41	
Children	IPR002401 Cytoch IPR002402 Cytoch	nrome P450, E-cla nrome P450, E-cla	ss, group I ss. group II				e more spe	0	1	
	IPR002403 Cytoch	nrome P450, E-cla	ss, group IV		A match t	o the c	child entry	implies a r	natch to th	e parent
	IPR017972 Cytoch	nrome P450, conse	erved site		Signature	s for t	he parent a	nd child e	ntries must	overlan
GO Term annota Process	GO:0055114 oxida	ation-reduction pro	cess		Signature	s joi 11	ne pureni u	na chiia c	nin ies musi	overiup
	GO:0005506 iron i	ion binding								
Function	GO:0009055 elect	ron carrier activity preductase activity	acting on paired	tonors with in	ncorporation or reduc	tion of mol	lecular oxygen			I
	GO:0020037 hem	e binding	, acting on pared	2011013, 141111	icorportation of reduc		occular oxygen			
InterPro annotat										
	Entry Details in	BIOMART								
	Cytochrome P450	enzymes are a su	perfamily of haem	-containing m	ono-oxygenases that	are found	in all kingdoms of lif	e, and which show	extraordinary divers	sity in their reaction
	important for the d	etoxification and c	learance of variou	s compounds	omes of hepatocytes , as well as for horm	ne synthes	sis and breakdown, o	cholesterol synthes	sis and vitamin D me	tabolism. In plants,
	these proteins are	important for the h	ninsynthesis of sev	eral compour	nde such as hormone	e defensiv	e compounds and fa	atty acids In hactor	ia they are important	nt for several

Www.ebi.ac.uk/	interpro/Display/proEntry?ac=IPR001128	☆ ▽ C 🛛 🚷 ▼ Google	Q 🔒
nterPro annotati	ion		
	Entry Details in BioMart		
Abstract @	Otochrome P450 enzymes are a superfamily of haem-containing mono-corporates the detainsity. In marmals, these provides are found primarily in microsomes of hepatocyt- important for the detaxification and clearance of various compounds, as well as for horr these proteins are important for the biosynthesis of several compounds such as hormor metabolic processes, such as the biosynthesis of several compounds such as a formor metabolic processes, such as the biosynthesis of several compounds, as well as for horr they also require electrons, which they receive from a variety of redox partners. In creat protein, such as with P4500BN-3 from Bacillas megativitant [1], which has heem and flav Organisms produce many different cycloritome P450 enzymes (at least 85 in humans), substrate and tissue specificities. Individual cytochrome P450 proteins follow the nomer (protein); a <u>0</u> ,	and other cell types, where they oxidise steroids, fatty acids and xonobic one synthesia and toreakdow, cholesterol synthesis and vitamin D metal se, defensive compounds and latty acids. In bacteria, they are important I syson any finctes (Stroptomyces entyrhausu). from NADH or NADPH to split the oxygen so a single atom can be added in cases, cytochrome P450 can be fused to its redox partner to produce a domains. which together with alternative splicing can provide a wide array of enzyme clarure: CPF (Jowed by a number (Laniv), candid clarure: CPF (Jowed by a number (Laniv), and later (sublamily), and	otics, and are bolism. In plants for several d to a substrate. a bi-functional nes with differen i another number re >55% identit
tructural links 😡	More information about these proteins can be found at Protein of the Month: Cytochrom <u>PDB - click here</u> <u>SCOP: a.104,1.1</u> <u>CATH: 1.10,830,10</u>	model organis.	ms
	PDBe-motif: PS00086	There is no significance to the	
Database links 😡	Enzyme: EC:1.14 PROSITE doc: PDOC00081 PANDIT: PF00067	placement of individual nodes	
	COMe: PRX000236	on the circles	
	~~~~	on the circles	
3093	charomyces cerevisiae abditis elegans Nematoda Metazoa Archaea Bacteria Gyanobacteria Synechocystis PCC 680 Oryza sativa (Rice) Chordata Mouse Mouse Metazoa Charbana Metazoa Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mouse Mo	18 8 49 5935 175 3 2 283 495 5912 2226 233	

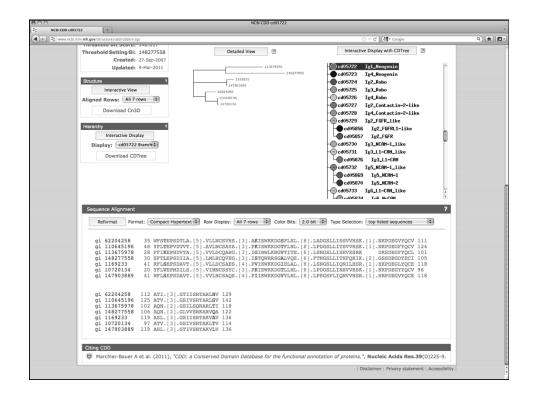

P Mww.eou	.ac.uk/interpro/DisplayiproEntry?ac=IPR001128		☆ ♥ C Coogle	۹) 🔒
xample pro	oteins ) hrome P450 3A25			
	ve cytochrome P450 cyp-13B1			
		***************************************		
	ble cytochrome P450 4d14			
		in Andrew Andrew		
205108 Chole:	sterol side-chain cleavage enzyme, mitochondria	ai		
ZZZ				
		imminin mini		
	terol 14-alpha demethylase			
210614 Lanos				
210614 Lanos	terol 14-alpha demethylase			
P10614 Lanos	terol 14-dipha demethylase			
P10614 Lanos	terol 14-dipha demethylase			
P10614 Lanos More proteins Example Prot	terol 14-alpha demethylase	abases Colour code		
Anter Proteins	terol 14-alpha demethylase	abases Colour code		
Average Proteins	terol 14-alpha demethylase elins Key y accession number/name and structure data Cytochrome P450, conserved site Cytochrome P450	abases Colour code		
Average of the second s	terol 14-alpha demethylase eins Key y accession number/name and structure data Cytochrome P450, conserved site Cytochrome P450, E-class, group IV	abases Colour code		
P10614 Lanos More proteins Example Prot InterPro entry IPR017972 IPR001128 IPR002403 IPR002402	eins Key y accession number/name and structure date Cytochrome P450, conserved sile Cytochrome P450, E-class, group IV Cytochrome P450, E-class, group II	abases Colour code		
Alore proteins Example Prot InterPro entry IPR017972 IPR001128 IPR002403 IPR002402 IPR002401	eins Key vaccession number/name and structure date Cytochrome P450, conserved site Cytochrome P450, E-class, group IV Cytochrome P450, E-class, group II Cytochrome P450, E-class, group II	abases Colour code		
P10614 Lanos	eins Key y accession number/name and structure date Cytochrome P450, conserved sile Cytochrome P450, E-class, group IV Cytochrome P450, E-class, group II	abases Colour code		

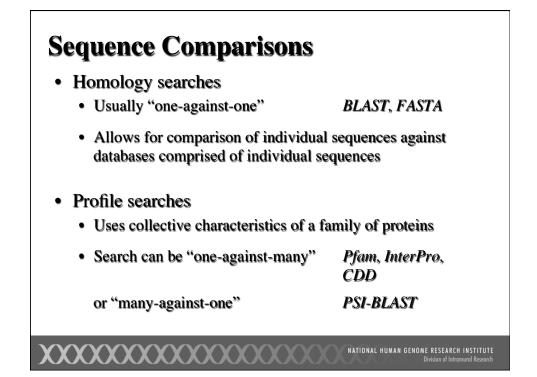


# **Conserved Domain Database (CDD)**


- Identify conserved domains in a protein sequence
- "Secondary database"
  - Pfam A (not Pfam B)

- Simple Modular Architecture Research Tool (SMART)
- COG (orthologous prokaryotic protein families)
- KOG (eukaryotic equivalent of COG)
- PRK ("protein clusters" of related protein RefSeq entries)
- TIGRFAM





served Domains Database ( +	http://www.ncbi.nlm.nih.gov/S	Structure/cdd/cdd.shtm
	1 0	
BI > Structure Home > Conserved		
C ATY C	onserved Area and a man	
S NCBI PRE D	omains SH2 SH2	
- SQLOW ANSISR	A D V V K R I WE V I N H I O I	
ME SEARCH GUIDE Struct	ure Home 3D Macromolecular Structures Conserved	Domains PubChem BioSystems
	Search Conserved Domains : for	GO Help
Conserved Domains	and Protein Classification	CES SEARCH HOW TO HELP NEWS FTP PUBLICATIONS DISCOVER
Resources		Highlights
		What is a conserved domain?
Conserved Domain Database (CDD)	CDD is a protein annotation resource that consists of a collection of well-annotated multiple sequence alignment models for ancient domains and full-length proteins.	
	These are available as position-specific score matrices (PSSMs) for fast identification	En a se
	of conserved domains in protein sequences via RPS-BLAST. CDD content includes NCBI-curated domains, which use 3D-structure information to explicitly to define	The second se
	domain boundaries and provide insights into sequence/structure/function relationships, as well as domain models imported from a number of external source	Atuse.
	databases (Pfam, SMART, COG, PRK, TIGRFAM).	
	Search How To Help News FTP Publications	े <i>व</i>
CD-Search	CD-Search is NCBI's interface to searching the Conserved Domain Database with	
& Batch CD-Search	protein query sequences. It uses RPS-BLAST, a variant of PSI-BLAST, to quickly scan a set of pre-calculated position-specific scoring matrices (PSSMs) with a protein	3-D structures and conserved core motifs:
Batch CD-Search	query. The results of CD-Search are presented as an annotation of protein domains	
	on the user query sequence (illustrated example), and can be visualized as domain multiple sequence alignments with embedded user queries. High confidence	X THIT
	associations between a query sequence and conserved domains are shown as	Sold La
	Specific hits.	
	Submit Query) Search Database CDD v3.03 - 42251 PSSMs \$	
	>NP_005206.1 DCC [Homo sapiens]	the a the
	MENSLRCVWVPKLAFVLFGASLLSAHLQVTGFQIKAFTALRFLSE	
	OLSNGSLLIONILHSRHHKPDEGLYOCEASLGDSGSIISRTAKVA	Conserved features
CDART:	Conserved Domain Architecture Retrieval Tool (CDART) performs similarity searches	(binding and catalytic sites)
Domain Architectures	of the Entrez Protein database based on domain architecture, defined as the	Conserved Europeuties :     Conserve States Industries     Conserve States Industries     Conserve States Industries
	sequential order of conserved domains in protein queries. CDART finds protein similarities across significant evolutionary distances using sensitive domain profiles	Contraction     Contracti
	rather than direct sequence similarity. Proteins similar to the query are grouped and	
	scored by architecture. You can search CDART directly with a query protein sequence, or, if a sequence of interest is already in the Entrez Protein database,	
	simply retrieve the record, open its "Links" menu, and select "Domain Relatives" to see the precalculated CDART results (illustrated example). Belving on domain profiles	

Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conserved Conser		View full resul	BioSystems t 2
Conserved domains on [lcl seqsig_7fe9106e8610fc67f93c9c7e701b15f65] NP_005206.10CC [Homo saplens] Graphical summary show options > Construction context A Constr	1289	View full resul	
NP_005206.1 DCC [Homo sapiens] Graphical summary show options > Query seq. 210 510 Children Contacts A Determined in C	1250	1447	t (7
Query seq.         216         516         716         147           Query seq.         Interdence contexts A         Interdence contexts A         Interdence contexts A           Obtaine receive notif A         Obtaine receive notif A         Interdence contexts A         Interdence contexts A           Optimize receive notif A         Optimize receive notif A         Interdence contexts A         Interdence contexts A           Optimize receive notif A         Optimize receive notif A         Interdence contexts A         Interdence contexts A           Specific hits         152.000000         100         100         100         100           Superfamilies         15 meerie         100         100         100         100         100           Multi-donains         I-set         I-set         I-set         100         100         100         100		-	ę.
Query seq.         Extendemin contexts         Antendemin contexts         Intendemin contexts         Intendemin contexts         Antendemin contexts         <		-	
Superfamilies is several for an in several for an in the several formation of the seve	Neogenin_C superfam	nily	
Search for similar domain architectures 0 Refine search 0			
	2		
List of domain hits			?
Description		Multi-dom	E-value 6.07e-49
++ilg1_Neogenin[cd05722], First immunoglobulin (Ig)-like domain in neogenin and similar proteins; Ig1_Neogenin: first immunoglobulin (I +)Ig super family[cl11960], Immunoglobulin domain; Ig: immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a.		no	8.31e-35
	209398	no	8.31e-35 1.65e-15
(+)FN3[cd00063], Fibronectin type 3 domain; One of three types of internal repeats found in the plasma (+)FN3[cd00063]. Fibronectin type 3 domain: One of three types of internal repeats found in the plasma	28945	no	3.39e-15
	28945	no	3.39e-15 1.29e-13
(+)FN3[cd00063], Fibronectin type 3 domain; One of three types of internal repeats found in the plasma (+)Ig[cd00096], Immunoglobulin domain; Ig; immunoglobulin (Ig) domain found in the Ig superfamily. The Ig superfamily is a	143165	no	5.72e-13
(+)FN3(cd00096), Inimunoglobulin domain; ig: inimunoglobulin (ig) domain found in the ig superiamity. The ig superiamity is a (+)FN3(cd00066), Fibronectin type 3 domain; One of three types of internal repeats found in the plasma	28945	no	5.72e-11 5.79e-11
(+) Is super family[cl11960], Immunoglobulin domain; Ic: immunoglobulin (Ig) domain found in the plasma		no	1.17e-08
(+) g super anning(c) (1960), inimunogiobalin domain, ig: inimunogiobalin (ig) domain found in the ig superianning. The ig superianning is a . (+) FN3[cd00063], Fibronectin type 3 domain; One of three types of internal repeats found in the plasma	209398	no	1.70e-08
(+)Nogenin_C super family[cl05875], Neogenin C-terminus; This family represents the C-terminus of eukaryotic neogenin precursor pro			2.20e-119
(*)Neogenin_C super family[cl00675], Neogenin C-terminus; This family represents the C-terminus of eukaryotic neogenin precursor pro [+]FN3 super family[cl00065], Fibronectin type 3 domain; One of three types of internal repeats found in the plasma	206813	no	6.22e-06
(+)FN3 super family[cl000bb], Fibronectin type 3 domain; One of three types of internal repeats found in the plasma (+)I-set(pfam07679), Immunoalobulin I-set domain;		no	9.51e-21
	191810 191810	yes	9.51e-21 7.88e-16
(+)I-set[pfam07679], Immunoglobulin I-set domain; (+)I-set[pfam07679], Immunoglobulin I-set domain;	191810	yes	7.88e-16 2.47e-15
r ir sequiantar ar aj, minunagiou dill'i PSELOMAIN,	191810	yes	2.4/8-15
References:			



€ ○ ○ ≳ NCBI CDD cd05722 +	NC8I CDD cd05722		·
www.ncbl.nim.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxa	In=10&seltype=2&uId=143199	☆ ♥ C Coogle	۹ 🖨 🗖 -
S NCBI	Conserved Domains	re Protein Help	
cd05722: Ig1_Neogenin		?	
First immunoglobulin (19)-1 Ig1_Neogenin: first immunoglobulin developmental processes such as de DCG, which is deleted in obserted to transmembrane domain, and an intre Source: cd00096 Texconomy: Euteleostomi PubMed: 6 links Brotk: 2 links Protein: Representatives Specific Protein Related Struture Architectures Superfamily: cl1960 BioSystems: 349 links Statistics PSSM-1d: 143199 View PSSM: cd05722 Streshold Bit Score: 142.617 Threshold Stating G: 146277558 Created: 27-58-2007 Updated: 9-Mar-2011	Imigration, cell-cell recognition, and tissue growth region errorma . DCC and neogenin each have four Ig-like decellular domain. PubMed References (2) Book References (2) Neogenin: an avia cell suffice protein expressed during 1 the human humor suppressor molecule deletion la obset Molecular dramatinization of human neogenin, a DCC-rel dramatinization of human neogening, a DCC-rel dramatinization, sequences of the stasslag Arr; 44(4):329-400 be to distribute of antigen binding receptors. Annu. Rev. Immun Ced05722 is part of Use the graphical repre- ced05722 is a men CC005722 Sequence Cluster Detailed View (2)	Ins genin is a cell surface protein which is expressed in the sessed in other embryonic tissues, and may play a general role in lation. Included in this group is the tumor suppressor protein mains followed by six fibronectin type III domains, a Cell Biol. 2007; 39(5):874-878 eminal neuronia differentiation, is donely related to al anove. I. Cell Biol. 1994 Reg. 127(6):2009-2020 al anove. I. Cell Biol. 1994 Reg. 127(6):2009-2020 al anove. I. Cell Biol. 1994 Reg. species, and functional diversity. J. Mcl. Evol. 1998 species, and functional diversity. J. Mcl. Evol. 1998 of the support of related CD models. sentation to navigate this hierarchy. ther active Display with COTree Sub-family Hierarchy Interactive Display with COTree Cell Cell Copy222 I Cel.Neogenin	
Structure ? Interactive View Aligned Rows: Ali 7 rows 2 Download Cn3D Hierstohy ?	1146820 144950035 4224458 1114641256 11778134	Cd05724 Ig2.Robo     Cd05725 Ig3.Robo     Cd05725 Ig4.Robo     Cd05727 Ig2.Contactin=2-like     Od05727 Ig4_Contactin=2-like     Cd05727 Ig2_FGF4_like     Cd05729 Ig2_FGF4_like     Cd05855 Ig2_FGF41-like	÷





### **PSI-BLAST**

• <u>Position-Specific Iterated BLAST search</u>

- Easy-to-use version of a profile-based search
  - Perform BLAST search against protein database
  - Use results to calculate a position-specific scoring matrix
  - PSSM replaces query for next round of searches
  - May be iterated until no new significant alignments are found
    - · Convergence: all related sequences deemed found
    - Divergence: query is too broad, make cutoffs more stringent

+ Shttp://blast.nc	bi.nlm.nih.gov/Blast.cgi	1	4.4. // 1 1 1	
BLAST Home Recent	Results Saved Strategies	Basic Local Align	ttp://www.ncbi.nlm	.nih.gov/BLAST
BLAST Assem Choose a species g - Human - Mouse - Rat - Arabidopsis ti	bled Genomes	ole Protein Sequences? Try the C	OBALT Multiple Alignment Tool. Gallus gallus Pan troglodytes Microbes Apis meilifera	News BLAST [®] acticle. In BMC BioInformatics A new article, BLAST [®] architecture and applications, describes improvements for loop aquences as well as other new BLAST features. Fri. 15 De 2009 600:00 EST I to De 2009 600:00 EST II for the Day Tip of the Day III More tips
Basic BLAST Choose a BLAST pr	ogram to run.			
nucleotide blast protein blast	Search a <b>nucleotide</b> database Algorithms: blastn, megal Search <b>protein</b> database usin Algorithms: blastp, psi-bli	plast, discontiguous megablast g a <b>protein</b> query		
blastx	Search protein database usir	g a translated nucleotide query		
tblastn		e database using a protein query		
tblastx	Search translated nucleotide	e database using a translated nucle	eotide query	
Specialized BL				
□ Make s □ Search □ Find <u>se</u> □ Search □ Search □ Search □ Search □ Search □ Search □ Search	ecialized search (or database pecific primers with Primer-Bi trace archives marred domains in your seq quences with similar conserves sequences that have gene exy immunoglobulins (gBLAST) for SNPs (srop) sequence for yeachr contamin wo (or more) sequences using protein or nucleotide targets	AST bence (cds) d domain architecture (cdart) ression profiles (GEO) lation (vecscreen) BLAST (bl2seq)		

Protein BLAST: search prot	ein d	Protein BLAST: search pr	otein databases using a protein query		
العالي ال	nih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blas	p&PAGE_TYPE=BlastSearch&SHOW_DEFA	JLTS=on&LINK_LOC=blasthome	☆ ♥ C Google	۹) 🏚 🖸 •
SLAST®		lasic Local Alignment Search			My NCBI 🛃
Home Rec	ent Results Saved Strategies Help				[Sign.In] [Register]
NCBI/ BLAST/ blast	o suite	Standard	Protein BLAST		
blastn blastp	blastx tblastn tblastx				
Enter Query S	Sequence	BLASTP programs search protein	in databases using a protein query. <u>mor</u>	· <u>0</u>	Reset page Bookmark
	number(s), gi(s), or FASTA sequence(s) 😡	Clear	Query subrange 😡		
MGKGDPKKPRGKM	high-mobility group box 1 [Homo sa; SSYAFFVQTCREEHKKHPDASVNFSEFSKKCSE] ETKKRFKDONAPKRPBSAFFLFCSEVRPKIKGE KEKYEKDIAAYRAKGKPDAAKKGVVKAEKSKKKK	WKTMSAKEKGKFEDMAKADKA HPGLSIGDVAKKLGEMWNNTAA	From To		
Or, upload file	Browse	0			
Job Title	NP_002119.1 high-mobility group box 1 [Hom	<b>)</b>			
	Enter a descriptive title for your BLAST search	Θ			
Align two or m	ore sequences 😡				
Choose Sear	ch Set				
Database	Swissprot protein sequences(swissprot)	• •			
Organism Optional	Enter organism name or idcompletions will	be suggested Exclude			
	Enter organism common name, binomial, or ta	x id. Only 20 top taxa will be shown	n. 😡		
Exclude Optional	Models (XM/XP)     Uncultured/environ	imental sample sequences			
Entrez Query Optional					
Optional	Enter an Entrez query to limit search 😡				
Program Sele	ction				
Algorithm	O blastp (protein-protein BLAST)				
	PSI-BLAST (Position-Specific Iterated	BLAST)			
	O PHI-BLAST (Pattern Hit Initiated BLAS	T)			
	Choose a BLAST algorithm 😡				
BLAST	Search database Swissprot protein sec	uences(swissprot) using PSI	BLAST (Position-Specific Iterated	BLAST)	
+Algorithm param	eters Note: Para	meter values that differ from	the default are highlighted in yello	ow and marked with + sign	

# Swiss-Prot Goal: Provide a single reference sequence for each protein sequence Distinguishing Features Non-redundancy Ongoing curation by EBI staff and external experts Expert annotation includes editing/updates of KN Keyword lines CC Comment lines FT Feature table Distinct accession series



00			Protein BLAST: search pro	otein databases using a protein query		
S Pro	tein BLAST: search protein	d [+]				*
	Blast.ncbi.nlm.nit	.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRA	MS=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAU	JLTS=on&LINK_LOC=blasthome	☆ ♥ C 🕄 Coogle	۹) 🏚 🗖 ۲
w	BLAST [®] Home Recei	nt Results Saved Strategies H	Basic Local Alignment Search	1 Tool		My NCBI [2] [Sign.In] [Register]
► NC	BI/ BLAST/ blastp	suite	Standard	Protein BLAST		
bla	stn blastp b	lastx tblastn tblastx				
	Enter Query Se	equence	BLASTP programs search protei	n databases using a protein query. <u>more</u>	1	Reset page Bookmark
		mber(s), gi(s), or FASTA sequence		Query subrange 😡		
1	IGKGDPKKPRGKMSS XYEREMKTYIPPKGE	.gh-mobility group box 1 [Ho YAFFVQTCREEHKKKHPDASVNFSEFS TKKKFKPDNAPKRPFSAFFLFCSEVRP :KYEKDIAAYRAKGKPDAAKKGVVKAEK	KKCSERWKTMSAKEKGKFEDMAKADKA KIKGEHPGLSIGDVAKKLGEMWNNTAA	From		
c	r, upload file	Bro	wse) 😡			
J	ob Title	NP_002119.1 high-mobility group box	1 [Homo			
		Enter a descriptive title for your BLAST	search 😡			
8	Align two or mo	re sequences 😡				
L E	Choose Search	Sat				
	atabase					
	atabase	Swissprot protein sequences(swissprot protein sequences)	ssprot) 🗘 😡			
	<b>)rganism</b> Iptional	Enter organism name or idcomplet	ions will be suggested Exclude +	0		
	puonai		ial, or tax id. Only 20 top taxa will be shown			
	xclude	Models (XM/XP) Uncultured	environmental sample sequences			
	ptional					
	intrez Query Iptional					
		Enter an Entrez query to limit search (	ð			
	Program Selec	tion				
1	lgorithm	O blastp (protein-protein BLAST)				
		PSI-BLAST (Position-Specific I	erated BLAST)			
		O PHI-BLAST (Pattern Hit Initiate	,			
		Choose a BLAST algorithm 😡				
	BLAST	Search database Swissprot prot	ein sequences(swissprot) using PSI-	BLAST (Position-Specific Iterated E	BLAST)	
+	Algorithm parame		e: Parameter values that differ from t	he default are highlighted in yellow	and marked with $ ilde{}$ sign	
						),(+),(-),(-),(-),(-),(-),(-),(-),(-),(-),(-

000	Protein B	LAST: search protein databases using a protein quer	¥	
S Protein BLAST: search prote	in d +			•
Is blast.ncbi.nim.n	ih.gov/Blast.cgi?PROGRAM=blastp&BLAST_PROGRAMS=blastp&PAGE_TYPE=BlastSea	rch&SHOW_DEFAULTS=on&LINK_LOC=blasthome	☆ ♥ C (왕 K Google	۹ 🖨 🖪 -
Algorithm param	eters Note: Parameter values that	differ from the default are highlighted in	vellow and marked with $\diamond$ sign	
General Parar			,	
Max target			14 500	
sequences	* 1000 \$	← Defau	lt = 500	
	Select the maximum number of aligned sequences to display @			
Short queries	Automatically adjust parameters for short input sequence	s (i)		
	C Automatically acjust parameters for short input sequence	-		
Expect threshold	* 0.001	← Defau	lt = 10	
		2 0,000		
Word size	3 0			
Max matches in a	0			
query range	•			
Scoring Paran	notore			
Matrix	BLOSUM62 0			
Gap Costs	Existence: 11 Extension: 1 🔹 😡			
Compositional	Conditional compositional score matrix adjustment	0		
adjustments	contactorial compositional score matrix asjustment			
Filters and Ma	sking	1		
Filter				
ritter	♦ I Low complexity regions			
Mask	Mask for lookup table only	-		
	Mask lower case letters			
	-			
PSI/PHI BLAS	T	1		
Upload PSSM				
Optional	(Browse)			
PSI-BLAST	0.001	← Defau	lt = 0.005	
Threshold		Dejau		
Pseudocount	0			
NWW				
<b>F Z</b>	Search database Swissprot protein sequences(swissprot		and all ACT	
<b>S</b> BLAST	Search database Swissprot protein sequences(swissprot	t) using PSI-BLAST (Position-Specific Ite	Hated BLAST)	
- hun				
- MM				
	BLAST is a registered	I trademark of the National Library of Medicine.		
C				) ( ) ( )

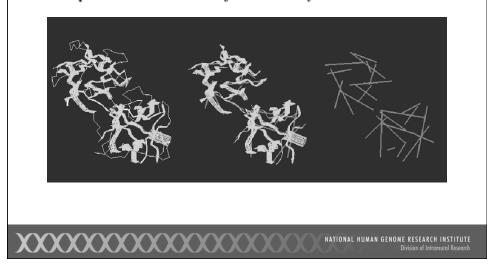
CB Blast:NP_002119.1 high-mobility group box 1 [Homo     Protein BLAST: search protein d × C: INCB Blast:NP_002119.1 high-m × +	Ţ
Protein boots search proteints ∧   ⊂   And basic/voccess ingram ∧   ⊂   (A) >    (A) >	۹ 🖨 🗖 -
BLAST®         Basic Local Alignment Search Tool           Home         Recent Results         Saved Strategies	My NCBI P
NCBI/ BLAST/ blastp suite/ Formatting Results - HYJMDEFE01R	
Edit and Resubmit Save Search Strategies > Formatting options > Download	
PSI blast Iteration 1	
NP_002119.1 high-mobility group box 1 [Homo	
Query ID         Id[86486         Database Name         swissprot           Description         N0_002119.1 high-mobility group box 1 [Homo sapiens]         Description         Non-redundant SwissProt sequences           Molecule type         anioad         Program         BLSTP 2.2.26+ ▷ Citation           Other reports:         > Search Summary [Texonomy reports] [Distance tree of results] [Multiple alignment]         House alignment]	
<u>Graphic Summary</u>	
Show Conserved Domains	
Query seg.     25     59     75     109     125     159     175     200       OW bindley site AND ALL A     AAA     DMB bindley site AND ALL A     AAA     AAA     AAA       Specific hits     HMGB-UBF_HMG-box     HMG-box     HMG-box     Superfamily       Superfamilies     HMG-box superfamily     HMG-box superfamily	
Distribution of 137 Blast Hits on the Query Sequence 😡	
Mouse over to see the define, click to show alignments	
Color key for alignment scores	
<40 40-50 50-80 80-200 >=200 Query	

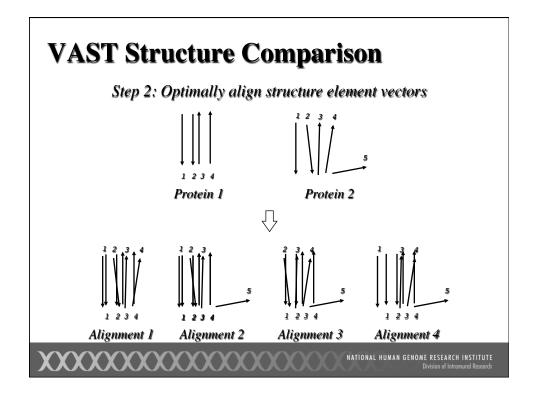
Constances and	nih.gov/Blast.cgi				Cf 🛃 • Google			٩)
BLAST [®] Home Rec	ent Results	Basic Local Alignment Search Tool Saved Strategies Help						My NCBI [Sign In] [
I/ BLAST/ blast	o suite/ Formatti	ng Results - HYJMDEFE01R						
Edit and Resubr	nit Save Sear	ch Strategies						
		PSI blast Iteration 1						
P_002119.1 h	igh-mobility	group box 1 [Homo						
Descriptio	e amino acid	Database Name         Database Name         System	on-redunda			5		
Other reports:	▶ Search Sum	mary [Taxonomy reports] [Distance tree of results] [Multiple alignment]						
Graphic Su	mmarv							
Description								
NEW - align	ment score belo	res: U UniGene E GEO G Gene S Structure M Map Viewer P PubChem BioAssay w the threshold on the previous iteration						
NEW - aligr aligr Run PSI-Blast	iment score belo iment was check iteration 2 with r	w the threshold on the previous iteration ted on the previous iteration						
NEW - aligr - aligr Run PSI-Blast	iment score belo iment was check iteration 2 with r	w the threshold on the previous iteration and the previous iteration nax 1000 Go ng significant alignments with E-value BETTER than threshold Description	Max score	<u>Total</u> score	Query coverage	E value	Max ident	Links
NEW - aligr aligr Run PSI-Blast	iment score belo iment was check iteration 2 with r inces produci Accession	w the threshold on the previous iteration ded on the previous iteration nax [1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High m	<u>score</u> 310	<b>score</b> 310	coverage 78%	2e-107	ident 100%	GM
NEW - aligr - aligr Run PSI-Blast <u>Seque</u> NEW NEW	Internet score below Internet was check Internet wa	w the threshold on the previous iteration ed on the previous iteration nax (1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High m RecName: Full=High mobility group protein B1; AltName: Full=High m	310 310	310 310	<b>coverage</b> 78% 78%	2e-107 2e-107	ident 100% 100%	G M G M
NEW - aligr - aligr Run PSI-Blast - Seque NEW NEW NEW NEW	ment score bek ment was check iteration 2 with r <u>inces produci</u> <u>Accession</u> <u>P09429.3</u> <u>P10103.3</u> <u>P63159.2</u>	w the threshold on the previous iteration ed on the previous iteration nax [1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	310 310 310 310	310 310 310 310	<b>coverage</b> 78% 78% 78%	2e-107 2e-107 2e-107	ident 100% 100% 100%	G M G M G M
NEW - aligr - aligr Run PSI-Blast - Seque NEW NEW NEW NEW NEW	ment score bek ment was check iteration 2 with r Accession P10103.3 P10103.3 P10103.3 P10103.3 P10103.3	w the threshold on the previous iteration and on the previous iteration anax [1000 Go] Ing significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High nr RecName: Full=High mobility group protein B1; AltName: Full=High nr	310 310 310 308	<b>score</b> 310 310 310 308	coverage 78% 78% 78% 78%	2e-107 2e-107 2e-107 1e-106	ident 100% 100% 100% 99%	GM GM GM
NEW - aligr aligr Run PSI-Blast <u>Seque</u> NEW NEW NEW NEW NEW	ment score bek ment was check iteration 2 with r <u>inces produci</u> <u>Accession</u> <u>P09429.3</u> <u>P10103.3</u> <u>P63159.2</u> <u>P12682.3</u> <u>B2RPK0.1</u>	w the threshold on the previous Iteration ed on the previous Iteration nax (1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High m RecName: Full=High mobility group protein B1; AltName: Full=High m	score           310           310           310           310           297	score           310           310           310           308           297	coverage 78% 78% 78% 78% 78% 78%	2e-107 2e-107 2e-107 1e-106 2e-102	ident 100% 100% 99% 95%	GM GM GM GM
NEW - aligr - aligr Run PSI-Blast - Seque NEW NEW NEW NEW	ment score bek ment was check iteration 2 with n <u>inces produci</u> Accession P10103.3 P10103.3 P10103.3 P10103.3 P10103.3 P12682.3 P12682.3 P12682.3 P12682.3	w the threshold on the previous iteration ed on the previous iteration nax [1000 06] The second s	310           310           310           308           297           290	score           310           310           310           308           297           290	coverage 78% 78% 78% 78% 78% 78%	value 2e-107 2e-107 2e-107 1e-106 2e-102 1e-99	ident 100% 100% 99% 95% 95%	GM GM GM M
NEW - aligr - aligr Run PSI-Blast - Seque NEW NEW NEW NEW NEW	ment score bek ment was check iteration 2 with r Accession P09429.3 P10103.3 P10103.3 P10103.3 P10103.3 P12682.3 P12682.3 P12682.4 P12682.4	w the threshold on the previous iteration and on the previous iteration anax 1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High nr RecName: Full=High mobility group protein B1; AltName: Full=Aligh nr RecName: Full=High mobility group protein B1; AltName: Full=High nr RecName: Full=High mobility group protein B1; AltName: Full=High nr RecName: Full=High mobility group protein B1; AltName: Full=High nr RecName: Full=Putative high mobility group protein B1; AltName: Full=High nr RecName: Full=Putative high mobility group protein B1; AltName: Full=High nr RecName: Full=High mobility group protein B2; AltName: Full=High nr RecName: Full=High mobility group protein B2; AltName: Full=High nr	310           310           310           308           297           290           257	score           310           310           310           308           297           290           257	coverage 78% 78% 78% 78% 78% 78% 78%	value 2e-107 2e-107 2e-107 1e-106 2e-102 1e-99 1e-86	ident 100% 100% 99% 95% 95% 85%	GM GM GM M G
NEW - aligr - aligr Run PSI-Blast - Seque NEW NEW NEW NEW NEW NEW	Accession           @ P09429.3           @ P09429.3           @ P109429.3           @ P209429.3           @ P209429.3           @ P209429.3           @ P209429.3           @ P209429.3           @ P209429.4           @ P209429.4           @ P209429.4           @ P07746.2	w the threshold on the previous Iteration ed on the previous Iteration nex (1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High m RecName: Full=Putative high mobility group protein 1-like 1; AltNam RecName: Full=High mobility group protein 1-like 1; Short= RecName: Full=High mobility group protein S2; AltName: Full=High m	score           310           310           310           208           297           290           257           257	score           310           310           310           308           297           290           257	coverage 78% 78% 78% 78% 78% 78% 78% 78%	value 2e-107 2e-107 2e-107 1e-106 2e-102 1e-99 1e-86 1e-86	ident 100% 100% 99% 95% 95% 85% 83%	GM GM GM M G G
NEW - aligr - aligr Run PSI-Blast - Seque NEW NEW NEW NEW NEW NEW NEW NEW	ment score bek           ment was check           teration 2 with r           ncces product           Accession           @ P09429.3           @ P10103.3           @ P105429.2           @ P10682.3           @ P26582.3           @ P26589.2           @ P26583.2	w the threshold on the previous iteration ed on the previous iteration nax (1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High rn RecName: Full=Hugh mobility group protein B1; AltName: Full=High rn RecName: Full=Hugh mobility group protein B1; AltName: Full=High rn RecName: Full=Putative high mobility group protein B2; AltName: Full=High rn RecName: Full=High mobility group. T protein; Short=HMG-T; AltName RecName: Full=High mobility group. Tprotein; Short=HMG-T; AltName; RecName: Full=High mobility group. Tprotein; Short=HMG-T; AltName; Full=High mobility group. Tprotein; Short=H	score           310           310           310           207           297           257           252	score           310           310           310           308           297           290           257	coverage 78% 78% 78% 78% 78% 78% 78%	value 2e-107 2e-107 2e-107 1e-106 2e-102 1e-99 1e-86 1e-86 9e-85	ident 100% 100% 99% 95% 95% 85%	GM GM GM M G G G GM
NEW - aligr - aligr Run PSI-Blast - Seque NEW NEW NEW NEW NEW NEW NEW NEW	ment score bekennent was checkennent was checken 2 with r           nccess produci           Accession           Ø 100429.3           Ø 10103.3	w the threshold on the previous iteration ed on the previous iteration nax 1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High m RecName: Full=High mobility group protein B1; AltName: RecName: Full=High mobility group protein B1; AltName: RecName: Full=High mobility group protein B2; AltName: Full=High m RecName: Full=High mobility group protein B2; AltName: Full=High m RecName: Full=High mobility group protein B2; AltName: Full=High m	score           310           310           310           208           297           290           257           257	score           310           310           310           200           257           252	coverage 78% 78% 78% 78% 78% 78% 78% 78% 78%	value 2e-107 2e-107 2e-107 1e-106 2e-102 1e-99 1e-86 1e-86	ident 100% 100% 99% 95% 85% 85% 83%	GM GM GM M G G GM GM
NEW - aligr - aligr Run PSi-Blast - Seque NEW NEW NEW NEW NEW NEW NEW NEW	ment score bek           ment was check           teration 2 with r           ncces product           Accession           @ P09429.3           @ P10103.3           @ P105429.2           @ P10682.3           @ P26582.3           @ P26589.2           @ P26583.2	w the threshold on the previous iteration ed on the previous iteration nax (1000 Go ng significant alignments with E-value BETTER than threshold Description RecName: Full=High mobility group protein B1; AltName: Full=High rn RecName: Full=Hugh mobility group protein B1; AltName: Full=High rn RecName: Full=Hugh mobility group protein B1; AltName: Full=High rn RecName: Full=Putative high mobility group protein B2; AltName: Full=High rn RecName: Full=High mobility group. T protein; Short=HMG-T; AltName RecName: Full=High mobility group. Tprotein; Short=HMG-T; AltName; RecName: Full=High mobility group. Tprotein; Short=HMG-T; AltName; Full=High mobility group. Tprotein; Short=H	score           310           310           310           207           257           257           252           251	score           310           310           310           200           257           257           252           251	coverage 78% 78% 78% 78% 78% 78% 78% 78% 78% 78%	value 2e-107 2e-107 2e-107 1e-106 2e-102 1e-99 1e-86 1e-86 9e-85 3e-84	ident 100% 100% 99% 95% 85% 85% 83% 86%	GM GM GM M G G G GM

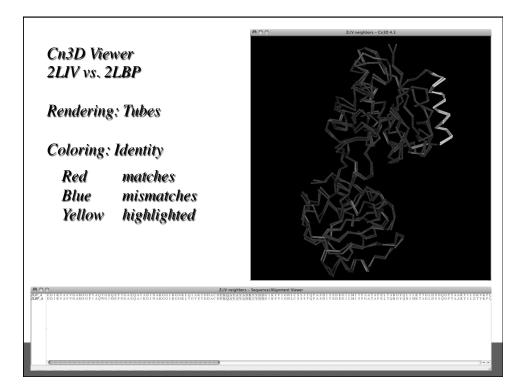
<pre></pre>			NCBI Blast:NP_002119.1 high-mobility group box 1 [Horno Blast:NP_002119.1 high-m × +							
New Weinsell, RecName: Full=Mobility group protein 18       43.2       43.3       18%       60-0       49%         New Weinsell, RecName: Full=Nigh mobility group protein 10; AltName: Full=High mobility       45.1       24%       60-0       39%       60         New Weinsell, RecName: Full=Nohn-histone protein 10; AltName: Full=High mobility       45.1       24%       60-0       39%       60         New Weinsell, RecName: Full=Mobility group protein 10; AltName: Full=High mobility       45.1       24%       60-0       39%       60         New Weinsell, RecName: Full=SWI/SWF-related matrix-associated actin-dependent n       45.1       54.5       19%       10-04       49%       60         New Weinsell, RecName: Full=SWI/SWF-related matrix-associated actin-dependent n       45.1       54.5       19%       10-04       49%       60         New Weinsell, RecName: Full=High mobility group protein 204; AltName: Full=High       45.1       24%       10-04       49%       60         New Weinsell, RecName: Full=RACT complex subunit Ssrp1; AltName: Full=High       45.1       54.5       154.5       12%       26-04       37%       60         New Weinsell, RecName: Full=RACT complex subunit Ssrp1; AltName: Full=High       45.1       12%       26-04       37%       60       155.5       155.5       45.3       154.5       <	S blast.ncbi.nlm.m	hi <b>h.gov</b> /Blast.cgl			습포	C Googl	le		٩	
WH       Ø0200021.       RecName: Full=High mobility group B protein 9; AltName: Full=Hugh mobility 45.1       45.8       34%       86-05       32%       GL         WH       Ø0200021.       RecName: Full=Mon-histone protein 10; AltName: Full=High mobility 45.1       45.1       22%       GL       45.6       12%       86-05       33%       GL       45.6       45.6       12%       86-05       33%       GL       45.6       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12%       12% </th <th>NEW</th> <th>Q293F6.2</th> <th>RecName: Full=FACT complex subunit Ssrp1; AltName: Full=Facilitate</th> <th>47.0</th> <th>47.0</th> <th>18%</th> <th>5e-05</th> <th>51%</th> <th>G</th> <th></th>	NEW	Q293F6.2	RecName: Full=FACT complex subunit Ssrp1; AltName: Full=Facilitate	47.0	47.0	18%	5e-05	51%	G	
WM       #0021331 RecName: Full=Non-histone protein 10; AltName: Full=High mobility e       45.1 45.1 45.1 45.1 45.1 45.1 45.1 45.1	NEW	<u> № P40623.1</u>	RecName: Full=Mobility group protein 1B	43.9	43.9	18%	6e-05	49%		
NSN       Pendagzil       RecName: Full=Mobility group protein 1A       43.5       43.5       18%       10-04       45%         NSN       Pendagzil       RecName: Full=SWI/SNF-related matrix-associated actin-dependent n       45.4       45.4       28%       10-04       45%       6         NSN       Pendagzil       RecName: Full=SWI/SNF-related matrix-associated actin-dependent n       45.1       5.1       28%       10-04       45%       6       77%       6         NSN       Pendagzil       RecName: Full=SWI/SNF-related matrix-associated actin-dependent n       45.1       45.1       28%       10-04       45%       6       77%       6       6       77%       6       6       77%       6       6       77%       6       6       77%       6       6       77%       6       6       77%       6       6       77%       6       6       77%       6       6       77%       6       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%       6       77%<	NEW		RecName: Full=High mobility group B protein 9; AltName: Full=Nucleo	<u>45.8</u>	45.8	34%	8e-05	32%		
NS       C2020021       RecName: Full=SW1/SNF-related matrix-associated actin-dependent n       45.4       28%       10-04       27%       CM         NS       Monomy RecName: Full=HMG box-containing protein 4; AtName: Full=High       45.4       15%       10-04       27%       CM         NS       Monomy RecName: Full=SW1/SNF-related matrix-associated actin-dependent n       45.1       22%       10-04       27%       CM         NS       Monomy RecName: Full=HMG box-containing protein 20A; AtName: Full=HMG       45.1       28%       10-04       27%       CM         NS       Monomy RecName: Full=HMG box-containing protein 20A; AtName: Full=HMG       45.1       45.1       37%       CM       CM       28%       10-04       37%       CM       CM       27%       CM       CM       28%       10-04       37%       CM       CM       28%       16.1       12.2%       26-04       37%       CM       CM       28%       16.1       12.2%       26-04       37%       CM       CM       28%       16.1       12.3       28%       10-04       37%       CM       CM       28%       16.1       12.3       28%       10.6       12.4       12.4       12.4       12.4       12.4       12.4       12.6       12.6	NEW	ØQ03435.1	RecName: Full=Non-histone protein 10; AltName: Full=High mobility	<u>45.1</u>	45.1	26%	8e-05	38%	G	
MSM       Georgeonal RecName: Full=HMG box-containing protein 4; AltName: Full=High m State 10021011 RecName: Full=SWI/SNF-related matrix-associated actin-dependent n State 10021011 RecName: Full=Wi/SNF-related matrix-associated actin-dependent n State 10021011 RecName: Full=High mobility group protein 20A; AltName: Full=High State 10021021 RecName: Full=High mobility group protein 20A; AltName: Full=High State 10021021 RecName: Full=RecT complex subunit Ssrp1; AltName: Full=RecT State 10021021 RecName: Full=RecT complex subunit SsRp1; AltName: Full=RecT S	NEW	P40622.1	RecName: Full=Mobility group protein 1A	<u>43.5</u>	43.5	18%	1e-04	46%		
MSN       Collection       RecName: Full=SWI/SNF-related matrix-associated actin-dependent n       51.       45.1       20%       10-04       37%       Cit         MSN       Mo2DILLA       RecName: Full=SWI/SNF-related matrix-associated actin-dependent n       51.       45.1       20%       10-04       37%       Cit         MSN       Mo2DILLA       RecName: Full=High mobility group protein 20A; AltName: Full=High       51.       45.1       20%       10-04       37%       Cit         MSN       Mo2DILLA       RecName: Full=High mobility group protein 20A; AltName: Full=High       45.1       31%       Cit       31%       Cit <td>NEW</td> <td></td> <td>RecName: Full=SWI/SNF-related matrix-associated actin-dependent r</td> <td><u>45.4</u></td> <td>45.4</td> <td>28%</td> <td>1e-04</td> <td>37%</td> <td></td> <td></td>	NEW		RecName: Full=SWI/SNF-related matrix-associated actin-dependent r	<u>45.4</u>	45.4	28%	1e-04	37%		
MSH       © 2021041 WSH       RecName: Full=SWI/SNF-related matrix-associated actin-dependent n MSH       45.1       28%       10-04       37%       C         MSH       © 2021041 WSH       RecName: Full=High mobility group protein 20A; AltName: Full=High m MSH       45.1       28%       10-04       37%       C         MSH       © 2021041       RecName: Full=High mobility group protein 20A; AltName: Full=High m MSH       45.1       31%       22-04       37%       C         MSH       © 2022442       RecName: Full=FACT complex subunit Ssrp1; AltName: Full=High m MSH       6023241       RecName: Full=Protein polybromo-1       45.1       45.1       32%       2-04       37%       C         MSH       © 2022441       RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       43.1       43.3       46%       5-04       37%       C         MSH       © 2022441       RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       43.1       43.3       56%       6-04       37%       C         MSH       © 2022441       RecName: Full=Full=Full       Protein 20%; AltName: Full=Facilitatia;       33.1       33.3       36%       6-04       37%       C         MSH       © 2022441       RecName: Full=High mobility group protein 28/2; AltName: Full=Facilitatia;       33.1	NEW			<u>45.4</u>	45.4	19%	1e-04	45%		
MEN       Image: Source and the second	NEW	₫ <u>Q32L68.1</u>	RecName: Full=SWI/SNF-related matrix-associated actin-dependent r	<u>45.1</u>	45.1	28%	1e-04	37%	_	
MEN       Costass.1       RecName: Full=HMG box-containing protein 4; AltName: Full=High m       45.1       19%       20-04       45%       C         MEN       Mod2242       RecName: Full=FACT complex subunit Ssr01; AltName: Full=Chorion       45.1       12%       20-04       45%       C         MEN       Mod2242       RecName: Full=FACT complex subunit Ssr01; AltName: Full=Chorion       45.1       12%       20-04       45%       C         MEN       Mod2241       RecName: Full=High mobility group protein 20A; AltName: Full=HMG       43.1       44.3       34%       20-04       35%       C       25%       C       C       C       25%       C       C       25%       C       C       25%       C       C       25%       C       C       C       25%       C       C       C       25%       C       C       C	NEW	Ø <u>09Z104.1</u>	RecName: Full=SWI/SNF-related matrix-associated actin-dependent r	<u>45.1</u>	45.1	28%	1e-04	37%		
MMM       Column 2       RecName: Full=FACT complex subunit Ssrp1; AltName: Full=Chorton       45.1       32%       2e-04       37%       Cinii (Cinii (Ciniii (Ciniii (Cinii (Cinii (Cinii (Cinii	NEW	Q6DIJ5.1	RecName: Full=High mobility group protein 20A; AltName: Full=HMG	45.1	45.1	34%	2e-04	31%		
NEW       Control in the second	NEW	Q5BL56.1	RecName: Full=HMG box-containing protein 4; AltName: Full=High me	<u>45.1</u>	45.1	19%	2e-04	45%		
MEM       Godazzal MecName: Full=High mobility group protein 20A; AltName: Full=HMG       44.3       34%       3e-04       31%       C         MEM       Gozazzal MecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       43.1       44.3       34%       3e-04       31%       C         MEM       Gozazzal Mex       RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       43.1       44.5       55%       4e-04       29%       C         MEM       Gozazzal Mex       RecName: Full=High mobility group protein 20A; AltName: Full=HMG       43.1       44.5       54.5       54.5       56.0       29%       C         MEM       Gozazzal Mex       RecName: Full=FACT complex subunit SSRP1; AltName: Full=Facilitat Mex       43.1       44.5       34%       6e-04       35%       C         Mex       Mozazzal Mex       RecName: Full=FACT complex subunit SSRP1; AltName: Full=Facilitat Mex       43.1       35.5       35%       C       44%       C         Run PSHBast iteration 2 with max [1000       Go       C       2       C       C       31.1       35%       C       44%       C<	NEW	Q05344.2	RecName: Full=FACT complex subunit Ssrp1; AltName: Full=Chorion-	<u>45.1</u>	45.1	32%	2e-04	37%		
Mex       CO2LZYLI       RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       9.5.       43.5       6.3%       4e-04       29%       CM         Mex       MOSELERAL       RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       9.1.       3.1.       4.3.6       6.3%       4e-04       29%       CM         Mex       MOSELERAL       RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       9.1.       3.1.       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6       4.3.6 <t< td=""><td>NEW</td><td></td><td>RecName: Full=Protein polybromo-1</td><td><u>45.1</u></td><td>45.1</td><td>32%</td><td>2e-04</td><td>36%</td><td></td><td></td></t<>	NEW		RecName: Full=Protein polybromo-1	<u>45.1</u>	45.1	32%	2e-04	36%		
MEX       MOSCIALAL MEX       RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F       43.1       43.1       64%       56-04       29%       C         MEX       MOSCIALAL MEX       RecName: Full=High mobility group protein 20A; AltName: Full=HIMG       43.1       43.1       64%       56-04       29%       C         MEX       MOSCIALAL MEX       RecName: Full=High mobility group protein 20A; AltName: Full=HIMG       43.1       43.5       34%       66-04       31%       C         MEX       MOSCIALAL MEX       RecName: Full=HIGh Complex subunit SSR1; AltName: Full=HIMG       43.1       43.1       43.6       43.6       55%       C         Run PSI-Blass iteration 2 with max 1000       Co	NEW	Q6AZF8.1	RecName: Full=High mobility group protein 20A; AltName: Full=HMG	44.3	44.3	34%	3e-04	31%	_	
MEM       GO222251.1 RecName: Full=High mobility group protein 20A; AltName: Full=HMG       43.5 43.5 43.5 43.5 43.5 43.5 43.5 43.5	NEW	Ø <u>Q91ZW1.1</u>	RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F	43.5	43.5	63%	4e-04	29%		
NEW       MORALEFAIL RecName: Full=FACT complex subunit SSRP1; AltName: Full=Facilitati Rev       43.5 43.1 30% 43.1 30% 43.1 30% 43.1 30% 44%       43.5 43.1 30% 44%       43.5 43.1 30% 44%       43.6 44%       44%       C         Run PSI-Blast keration 2 with max 1000       Image: Cutoffs to show hits "below the line"       2        3        4          Alignments       Select All Select All Select All Get selected sequences Distance tree of results Multiple alignment       5       Short=HMC-1 180       Short=HMC-1 180       5       Short=HMC-1 180       5       Short=HMC-1 180	NEW	Ø05D144.1	RecName: Full=Transcription factor A, mitochondrial; Short=mtTFA; F	<u>43.1</u>	43.1	64%	5e-04	29%		
NEW       Monopoly 2013/21       RecName: Full=HMG box-containing protein C28F2.11       43.1       39%       7e-04       44%       C         Run PSI-Blass iteration 2 with max 1000       Co       Co       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C       C	NEW	Q5ZKF4.1	RecName: Full=High mobility group protein 20A; AltName: Full=HMG	<u>43.5</u>	43.5	34%	6e-04	31%		
Run PSI-Blast heration 2 with max 1000       Co       Change cutoffs to show hits "below the line"       2 3 4         Alignments       Select All Get selected sequences Distance tree of results Multiple alignment       2 3 4         > Sep [P09429, 3] HMGB1 HUMAN Come RecName: Full=High mobility group protein B1; AltName: Full=H	NEW	Q9LEF5.1	RecName: Full=FACT complex subunit SSRP1; AltName: Full=Facilitate	<u>43.5</u>	43.5	30%	6e-04	35%		
Change cutoffs to show hits "below the line"  Alignments Select All Get selected sequences Distance tree of results Multiple alignment  Complete Select All Get selected sequences Distance tree of results Multiple alignment  Complete Select All Get selected sequences Distance tree of results Multiple alignment  Complete Select All Get selected sequences Distance tree of results Multiple alignment  Complete Select All Get selected sequences Distance tree of results Multiple alignment  Complete Select All Get selected sequences Distance tree of results Multiple alignment  Complete Select All Get selected sequences Distance tree of results Multiple alignment  Complete Select All Get All Get All Get Select All Get Select All Get Select	NEW		RecName: Full=HMG box-containing protein C28F2.11	<u>43.1</u>	43.1	36%	7e-04	44%	G	
mobility group protein 1; Short-HWG-1 <u>sp[offXHA3]HMG1 CANNAB</u> <b>CON</b> RecName: Full-High mobility group protein B1; AltName: Full-High mobility group protein 1; Short-HWG-1 <u>sp[offAHA3]HMG1 KACFA</u> RecName: Full-High mobility group protein B1; AltName: Full-High mobility group protein 1; Short-HWG-1 sp[offAHG6.3]HMG1 HMG2R <b>ECON</b> RecName; Full-High mobility group protein B1; AltName: Full-High	Alignments	0								
sp BOCM99.1 [Hold CALLA & RecName: Full=High mobility group protein B1; AltName: Full=High	mobilit sp Q6Y mobilit sp Q4R mobilit sp Q08 mobilit	y group pro KA4.3  HMGB1 y group pro 844.3  HMGB1 y group pro IE6.3  HMGB1 y group pro	tein 1; Short=HMG-1 CANFA GML RecName: Full=High mobility group protein B1; Alt tein 1; Short=HMG-1 MACFA RecName: Full=High mobility group protein B1; AltName tein 1; Short=HMG-1 RORES GML RecName: Full=High mobility group protein B1; Alt tein 1; Short=HMG-1	Name: : Full: Name:	Full=Hig =High Full=Hig	h				

CO     NCBI Blast.NP_002119.1 high-mebility group box 1 (Homo     Firetein BLAST: search protein d × 😕 NCBI Blast.NP_002119.1 high-m × +	*
🔹 کې	Coogle Q 🍙 💽
BLAST® Basic Local Alignment Search Tool Recent Results Saved Strategies Help	My NCBI 12 [Sign.in] (Register)
NCBI/ BLAST/ blastp suite/ Formatting Results - HYKG96V9013	
Edit and Resubmit Save Search Strategies > Formatting options > Download	
PSI blast Iteration 9	
NP_002119.1 high-mobility group box 1 [Horno	
Query ID         Le(16/6466         Database Name         swissprot           Description         NP_002119.1 high-mobility group box 1 [Homo sapiens]         Description         Non-redundant SwissProt sequ           Molecule type         anin add         Program         BLASTP 2.2.261 ▷ Citation           Query Length         215         Program         BLASTP 2.2.261 ▷ Citation	ences
No new sequences were found above the 0.001 threshold	
Other reports: Search Summary [Taxonomy reports] [Distance tree of results] [Multiple alignment]	
Graphic Summary	
Distribution of 178 Blast Hits on the Query Sequence 😡	1 137
Mouse over to see the define, click to show alignments Color key for alignment scores < <u>&lt;40</u> <u>40-50</u> <u>50-20</u> <u>80-200</u> >=200 1 <u>40</u> <u>80</u> 120 160 200	● 157 ↓ ⑨ 178

### Overview


- Week 2
  - Similarity vs. Homology
  - Global vs. Local Alignments
  - Scoring Matrices
  - BLAST
  - BLAT
- Week 4
  - Profiles, Patterns, Motifs, and Domains
  - Structures: VAST, Cn3D, and de novo Prediction
  - Multiple Sequence Alignment


### **Predicting Tertiary Structure**

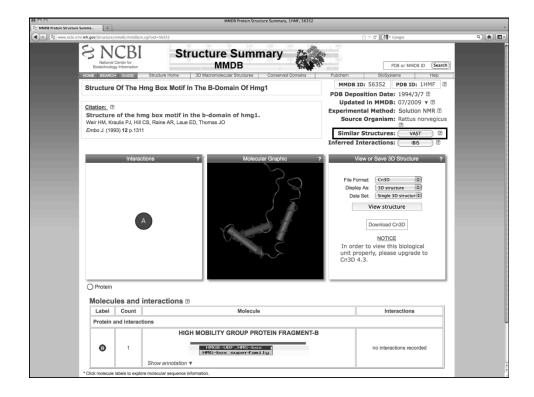

- Sequence specifies conformation, *but* conformation does *not* specify sequence
- Structure is conserved to a much greater extent than sequence
- Similarities between proteins may not necessarily be detected through "traditional" methods

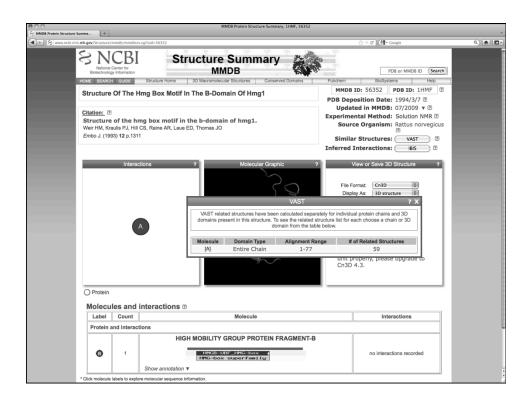
## VAST Structure Comparison

Step 1: Construct vectors for secondary structure elements

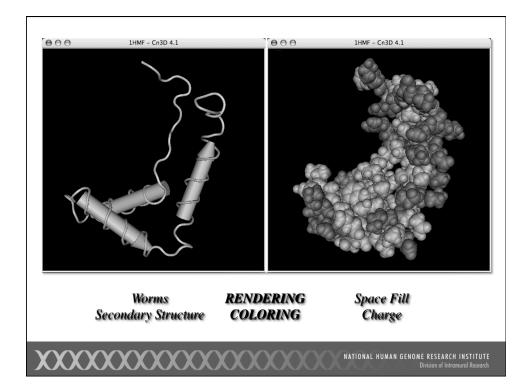


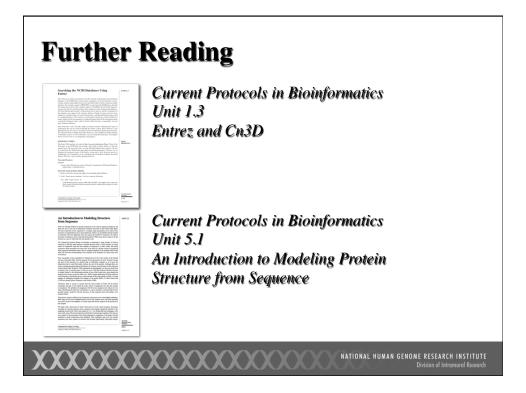




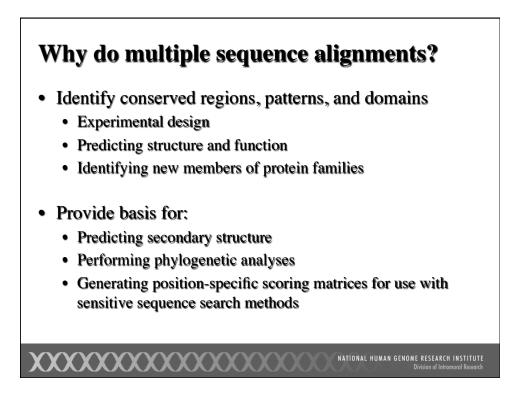


### **VAST Shortcomings**

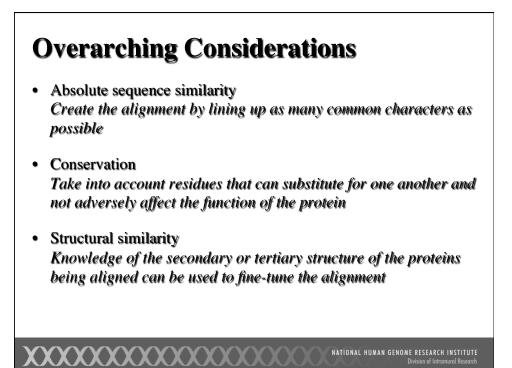
- Not the best method for determining structural similarities
- Reducing a structure to a series of vectors necessarily results in a loss of information (less confidence in prediction)
- Regardless of the "simplicity" of the method, VAST provides a simple and fast first answer to the question of structural similarity


ional Center for Biotechnolo +	National Center for Biotechnology Information	nahi nim nik aa
NCBI Resources 🟹 How To 🟹	nttp://www	ncbi.nlm.nih.gov
SNCBI Structure	0 1HMF	Search
NCBI Home	Welcome to NCBI	Develop Develop
Site Map (A-Z)		Popular Resources BLAST
All Resources	The National Center for Biotechnology Information advances science and health by providing access to biomedical and genomic information.	Bookshelf
		Gene
Chemicals & Bioassays	About the NCBI   Mission   Organization   Research   RSS Feeds	Genome
Data & Software		Nucleotide
DNA & RNA	Get Started	OMIM
Domains & Structures	Tools: Analyze data using NCBI software	Protein
Genes & Expression	<ul> <li>Downloads: Get NCBI data or software</li> <li>How-To's: Learn how to accomplish specific tasks at NCBI</li> </ul>	PubChem
•	Submissions: Submit data to GenBank or other NCBI databases	PubMed
Genetics & Medicine		PubMed Central
Genomes & Maps		SNP
Homology	NCBI YouTube channel	
iterature	Learn how to get the most out of NCBI	NCBI News
Proteins		NCBI Discovery Workshop: A Practical Hands-On
	tools and databases with video tutorials	Course 24 Jan
Sequence Analysis	on the NCBI YouTube Channel. GO	February 21-22, 2012 @ the NIH: Space is still
Taxonomy		available in the 2-day Discovery Workshop covering
Fraining & Tutorials	II 1 2 3 4 5 6 7	New NCBI Newsletter
Variation		Information on the new Genome Site, a new 16S BLAST database, updates to Sequin, changes in
	0	More
	Sources Popular Featured	NCBI INFORMATION: the Help


) E www.ncbi.nim. <b>nih.g</b>	jov/structure/?term=1HMF	<u>े</u> ⊽⊄ (≹	▼ Google	۹ 🔒
NCBI Resour	ces 🗹 How To 🕑		м	y NCBI Sign In
Structure	Structure 1HMF	Sear	ch	
	Save search Limits Advanced		_	Help
isplay Settings: 🖂		Send to:		
			elated information	<b></b>
~~~~	Structure Of The Hmg Box Motif In The B-Domain Of Hmg1[Dna-Binding]	3	imilar structures	
	Taxonomy: Rattus norvegicus Proteins: 1 modified: 2009/07/14	S	imilar Structures	
and the	MMDB ID: 56352 PDB ID: 1HMF	L	iterature	
×	View in Cn3D PubMed Protein Conserved Domains	P	ubMed	
		F	ull text in PMC	
		s	equences	
		P	rotein	
		R	elated Proteins	
		D	omains	
		с	onserved Domains	
		с	onserved Domain Family	
			onserved Domain Superfamil	v
			ther links	
		Т	axonomy	
			,	
		s	earch details	
		1	HMF[All Fields]	
			Search	
			Search	See more
		-		
		R	ecent activity	

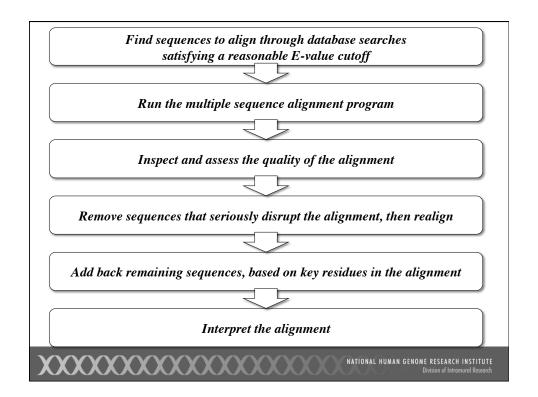

000	Vast Neighbor Summary					
S Vast Neighbor Summary	VV	•				
() North S www.ncbi.nim.ni	h.gov/Structure/vast/vastsrv.cgi?sdid=239428	☆ ♥ C (생 • Coogle 오) ★ 💷 •				
	VAST Similar Structures					
	es for: MMDB <u>56352</u> , 1HMF sequence A. ⊕					
	two main sections to this page. The first section consists of the alignment view controls, the list controls, and the cture search controls. The second section is the VAST related structure list itself. \blacksquare					
View 3D Alignme	nt of All Atoms (*) with Cn3D (*) Display (*) (*) Download Cn3D!					
View Sequence Alignm	using Hypertext + for Selected + VAST related structures					
List All seque	List All sequences Subset, sorted by Vast E-value S in Table S (2)					
Advanced related st	ructure search 🐵 🗵					
Mana like manage average	the red alignment footprints in the graphics below and click, you will obtain a structure-based sequence					
alignment.	une red alignment looiphints in the graphics below and cick, you will obtain a structure-based sequence					
Total related structu	res: 59; 34 representatives from the Medium redundancy subset displayed.					
Click to: Check All	Uncheck All					
Cilck to: Olicok All	1 15 30 45 60 77					
<u>1HHF A</u> Domain Families	Rli_len					
Specific Hits Super Families	HMGB-UBF_HMG-box					
	HMG-box superfamily					
262K A 1	70					
262K R 1 262K R 2						
202K N 2 2007 N 1						
2YRQ 8 2	69					
2Y91 8	69					
2CS1 8	68					
1.J30 B	67					
11HHE 0	66					
⊟ <u>483N</u> 8	61					
= <u>1.J5N</u> 8	59					
2YRQ 8 1	59					
2CRJ 8	58					

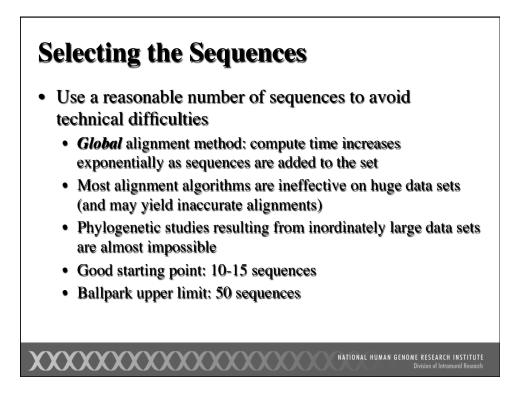




Overview

- Week 2
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Scoring Matrices
 - BLAST
 - BLAT
- Week 4
 - Profiles, Patterns, Motifs, and Domains
 - Structures: VAST, Cn3D, and de novo Prediction
 - Multiple Sequence Alignment





General Guidelines

- Concentrate on the protein level rather than on the nucleotide level
 - More informative
 - Less prone to inaccurate alignment ("20 vs. 4")
 - Can "translate back" to nucleotide sequences *after* doing the alignment

Selecting the Sequences

- Sequences should be of about the same length
- Trim sequences down, so as to only use regions that have been deemed similar by either:
 - Pairwise search methods (e.g., BLAST)
 - Profile-based search methods (e.g., PSI-BLAST)

Selecting the Sequences

 Use closely-related sequences to determine "required" amino acids

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

- Use more divergent sequences to study evolutionary relationships
- Good starting point: use sequences that are 30-70% similar to most of the other sequences in the data set
- The most informative alignments result when the sequences in the data set are not "too similar", but also not "too dissimilar"

Inspection: An Iterative Process

- Perform alignment on small set of sequences
- Examine the quality of the alignment, looking for:
 - · Conservation of residues across alignment
 - Conservation of physicochemical properties
 - Relatively neat block-type structure
 - Excessive numbers of gaps
- If alignment good, can add new sequences to data set, then realign
- If alignment not good, remove any sequences that result in the inclusion of long gaps, then realign

Inspection: An Iterative Process

- Use visualization tools to identify "key residues" and "problem regions" (e.g., JalView)
- Cross-check against "expertly created" multiple sequence alignments available online
- Use any available information from solved X-ray or NMR structures to nail down structurally important regions and to assess where gaps can (or cannot) be tolerated

Interpretation

- Absolutely-conserved positions are *required* for proper structure and function
- Relatively well-conserved positions are able to tolerate limited amounts of change and not adversely affect the structure or function of the protein
- Non-conserved positions may "mutate freely," and these mutations can possibly give rise to proteins with new functions

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Interpretation

- Gap-free blocks probably correspond to regions of secondary structure
- Gap-rich blocks probably correspond to unstructured or loop regions

ClustalW2

- Allows for automatic multiple alignment of nucleotide or amino acid sequences
- Can align data sets quickly and easily
- Uses scoring matrices as a series
- Can bias the location of gaps, based on known structural information

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

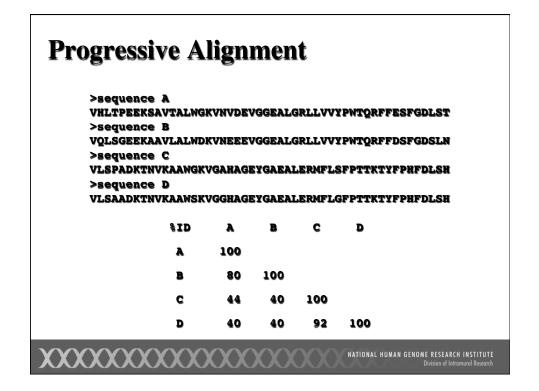
NATIONAL HUMAN GENOME RESEARCH INSTITUTE

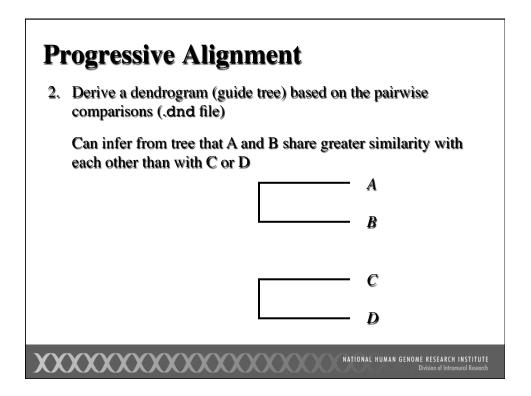
• Works with Jalview, Java applet for viewing and manipulating results

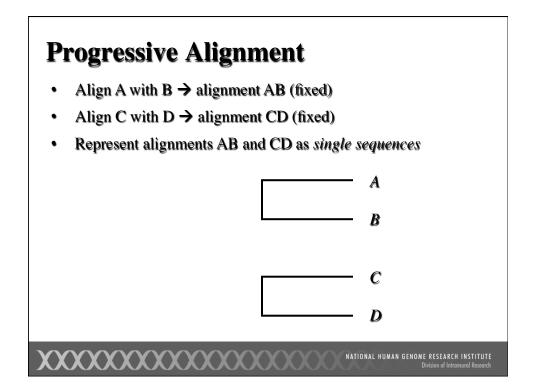
Progressive Alignment

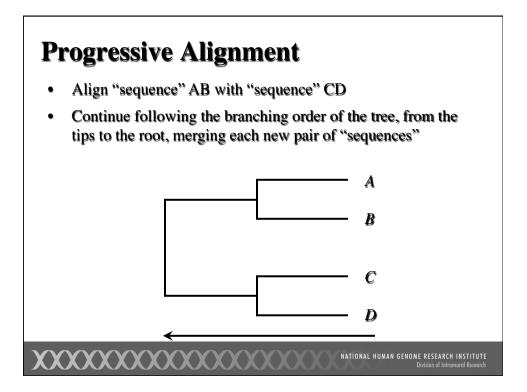
- Align two sequences at a time
- Gradually build up the multiple sequence alignment by merging larger and larger sub-alignments, clustering on the basis of similarity
- Uses protein scoring matrices and gap penalties to calculate alignments having the best score
- Major advantages of method

- Generally fast
- Alignments generally of high quality


<section-header><section-header><section-header><section-header><text><text><text>


Progressive Alignment


1. Calculate a similarity score (percent identity) between every pair of sequences to drive the alignment


For N sequences, this requires the calculation of $[N \times (N - 1)] / 2$ pairwise alignments

Sequences	Alignments	
4	6	
10	45	
25	300	
50	1,225	
100	4,950	
	NATIONA	L HUMAN GENOME RESEARCH INSTITUTE Division of Intramural Research

Progressive Alignment: Advantages

• Do "easier" alignments between highly-related sequences first

• Use information regarding conservation at each position to help with more difficult alignments between more distantly related sequences later on in process

Progressive Alignment: Disadvantages

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

- If initial alignments are made on distantly related sequences, there may be errors in the initial alignments
- Once an alignment is "fixed", it is not reconsidered, so any errors in the early alignments may propagate through subsequent alignments
- New version of ClustalW2 does provide a "remove first" iteration scheme to attempt to improve alignments

ClustalW2 Output

- Pairwise scores
- Multiple sequence alignment, in ClustalW alignment format

Alternative formats available:

GCG PHYLIP NEXUS NBRF/PIR GDE FASTA

ClustalW2 Output

- Cladogram
 - Tree that is assumed to be an estimate of a phylogeny
 - Branches are of equal length
 - Cladograms show common ancestry, but do not provide an indication of the amount of "evolutionary time" separating taxa

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Phylogram

- Tree that is assumed to be an estimate of a phylogeny
- Branches are not of equal length

• Branch lengths proportional to the amount of inferred evolutionary change

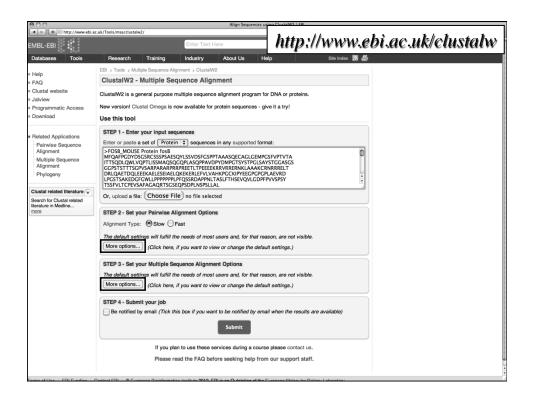
ClustalW2 Conservation Patterns

Conservation patterns in multiple sequence alignments usually follow the following rules:

[WYF] Aromatics

- [KRH] Basic side chains (+)
- [DE] Acidic side chains (-)
- [GP] Ends of helices
- [HS] Catalytic sites

[C] Cysteine cross-bridges


ClustalW2 Conservation Patterns

Interpretation is empirical — there is no parallel to the E-values seen in BLAST searches to assess "significance"

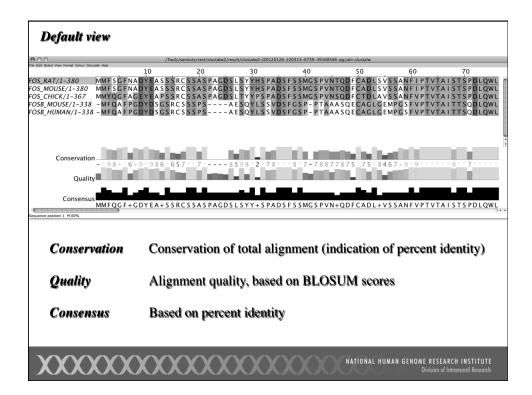
NATIONAL HUMAN GENOME RESEARCH INSTITUTE

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

- entirely conserved column
 (want in at least 10% of positions)
- "conserved" (strongly similar properties)
- "semi-conserved"
 (weakly similar properties)

000	Align Sequences using ClustalW2 EBI		
+ Chttp://www.ebi.a	nc.uk/Tools/msa/clustalw2/	C Q- Google	
= Clustal website = Jalview = Programmatic Access = Download	ClustalW2 is a general purpose multiple sequence alignment program for DNA or proteins. New version! Clustal Omega is now available for protein sequences - give it a try! Use this too!		
 Related Applications Pairwise Sequence Alignment Multiple Sequence Alignment Phylogeny Clustal related Iterature (~ Search for Clustal related Iterature in Medire mon 	STEP 1 - Enter your input sequences Enter or pasts a set of Protein 3 sequences in any supported format: >FOSS_MOUSE Protein foss MFQAFEODYDSCRCSSSPASSYLSSVDSFCSPTAASQECAGLCEMPCSFVPTVTA ITTSQDLQWLVQPTLISSMADSQCQPLASQPAX0PPOMPCTSYSTPCLSAYSTGCASCS CGFSTSTTSPCSAPSAARPARPRETLTTEELEKRARVRERNKLAAKAACKRNRRRLT DRLQAFTOQLEEKAALSEAALQKEKELEVLVAHKPCCKPPECPCPCPLAVAD UCSTSAECHONLAPPENPUSSSADAMULASCINSPELLAL Or, upload a file: Choose File) no file selected STEP 2 - Set your Pairwise Alignment Options Alignment Type: Slow Pairwise Alignment Options Protein Weight Matrix GAP OPEN STEP 3 - Set your Multiple Sequence Alignment Options Protein Weight Matrix GAP OPEN GAP EXTENSION Protein Options	D GAPS	PAM BLOSUM Gonnet (default) DNA Identity
	BLOSUM 10 0.20 15 10 ITERATION NUMITER CLUSTERING 10 10 10 Ialignment 10 10 10 10 10 10 OUTPUT Options FORMAT ORDER 10 <	Tree Alignment Default Itera	Each step Final step ttions 1

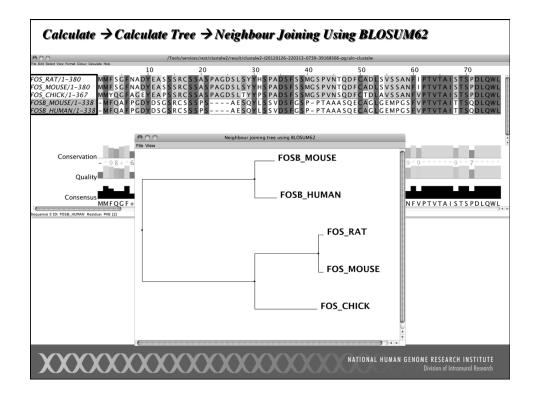
000			ClustalW2	Results				
▲ ► + ⓒ http://w	rw.ebi.ac.uk/Tools/se	rvices/web/toolresult.ebi?jobld=clustalw2	-120120126-224018-0946-95564726-	pg&tool=clustalw2&showColors=true C	Q- Coogle			
EMBL-EBI		Enter Text Here	Find	Help Feedback				
Databases Tools	Research	Training Industry Abo	out Us Help	Site Index 📓 🚔				
1 July	EBI > Tools > M	ultiple Sequence Alignment > ClustalW2						
= Help = FAQ	ClustalW2	Results						
= Jalview	Alignments	Result Summary Guide Tree Submi	ission Details Submit Another Job					
	Alignment							
 Related Applications 	Download Align	ment File Hide Colors						
Multiple Sequence Alignment	CLUSTAL 2.1 m	ultiple sequence alignment						
Phylogeny								
	FOS_RAT FOS_MOUSE		SYYHSPADSFSSMGSPVNTQDFCADLSVSS SYYHSPADSFSSMGSPVNTQDFCADLSVSS					
	FOS_CHICK FOSB_MOUSE	MMYQGFAGEYEAPSSRCSSASPAGDSL	TYYPSPADSFSSMGSPVNSQDFCTDLAVSS SQYLSSVDSPGSP-PTAAASQECAGLGEMP	ANF 60				
	FOSB_HUMAN	-MFQAFPGDYDSGSRCSSSPSAES	QYLSSVDSFGSP-PTAAASQECAGLGEMP	SSF 54				
		: .:*:: * .**.* ::	* ****.* :.: *:.*	*				
	FOS_RAT FOS_MOUSE		SQTRAPHPYGLP SQTRAPHPYGLP					
	FOS_CHICK	VPTVTAISTSPDLQWLVQPTLISSVAP:	SQNRGHPYGVP	98				
	FOSB_MOUSE FOSB_HUMAN	VPTVTAITTSQDLQWLVQPTLISSMAQS	SQGQPLASQPPAVDPYDMPGTSYSTPGLSA SQGQPLASQPPVVDPYDMPGTSYSTPGMSG					
		:******:** *********:**:*	.**.:*					
	FOS_RAT FOS_MOUSE		GRRGKVEQLSPEEEEKRRIRRERNKMAAAK					
	FOS_CHICK	_CHICKAPAPPAAYSRPAVLKAPGGRQQSIGRRGKVEQLSPEEEEKRRIRRERNKMAAAKCRN 155						
	FOSB_MOUSE FOSB_HUMAN		PRPREETLTPEEEEKRRVRRERNKLAAAK PRRPREETLTPEEEEKRRVRRERNKLAAAK					
	_		** : * *:*******:*****	k A A				
	FOS_RAT		ANLLKEKEKLEFILAAHRPACKIPNDLGFP					
	POS_MOUSE REREAT/DTLQAETOQLEBERSAL/CTEIANLARKERLEFILAARRPACKIPOLGPPELR478EL 216 FOS_CHICK REREAT/DTLQAETOQLEBERSAL/ALRKERLEFILAARRPACKIPELR478EL 215							
	FOSB_MOUSE FOSB_HUMAN		AELQKEKERLEFVLVAHKPGCKIPYEEGPG AELQKEKERLEFVLVAHKPGCKIPYEEGPG					
	1000_0002	****** ********************************	1* ****1***1*,**1*,**1* 1					
	FOS_RAT		NDPEPKPSLEPVKNISNMELKAEPFDDFL					
	FOS_MOUSE FOS CHICK		NDPEPKPSLEPVKSISNVELKAEPFDDFL MTEAPPAVPPKEPSGSGLELKAEPFDELL					
	FOSB_MOUSE FOSB_HUMAN	LAEVRDLPGSTSAKEDGFGWLI	PPPPPPPLPFQSSRDAPPNLTASLFTHSE PPPPPPPLPFQTSQDAPPNLTASLFTHSE	/QV 288				
	TODD_HOURA	· * 1.1 *	* * . 1 1*.*. * .					
AVEPMILW	1	BED	Small (small+ by	rophobic (incl.aromatic -Y)	N			
			. ,	aophobic (incl.aromatic - r)	/			
DE		BLUE	Acidic					
RK		MAGENTA	Basic - H					
STYHCNGO	ג	GREEN	Hydroxyl + sulfhy	dryl + amine + G				
Others		Grey	Unusual amino/in	nino acids etc				
	1							

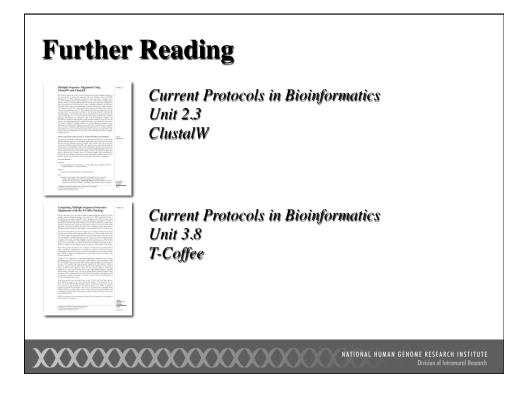

000	ClustaW2 Results	
▲ ▶ + ③ http://www.	ww.ebi.a.cuk/Tools/services/web/toolresult.ebi?tree=cladogram&joble=clustalw2=20120126=224018=0946=95564726=pg&tool=clustalw2&analysis=trr C 🔍 Ce-Coogle	$ \geq $
EMBL-EBI	Enter Text Here Find Help Feedback	
Databases Tools	Research Training Industry About Us Help Sile Index 🗃 🍏	
= Help	EBI > Tools > Multiple Sequence Alignment > ClustaW2	
= FAQ	ClustalW2 Results	
= Jalview	Algnments Result Summary Guide Tree Submission Details Submit Another Job Guide Tree	
Related Applications Multiple Sequence Alignment Phylogeny	Download Guide Tree File (rods_stock rods_stock 10.40712, 10.40712, 10.40712, rods_stock rods rods_stock rods_stock rods_stock rods_stock rods_stock rods_stock rods_stock rods_stock rods_stock rods rods_stock </th <th></th>	
	Cladogram	
	Show as Phylogram Tree Show Distances	
	FOSS HUMAN FOSS CHICK FOSS CHICK FOSS CHICK FOSS MOUSE	
	Right-click on the above tree to see display options.	
Terms of Use EBI Funding	g Contact.EBL Φ European Bioinformatics Institute 2012. EBI is an Outstation of the European Molecular Biology Laboratory.	

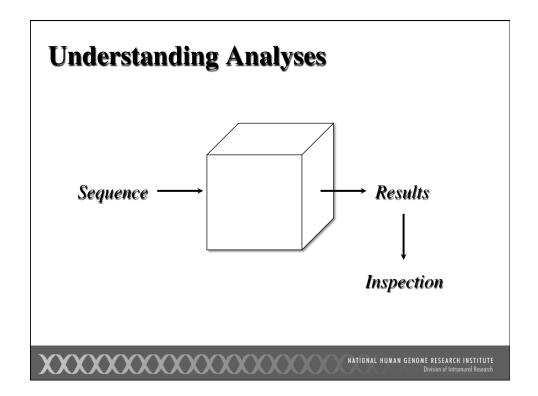
000	ClustalW2 Results
+ C http://www.	w.ebi.ac.uk/Tools/services/web/toolresult.ebi7jobld=clustalw2-i20120126-224018-0946-95564726-pg&tool=clustalw2&analysis=tree C Q- Google
EMBL-EBI	Enter Text Here Find Help Feedback
Databases Tools	Research Training Industry About Us Help Site Index 🕅 🎒
= Help	EBI > Tools > Multiple Sequence Alignment > QuataW2
= FAQ	ClustalW2 Results
= Jalview	Alignments Result Summary Guide Tree Submission Details Submit Another Job
	Guide Tree
Related Applications Multiple Sequence Alignment Phylogeny	Download Guide Tree File
	Phylogram
	Show as Cladogram Tree Show Distances
Terms of Use EBI Funding	□ Contact_EBL @ European Bioinformatics Institute 2012. EBI is an Outstation of the European Molecular Biology Laboratory.

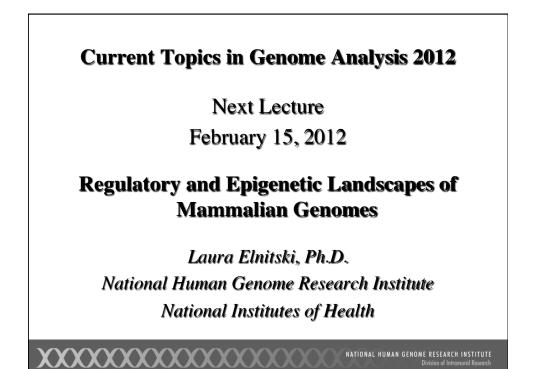
000							ClustalW2 R			
+ C http://www.	w.ebi.ac.uk/	Tools/services/we	b/toolre	sult.ebi?joblo	d=clustalw2-I2012	0126-2	24018-0946-95564726-p	g&tool=clustalw2&analysis=summary	C Q Google	
EMBL-EBI				Enter Te	ext Here		Find	Help Feedback		
Databases Tools	Rese	arch Traini	ing	Industry	About Us	E F	lelp	Site Index 📓 🕌		
	EBI > To	ols > Multiple Sec	juence A	lignment > 0	JustalW2					
= Help = FAQ		alW2 Results								
= Jalview	Alignme			Guide Tre	e Submission D	etails	Submit Another Job			
	Result	files								
 Related Applications 	Input S	equences				Ja	lView			
Multiple Sequence	clusta	lw2-l20120126-2	24018-	0946-95564	726-pg.input	11				
Alignment Phylogeny	Tool O clusta	lw2-l20120126-2	24018-	0946-95564	726-pg.output		Start Jalview			
Filyogeny	Alignm	ent in CLUSTAL	. forma	t	726-pg.clustalw					
	Guide	Tree								
	clusta	lw2-l20120126-2	224018-	0946-95564	726-pg.dnd					
	Scores	Table								
	View O	utput File								
	SeqA ø	Name o	Length	o SeqB	Name o	Lengt	h 🗢 Score 🗢			
	1	FOSB_MOUSE	338	2	FOSB_HUMAN	338	95.0			
	1	FOSB_MOUSE	338	3	FOS_CHICK	367	45.0			
	1	FOSB_MOUSE		4	FOS_RAT	380	44.0			
	1	FOSB_MOUSE		5	FOS_MOUSE		44.0			
	2	FOSB_HUMAN		3	FOS_CHICK		44.0			
	2	FOSB_HUMAN		4	FOS_RAT	380	44.0			
	2	FOSB_HUMAN		5	FOS_MOUSE		45.0			
	3	-	367 367	4	FOS_RAT FOS_MOUSE	380	75.0			
	4	FOS_RAT	380	5	FOS_MOUSE		96.0			
	*	PO8_1041	300	0	PO3_MOUSE	300	90.0			
ferms of Use EBI Funding	Contact E	BI © European	Bioinfor	matics Institu	<u>ate</u> 2012. EBI is an	Outsta	tion of the European Molec	ular Biology Laboratory.		
1										

Jalview


- Java applet available within ClustalW2 results
- Used to manually edit ClustalW2 alignments
- Color residues based on various properties
- Pairwise alignment of selected sequences
- Consensus sequence calculations
- Removal of redundant sequences
- Calculation of phylogenetic trees




NATIONAL HUMAN GENOME RESEARCH INSTITUTE


Colour → Percen	tage Identity	
800	/Tools/services/rest/clustalw2/result/c	:lustalw2-l20120126-220313-0739-39168566-pg/aln-clustalw
FOS_MOUSE/1-380 MM F S G F NA FOS_CHICK/1-367 MM Y Q G F A G	DY EASS S RCS S AS PAGDS LS EY EAPS S RCS S AS PAGDS LT DY DSGS RCS S S PS AES	30 40 50 60 70 YYH B PADSES SMGS PVNTQD FCADL SVS SAN FLIPTVTALSTS PDLQWL YYH S PADSES SMGS PVNTQD FCADL SVS SAN FLIPTVTALSTS PDLQWL YY PS PADSES SMGS PVN SQD FCTD LAVS SAN FVPTVTALSTS PDLQWL QYLS SVD SFG S P-PTAAASQECACL GEMPG SFVPTVTALTTS QD LQWL QYLS SVD SFG S P-PTAAASQECACL GEMPG SFVPTVTALTTS QD LQWL
Conservation - 98+ 6+ Quality	9 986 657 7 859	8 2 78 8 7 - 78877875 75 8467+9 9 9 7 9 7
Consensus MMFQGF+G Sequence 5 ID: FOSB_HUMAN Residue: PHE (2)	DY EA + S S R C S S A S P A G D S L S	YY+SPADSFSSMGSPVN+QDFCADL+VSSANFVPTVTAISTSPDLQWL
	Agreement	Background Color
	81 - 100% 61 - 80% 41 - 60%	Dark blue Medium blue Light blue
~~~~~	<u>≤</u> 40%	White NATIONAL HUMAN GENOME RESEARCH INSTITUTE
		Division of Intramural Research

t Select View Format Colour Calculate Help	/Tools/services/rest/clustalw2/result/clustalw2-I20120126-220313-0739-39168566-pg/aln-clustalw	
_MOUSE/1-380 MM F S C _CHICK/1-367 MM Y Q C B_MOUSE/1-338 - M F Q A	10 20 30 40 50 FNADY EAS S SRCS SA S PAGDS L S Y HS PADS F S SMGS PVNTQDF CADL FNADY EAS S SRCS SA S PAGDS L S Y HS PADS F S SMGS PVNTQDF CADL FAGE EAP S SRCS SA S PAGDS L TY Y PS PADS F S SMGS PVNTQDF F TD L PGDY DSG RCS S SP S AE SQ L S SVDS F G S P-TAAAS QE AG L PGDY DSG RCS SS PS AE SQ L S SVDS F G S P-TAAAS QE AG L	S V S S A N F I PT V T A I S T S P D L Q A V S S A N F V PT V T A I S T S P D L Q G E M P G S F V PT V T A I T T S Q D L Q
	A O O Pairwise Alignment	
Conservation	Score = 16930 Length of alignment = 338 Sequence FOSB_NUMAN i 1 - 338 (Sequence length = 338) Sequence FOSB_NUMSE : 1 - 338 (Sequence length = 338)	and the second
- * 98- Quality	6+9 FOSB_HUMAN MFQAFPGDYDSGSRCSSSP5AESQYLSSVDSFGSPTMAASQECAGLGERFGSFVPTVTAI	67+9*9*****9**7***
Consensus MM F Q C	FOSB_HUMAN TTSQDLQHLVQPTLISSMAQSQQQPLASQPPVDPYDPYDRYGTSYSTPGMSQYSSGGASGGG FF-CDY FOSB_MOUSE TTSQDLQHLVQPTLISSMAQSQQQPLASQPPAVDPYDPWFCSTSTFGLASYSGCASGGA	/S SANF V PT V TA I ST S PD LQ
ce 5 ID: FOSB_HUMAN Residue: PHE (2)	FOSB_HUMAN PSTSGTTSGPGPARPARARPRRPREETLTPEEEEKRRVRRERNKLAAAKCRNRRELTORL	
	POSB_HUMAN QAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPOCKIPYEEGPGPGPLAEVROLPGS POSB_NOUSS_QAETDQLEEEKAELESEIAELQKEKERLEFVLVAHKPOCKIPYEEGPGPGPLAEVROLPGS	
	POSB_HUMAN APAKEDGPSWLLPPPPPPPPPPPTGTSQDAPPNLTASLFTHSEVQVLGDPFPVVNPSYTSSFV 	
	POSB_HUMAN LTCPEVSAFAGAQRTSGSDQPSDPLNSPSLLAL	
	Percentage ID = 95.86	
	1	ll .
	(View in alignment editor)	









