

Functionalizing the Cancer Genome

Lynda Chin Harvard Medicine School Belfer Institute for Applied Cancer Science **Dana-Farber Cancer Institute Broad Institute**

Disclosure

AVEO Pharmaceuticals: co-founder and advisor Metamark Genetics: founder, director and advisor Eden; Epizyme; Agios: Consultants; GSK: Sponsored Research; Merck; sanofi-aventis: Corporate alliance partnerships

Major Goals in Cancer Medicine

- Prevention
- Detection
- Intervention

Genome Science

Personalized Medicine

Impacting on Cancer Medicine

Chin et al "Cancer Genomics: from discovery science to personalized medicine" Nature Medicine in press

Potential of Cancer Genomics

- Enable prevention
 - Understanding the underlying etiology \rightarrow strategy
- Facilitate early detection õ
 - Identify risk alleles / genomic events for screening
 - Early events may be detectable in serum or by imaging
- Guide evidence-based interventionõ
 - Stratify high vs low risk patients to treat or not
 - Identify new therapeutic targets for drug discovery
 - Inform selection of the right patient for the right drug
 - Define combination / co-extinction strategies

Personalized Cancer Medicine

NCAB Sept 8, 2010

TCGA Phase II

Kenna Shaw, NCI

TCGA Phase II Projects

THE CANCER GENOME ATLAS

Brain	GBM and low-grade gliomas				
Breast	Ductal & lobular breast adenocarcinomas				
Stomach	Intestinal-type gastric adenocarcinoma				
Liver	Hepatocellular carcinoma				
Intestine	Colon and rectal adenocarcinomas				
Gynecologic	Serous ovarian adenocarcinoma; endometrial and cervical squamous carcinomas				
Prostate	Prostate adenocarcinoma				
Bladder	Non-papillary bladder cancer				
Head and Neck	Squamous cell and thyroid papillary carcinomas				
Hematopoietic	Acute myeloid leukemia				
Skin	Metastatic cutaneous melanoma				
Lung	Non-small cell lung cancer, adenocarcinoma and squamous subtypes				
Kidney	Renal clear cell and renal papillary carcinomas				
Pancreas	Pancreatic adenocarcinoma				

Active Tumor Projects

Timeline to Completion of Comprehensive Analysis for Each Tumor Project

Massively Parallel Sequencing

The Cancer Genome Atlas 🌐

Scale of Growth is unprecedented

The Cancer Genome Atlas 🌐

TCGA Phase II Research Network

The Cancer Genome Atlas 💮

NCAB Sept 8, 2010

Summary of TCGA Tumor Data Ingested into Broad GDAC Pipeline 01/14/2011 Run

TumorType	Biosp ecim en	Any_Level_1	Clinical	CNA	Methylation	mRNA	miR	MAF
BRCA	346	186	244	265	186	280	0	0
COAD	203	151	130	137	167	155	0	64
GBM	508	448	490	466	288	444	415	169
HNSC	39	0	0	0	0	0	0	0
KIRC	355	39	19	254	219	41	0	0
KIRP	48	39	0	16	36	41	0	0
LAML	202	0	0	0	188	0	0	0
LGG	30	0	0	0	0	0	0	0
LUAD	128	21	11	56	128	33	0	0
LUSC	160	116	42	117	133	116	0	0
ov	584	570	532	519	425	519	566	384
READ	79	52	72	51	69	69	0	12
STAD	82	35	0	81	82	0	0	0
UCEC	145	24	0	114	70	0	0	0
Totals	2909	1681	1540	2076	1991	1698	981	629

Status of TCGA Analysis Pipeline (Jan 14, 2010 Run)

Mike Noble; Doug Voet

Complete catalogues will be generated

Complete Compendia THE CANCER GENOME ATLAS ICGC What does it take?

Cancer Cell Article

The Cancer Genome Atlas 🕀

Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in *PDGFRA*, *IDH1*, *EGFR*, and *NF1*

Roel G.W. Verhaak,^{1,2,17} Katherine A. Hoadley,^{3,4,17} Elizabeth Purdom,⁷ Victoria Wang,⁸ Yuan Qi,^{4,5} Matthew D. Wilkerson,^{4,5} C. Ryan Miller,^{4,6} Li Ding,⁹ Todd Golub,^{1,10} Jill P. Mesirov,¹ Gabriele Alexe,¹ Michael Lawrence,^{1,2} Michael O'Kelly,^{1,2} Pablo Tamayo,¹ Barbara A. Weir,^{1,2} Stacey Gabriel,¹ Wendy Winckler,^{1,2} Supriya Gupta,¹ Lakshmi Jakkula,¹¹ Heidi S. Feiler,¹¹ J. Graeme Hodgson,¹² C. David James,¹² Jann N. Sarkaria,¹³ Cameron Brennan,¹⁴ Ari Kahn,¹⁵ Paul T. Spellman,¹¹ Richard K. Wilson,⁹ Terence P. Speed,^{7,16} Joe W. Gray,¹¹ Matthew Meyerson,^{1,2} Gad Getz,¹ Charles M. Perou,^{3,4,8} D. Neil Hayes,^{4,5,*} and The Cancer Genome Atlas Research Network

What is driving the molecular difference among subtypes?

The most significant difference is observed between PN and MS subtypes

CLR- Context Likelihood of Relatedness

- Faith et al, PLoS Biology, 2007
- Extension of relevance networks
- Based on Mutual Information scores

Define miRNA-mRNA regulatory network

microRNA expression matched samples mRNA expression 194 TCGA Glioblastoma data 534 miRNA, 19692 mRNAs

→ 29610 edges: 252 miRNA and 7373 mRNAs

A subset of the miRNAs show strong correlations with subtype signature genes

17 miRNA with strong correlations with the proneural and mesenchyaml signature genes

miR34a as a candidate determinant of PN molecular subtype

- Integration with copy number reveals miR34a resides in region of loss
- miR34a is low in PN subtype GBM
- PN signature is enriched for miR34a edges defined by CLR

miR34a is tumor suppressive in human GBM models *in vivo*

How does miR34a regulate the **PN/MS** transcriptomic signatures? miRNA TF 3qUTR Luciferase reporter . direct regulation of PDGFRa and DLL1 by miR34a Modulation of miR34a regulates PDGFRa and DLL1 (as well as Notch downstream targets) in human astrocytes and GBM cells → Relevance? TARGET GENES (CLR Edges)

Chromosomal and genetic aberrations involved in the genesis of glioblastoma.

Furnari F B et al. Genes Dev. 2007;21:2683-2710

CSH PRESS

TCGA GBM cohort shows enrichment of NOTCH in Classical and PN subtypes

p53 and Pten loss in neural progenitor cells results in malignant gliomas

42/57 (73%) p53L/L Pten L/+ mice:
Acute neurological symptoms
28 Grade III; 14 Grade IV
astrocytic morphology (95%)
diffuse & proliferative
necrosis
glioma markers

Zheng (DePinho), Nature 2008

Pdgfra overexpression is a hallmark of mouse PN GBMs

⁽Zheng et al., Nature 2008)

- miR34a modulates Pdgfra expression
- Pdgfra is functionally epistatic to miR34a

miR34a-low GEMM tumors show Notch activation in vivo

 miR34a modulates Notch activity and its downstream target gene expression

miR34a is a determinant of PN molecular phenotype in GBM

- Integrative genomic data set enables
 - network modeling to generate testable hypothesis
 - development of framework for understanding complex cancer genomics data
- miR34a defines a subset of GBM with concurrent PDGFRa and Notch activation

Drug and biomarker discovery and development Genomics-informed clinical trials Regulatory and commercial challenges

Chin et al "Cancer Genomics: from discovery science to personalized medicine" Nature Medicine in press

Promise of Cancer Genomics

- Enable prevention
 - Understanding the underlying etiology \rightarrow strategy
- Facilitate early detection õ
 - Identify risk alleles / genomic events for screening
 - Early events may be detectable in serum or by imaging
- Guide evidence-based interventionõ
 - Stratify high vs low risk patients to treat or not
 - Identify new therapeutic targets for drug discovery
 - Inform selection of the right patient for the right drug
 - Define combination / co-extinction strategies

Early-staged patients make up the majority of US cancer diagnoses

doi:10.1038/nature09677

SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression

Zhihu Ding^{1,2,3,4}, Chang-Jiun Wu^{1,2,3,4}*, Gerald C. Chu^{1,2,5}*, Yonghong Xiao^{1,2}, Dennis Ho^{1,2,3,4}, Jingfang Zhang⁶, Samuel R. Perry^{1,2}, Emma S. Labrot^{1,2}, Xiaoqiu Wu^{2,7}, Rosina Lis^{2,7}, Yujin Hoshida^{8,9}, David Hiller¹⁰, Baoli Hu^{1,2}, Shan Jiang^{1,2}, Hongwu Zheng^{1,2,3,4}, Alexander H. Stegh^{1,2,3,4}, Kenneth L. Scott^{1,2,3,4}, Sabina Signoretti¹¹, Nabeel Bardeesy¹², Y. Alan Wang^{1,2}, David E. Hill^{3,13}, Todd R. Golub^{8,9}, Meir J. Stampfer^{15,16,17}, Wing H. Wong¹⁰, Massimo Loda^{2,5,7}, Lorelei Mucci^{15,17}, Lynda Chin^{1,2,3,4,14} & Ronald A. DePinho^{1,2,3,4}

In Physicianc Health Cohort (n=405)

- ⁷⁷ 4-marker outperforms Gleason in predicting lethal disease
 - " Gleason-only C Index = 0.774;
 - 4-marker only C Index = 0.829

["] Carries molecular information not captured by clinical parameters

["] 4-marker + Gleason C Index =0.882, p = 0.015 for improvement

Metastatic potential of a primary tumor can be determined early on in evolution

Adapted from: Rethinking Screening for Breast and Prostate Cancer. JAMA, 2009

Cancer Genomics \rightarrow Genomic Medicine

- Enable prevention
 - Understanding the underlying etiology \rightarrow strategy
- Facilitate early detection õ
 - Identify risk alleles / genomic events for screening
 - Early events may be detectable in serum or by imaging
- Guide evidence-based interventionõ
 - Stratify high vs low risk patients to treat or not
 - Identify new therapeutic targets for drug discovery
 - Inform selection of the right patient for the right drug
 - Define combination / co-extinction strategies

Acknowledgement

Belfer Institute for Applied Cancer Science

Cancer Genomics Alexei Protopopov Elena Ivanova Maria Alimova Ilana Perna Otey Georgia Ren

Bioinformatics Yonghong Xiao Juihua Zhang Spring Liu **Sachet Shukla** Hailei Zhang Terrence Wu

Molecular Pathology Gerry Chu Perry Samuels

At the Bench:

Denise Spring Nate Goldstein Steven Quayle Larry Kwong Papia Ghosh Gianni Genovese **Chengyin Min** Sharmistha Sarka Kunal Rai Nina Seitzer Erik Uhlmann Terrence Wu Ian Watson Yonathan Lissanu Deribe **Benito Campos** Robert Dewan Huiyu Liu

Ruprecht Wiedemeyer **Kenneth Scott** Omar Kabbarah Cristina Nogueira Tim Heffernan

Metastasis oncogenes

Jason Hanna David Rimm (Yale)

GOLPH3:

Kwok-kin Wong (DFCI) Mei-Chih Liang

David Rimm (Yale) Elsa Anagnastou

CLR Network Modeling:

Ayla Ergun Jim Collins (BU)

RNAi / Human ORFeome

Jesse Bohem (Broad) Bill Hahn

Marc Vidal (DFCI) Dave Hills

Acknowledgement

Broad GDAC

Gaddy Getz Mike Noble Doug Voet Gordon Saksena Mike Lawrence Lihua Zou Rui Jing

Juihua Zhang Spring Liu Sachet Shukla Hailei Zhang Terrence Wu

Nils Gehlenborg Richard Park Peter Park

Harvard GCC

Raju Kucherlapati Jon Seidman Peter Park

Alexei Protopopov Ilana Perna Georgia Ren Juinhua Zhang Sachet Shukla

Juihua Zhang Hailei Zhang

N Sathiamoorthy Oleg Iartchouk