Views & Reviews

Iatrogenic Creutzfeldt–Jakob disease

The waning of an era

Paul Brown, MD; Jean-Philippe Brandel, MD; Michael Preese, MD; and Takeshi Sato, MD

Abstract—The outbreaks of iatrogenic Creutzfeldt–Jakob disease (CJD) from cadaveric human growth hormone and dura mater are winding down and, like the only other environmentally acquired form of CJD (variant CJD due to infection with the agent of bovine spongiform encephalopathy), iatrogenic disease seems to have reached its high water mark during the 1990s. The total number of cases has reached 405, and the diminishing number of new cases is due to extremely long incubation periods from infections acquired before 1985 (up to 23 years for dura mater and 36 years for growth hormone). Although no cases associated with surgical or other invasive procedures have been identified during the past several decades, the recent discovery of three transfusion-associated variant CJD infections has provoked new concerns about the possibility of further secondary transmissions from operative procedures as well as blood and tissue donations. Therefore, at least in those countries in which variant CJD has occurred, precautionary measures must continue for the indefinite future.

NEUROLOGY 2006;67:389-393

Five years have passed since the last review of iatrogenic Creutzfeldt–Jakob disease (CJD), and although the total number of cases has increased from 267 to 405 (table 1), the downward trend that was already beginning in 2000 has continued (figure). In particular, the outbreaks of disease due to contaminated human growth hormone (hGH) and dura mater grafts have largely subsided and, apart from variant CJD (vCJD) transfusion-associated disease, the new cases that occur each year are the result of longer and longer incubation periods following infections acquired during the 1980s.

These long incubation cases have significantly extended the maximum range and median values of incubation periods after infection by contaminated hGH or dura mater, but the clinical presentations have not changed (table 2). A homozygous genotype at PRNP codon 129 continues to be overrepresented in cases of iatrogenic disease (as in all other forms of CJD), but the duration of the incubation period remains uninfluenced by the genotype except in French hGH cases, where it is positively correlated with a heterozygous genotype. A further interesting observation is that florid plaques such as those found in vCJD have been seen in the brains of several dura mater-associated cases.

Apart from codon 129 homozygosity, risk factors seem to have differed in each of the three countries in which outbreaks of hGH-related CJD occurred (table 2). In the United States and United Kingdom, the risk of being infected was clearly much diminished when size exclusion chromatography replaced the original organic solvent extraction, but additional factors were duration of treatment in the United States, and age at onset of treatment (8 to 10 years) in the United Kingdom. In France, hormone was always extracted using ion exchange chromatography, and the fact that all cases shared a limited treatment period between December 1983 and June 1985 suggests that a major contamination event, or events, occurred at some time during this period, due to the presence of pituitary tissue from one or more CJD patients and cross-contamination of multiple batches of hormone. For dura mater graft recipients, the only risk factor was the use of Lyodura brand grafts processed before 1987, when an NaOH disinfection step was added to the processing protocol (only a very few cases were associated with non-Lyodura grafts).

There have been no new cases of iatrogenic disease (or at least none identified) due to corneal grafts or cross-contamination of instruments used for surgical or invasive medical procedures, although we are aware of several instances in which patients with unsuspected CJD underwent neurosurgery or donated ocular tissues. This is both

Copyright © 2006 by AAN Enterprises, Inc. 389

This article was previously published in electronic format as an Expedited E-Pub at www.neurology.org

From Bethesda, MD (P.B.); CJD Surveillance Unit, Hôpital de la Salpêtrière, Paris, France (J.-P.B.); Institute of Child Health, London, England (M.P.); and Department of Neurology, Higashiyamato Hospital, Japan (T.S.).

Disclosure: The authors report no conflicts of interest.

Received February 6, 2006. Accepted in final form May 10, 2006.

Address correspondence and reprint requests to Dr. Paul Brown, 7815 Exeter Road, Bethesda, MD 20814; e-mail: paulwbrown@comcast.net

Table 1 Global distribution	n of cases of	^f iatrogenic	Creutzfeldt-Jakob	disease
-----------------------------	---------------	-------------------------	-------------------	---------

	Surgical procedures			Hormone therapy		Blood transfusion	
	Dura mater grafts	Surgical instruments	EEG needles	Corneal transplants*	Growth hormone†	Gonadotropin	Packed red cells‡
Argentina	1						
Australia	5				1	4	
Austria	2						
Brazil					1		
Canada	4						
Croatia	1						
France	13	1			107		
Germany	8			1			
Holland	2				1		
Ireland	1						
Italy	4						
Japan	123						
New Zealand	2				6		
Qatar					1		
South Africa	1						
Spain	10						
Switzerland	1		2				
Thailand	1						
United Kingdom	7	3			51		3
United States	3			1	26		
Totals	196	4	2	2	194	4	3

* Additional possible single cases after corneal transplant or keratoplasty (not included in the table) occurred in Japan, the United Kingdom, and the United States.

† Brazil and New Zealand human growth hormone (hGH) was prepared in the United States; Qatar hGH was prepared in France. Additional possible single cases due to hGH (not included in the table) occurred in The Netherlands, Scandinavia, and New Zealand.

‡ Donors had variant CJD.

gratifying and surprising, in view of the fact that standard hospital decontamination procedures are suboptimal for sterilization of the infectious agent of CJD. Although it is possible that this unblemished record might be tainted by a failure to report such cases, it seems more likely that it reflects a level of donor screening and/or decontamination

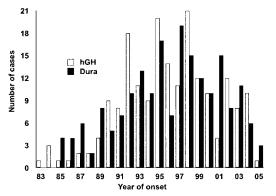


Figure. Symptomatic onset of iatrogenic Creutzfeldt–Jakob disease in patients infected by contaminated human growth hormone (hGH) or dura mater grafts, as of January 2006. The earliest dura mater case (not shown) occurred in the United States in 1978. Some additional growth hormone and dura mater cases with onsets after long incubation periods are likely to be diagnosed in 2006 (and beyond).

that even if suboptimal is adequate to prevent disease transmission. Additional protection is afforded by comparatively inefficient peripheral routes of infection in general surgery and medical instrumentation.

However, the recent appearance of three transfusion-associated vCJD transmissions after incubation periods of 6 to 8 years indicates that in this form of disease, the IV route is efficient (primary vCJD infections have an estimated average incubation period of 10 to 13 years). Also, one of the disease-transmitting donations was made more than 3 years before the donor became symptomatic, raising concerns about further secondary vCJD cases via blood or tissue donations and surgical instrument contamination from a possibly large number of "silently infected" (and thus currently undetectable) individuals.

With respect to iatrogenic disease as a whole, it can be said that the diminishing number of cases is the result of a quarter century of improvement in the diagnosis of CJD, which has minimized donor risk, and a better understanding of the ways by which contamination from patients who do escape detection can be thwarted by a rigorous application of disinfecting procedures. Our earlier obituary of iatrogenic CJD was premature; now, finally, the casket is nearly closed.

390 NEUROLOGY 67 August (1 of 2) 2006

Table 2 Clinical features of iatrogenic Creutzfeldt–Jakob disease according to the mode and route of infection

Mode of infection Agent entry into brain		Mean incubation period (range)	Clinical presentation	
Corneal transplant	Optic nerve	18 and 320 mo	Dementia/cerebellar	
Stereotactic EEG	Intracerebral	16 and 20 mo	Dementia/cerebellar	
Neurosurgery	Intracerebral	17 mo (12–28 mo)	Visual/dementia/cerebellar	
Dura mater graft	Cerebral surface	11 y (16 mo–23 y)	Cerebellar (visual/dementia)	
Growth hormone	Hematogenous (?)	15 y (4–36 y)*	Cerebellar	
Gonadotrophin	Hematogenous (?)	13 y (12–16 y)	Cerebellar	
Blood transfusion	Hematogenous (?)	6.5 and 8 y^{\dagger}	Psychiatric	

* Median and range were 12 (4 to 22) years in France; 17 (8 to 27) years in the United Kingdom; and 21 (10 to 28) years in the United States. The case with the longest incubation period (36 years) occurred in a New Zealand patient (hormone prepared in the United States).

[†] The incubation period of a third case is unknown, as the transmission was discovered only by detection of the pathognomonic misfolded protein in spleen and lymph node at autopsy in a patient with neither neurologic symptoms nor brain pathology, who died from an unrelated disease 5 years after having received contaminated blood (i.e., in a preclinical or subclinical stage of Creutzfeldt–Jakob disease).

Acknowledgment

The authors thank the members of national CJD surveillance teams who generously provided unpublished data on the current status of iatrogenic CJD in their countries, including Mrs. Terri Lindsay and Jan McKenzie (UK), Mrs. Terry Sutcliffe (Canada), and Drs. Steve Collins (Australia), Michael Croxon (New Zealand), Jesus de Pedro Cuestra (Spain), Juan Martinez-Lage (Spain), Maurizio Pocchiari (Italy), Larry Schoenberger (US), Cornelia van Duijn (The Netherlands), Robert Will (EuroCJD), and Inga Zerr (Germany).

References

Citations are organized chronologically according to the category of iatrogenic disease and include nearly all published references known to the authors for definite, probable, and possible cases (a few repetitive superseded articles have not been listed, and many dura mater and growth hormone cases identified in ongoing Creutzfeldt–Jakob disease surveillance programs remain unpublished).

Dura mater

Japan

- 1. Miyashita K, Inuzuka T, Kondo H, et al. Creutzfeldt-Jakob disease in a patient with a cadaveric dural graft. Neurology 1991;41:940–941.
- Yamada S, Aiba T, Endo Y, Hara M, Kitamoto T, Tateishi J. Creutzfeldt-Jakob disease transmitted by a cadaveric dura mater graft. Neurosurgery 1994;34:740-744.
- Yamada M, Itoh Y, Suematsu N, Matsushita M, Otomo E. Panencephalic type of Creutzfeldt-Jakob disease associated with cadaveric dura mater graft. J Neurol Neurosurg Psychiatry 1997;63: 524–527.
- Takashima S, Tateishi J, Taguchi Y, et al. Creutzfeldt-Jakob disease with florid plaques after cadaveric dural graft in a Japanese woman. Lancet 1997;350:865-866.
- Shimizu S, Hoshi K, Muramoto T, et al. Creutzfeldt-Jakob disease with florid-type plaques after cadaveric dura mater grafting. Arch Neurol 1999;56:357–362.
- Hoshi K, Yoshino H, Urata J, Nakamura Y, Yanagawa H, Sato T. Creutzfeldt-Jakob disease associated with cadaveric dura mater grafts in Japan. Neurology 2000;55:718–721.
- Kimura K, Nonaka A, Tashiro H, et al. Atypical form of dural graft associated Creutzfeldt-Jakob disease: report of a postmortem case with review of the literature. J Neurol Neurosurg Psychiatry 2001;70:696– 699.
- Nishida Y, Yamada M, Hara K, et al. Creutzfeldt-Jakob disease after Jannetta's operation with cadaveric dura mater graft: initial manifestation related to the grafted site. J Neurol 2002;249:480–483.
- Mochizuki Y, Mizutani T, Tajiri N, et al. Creutzfeldt-Jakob disease with florid plaques after cadaveric dura mater graft. Neuropathology 2003; 23:136–140.
- Nakamura Y, Watanabe M, Nagoshi K, et al. Update: Creutzfeldt-Jakob disease associated with cadaveric dura mater grafts—Japan 1979-2003. MMWR Morb Mortal Wkly Rep 2003;52:1179–1181.
- 11. Sato T, Masuda M, Utsumi Y, et al. Dura mater related Creutzfeldt-Jakob disease in Japan: relationship between sites of grafts and initial clinical features. In: Kitamoto T, ed. International symposium of prions: Food and drug safety. Tokyo: Springer-Verlag, 2005: 31-40.
- 12. Wakisaka Y, Santa N, Dohura K, et al. Increased asymmetric pulvinar magnetic resonance imaging signals in Creutzfeldt-Jakob disease with florid plaques following a cadaveric dura mater graft. Neuropathology 2006;26:82–88.

Spain

- Martinez-Lage JF, Sola J, Poza M, Esteban JA. Pediatric Creutzfeldt-Jakob disease: probable transmission by a dural graft. Childs Nerv Syst 1993;9:239–242.
- Martinez-Lage JF, Posa M, Sola J, et al. Accidental transmission of Creutzfeldt-Jakob disease by dural cadaveric grafts. J Neurol Neurosurg Psychiatry 1994;57:1091-1094.
- Martinez-Lage JF, Rabano A, Bermejo J, et al. Creutzfeldt-Jakob disease acquired via a dural graft: failure of therapy with quinacrine and chlorpromazine. Surg Neurol 2005;64:542–545.

United Kingdom

- Willison HJ, Gale AN, Mclaughlin JE. Creutzfeldt-Jakob disease following cadaveric dura mater graft. J Neurol Neurosurg Psychiatry 1991; 54:940.
- Esmonde T, Lueck CJ, Symon L, Duchen W, Will RG. Creutzfeldt-Jakob disease and lyophilized dura mater grafts: report of two cases. J Neurol Neurosurg Psychiatry 1993;56:999-1000.
- Heath CA, Barker RA, Esmonde TF, et al. Dura mater-associated Creutzfeldt-Jakob disease: experience from surveillance in the UK. J Neurol Neurosurg Psychiatry 2006; April Epub.

United States

- Thadani V, Penar PL, Partington J, et al. Creutzfeldt-Jakob disease probably acquired from a cadaveric dura mater graft. J Neurosurg 1988;69:766-769.
- Lane KL, Brown P, Howell DN, et al. Creutzfeldt-Jakob disease in a pregnant woman with an implanted dura mater graft. Neurosurgery 1994;34:737-740.
- Hannah EL, Belay ED, Gambetti P, et al. Creutzfeldt-Jakob disease after receipt of a previously unimplicated brand of dura mater graft. Neurology 2001;56:1080–1083.

Italy, France, Netherlands

- Masullo C, Pocchiari M, Macchi G, et al. Transmission of Creutzfeldt-Jakob disease by dural cadaveric graft. J Neurosurg 1989;71:954.
- Pocchiari M, Masullo C, Salvatore M, Genuardi M, Galgani S. Creutzfeldt-Jakob disease after non-commercial dura mater graft. Lancet 1992;340:614-615.
- Kopp N, Streichenberger N, Deslys JP, Laplanche JL, Chazot G. Creutzfeldt-Jakob disease in a 52-year-old woman with florid plaques. Lancet 1996;3481239–1240.
- Antoine JC, Michel D, Bertholon P, et al. Creutzfeldt-Jakob disease after extracranial dura mater embolization for a nasopharyngeal angiofibroma. Neurology 1997;48:1451–1453.
- Croes EA, Jansen GH, Lemstra AW, et al. The first two patients with dura mater associated Creutzfeldt-Jakob disease in the Netherlands. J Neurol 2001;248:877–880.

Germany, Austria, Croatia

- Lang CJG, Schüler P, Engelhardt A, Spring A, Brown P. Probable Creutzfeldt-Jakob disease after a cadaveric dural graft. Euro J Epidemiol 1995;11:1–3.
- Radbauer C, Hainfellner JA, Gaudernak T, Deecke L, Budka H. Creutzfeldt-Jakob disease in a dura transplant recipient: first observation in Austria [in German]. Wien Klin Wochenschr 1998;110:496– 500.
- Liscic RM, Brinar V, Miklic P, Barsic B, Himbele J. Creutzfeldt-Jakob disease in a patient with a lyophilized dura mater graft. Acta Med Croatica 1999;53:93–96.
- Kretzschmar HA, Sethi S, Foldvari Z, et al. Iatrogenic Creutzfeldt-Jakob disease with florid plaques. Brain Pathol 2003;13:245–249.
- 31. Preusser M, Strobel T, Gelpi E, et al. Alzheimer-type neuropathology in a 28 year old patient with iatrogenic Creutzfeldt-Jakob disease

August (1 of 2) 2006 NEUROLOGY 67 391

after dural grafting. J Neurol Neurosurg Psychiatry 2006;77:413-416.

 Nisbet TJ, MacDonaldson I, Bishara SN. Creutzfeldt-Jakob disease in a second patient who received a cadaveric dura mater graft. JAMA 1989; 261:1118.

Australia and New Zealand

- Brooke FJ, Boyd A, Klug GM, Masters CL, Collins SJ. Lyodura use and the risk of iatrogenic Creutzfeldt-Jakob disease in Australia. Med J Aust 2004;180:177-181. Neurosurgical/EEG electrode contamination
- 34. Jones DP, Nevin S. Rapidly progressive cerebral degeneration (subacute vascular encephalopathy) with mental disorder, focal disturbance, and myoclonic epilepsy. J Neurol Neurosurg Psychiatry 1954;17:148-159. [Case series analyzed by Will and Matthews, vide infra.]

Neurosurgical/EEG electrode contamination

- 35. Nevin S, McMenemey WH, Behrman S, Jones DP. Subacute spongiform encephalopathy: a subacute form of encephalopathy attributable to vascular dysfunction (spongiform cerebral atrophy). Brain 1960;83:516– 563. [Case series analyzed by Will and Matthews, vide infra.]
- Bernoulli C, Siegfreid J, Baumgartner G, et al. Danger of accidental person-to-person transmission of Creutzfeldt-Jakob disease by surgery. Lancet 1977;i:478-479.
- Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. J Neurol Neurosurg Psychiatry 1994;57:757-758.
- Will RG, Matthews WB. Evidence for case-to-case transmission of Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 1982;45: 235-238.
- El Hachimi KH, Chaunu M-P, Cervenakova L, Brown P, Foncin J-F. Putative neurosurgical transmission of Creutzfeldt-Jakob disease with analysis of donor and recipient: agent strains. C R Acad Sci Paris 1997;320:319–328.

Corneal transplant

- Duffy P, Wolf J, Collins G, DeVoe AB, Streeten B, Cowen D. Possible person to person transmission of Creutzfeldt-Jakob disease. N Engl J Med 1974;290:692–693.
- Heckmann JG, Lang CJG, Petruch F, et al. Transmission of Creutzfeldt-Jakob disease via a corneal transplant. J Neurol Neurosurg Psychiatry 1997;63:388–390.

Human growth hormone

France

- 42. Goujard J, Entat M, Maillard F, Jugnier E, Rappaport R, Job JC. Human pituitary growth hormone (hGH) and Creutzfeldt-Jakob disease: results of an epidemiological survey in France, 1986. Int J Epidemiol 1988;17:423–427. Human growth hormone France
- Billette de Villemeur T, Beauvais P, Gourmelen M, Richardet JM. Creutzfeldt-Jakob disease in children treated with growth hormone. Lancet 1991;337:864-865.
- Deslys J-P, Lasmézas C, Dormont D. Selection of specific strains in iatrogenic Creutzfeldt-Jakob disease. Lancet 1994;343:848–849.
- Billette de Villemeur T, Deslys J-P, Pradel A, et al. Creutzfeldt-Jakob disease from contaminated growth hormone extracts in France. Neurology 1996;47:690–695.
- 46. Deslys J-P, Jaegly A, Huillard d'Aignaux J, Mouthon F, Billette de Villemeur T, Dormant D. Genotype at codon 129 and susceptibility to Creutzfeldt-Jakob disease. Lancet 1998;351:1251.
- Huillard d'Aignaux JN, Costagliola D, Maccario J, et al. Incubation period of Creutzfeldt-Jakob disease in human growth hormone recipients in France. Neurology 1999;53:1197–1201.
- Brandel J-P, Preece M, Brown P, et al. Distribution of codon 129 genotypes in human growth hormone-treated CJD patients in France and the United Kingdom. Lancet 2003;362:128–130.

United Kingdom

- Powell-Jackson J, Weller RO, Kennedy P, Preece MA, Whitcombe EM, Newsom-Davis J. Creutzfeldt-Jakob disease after administration of human growth hormone. Lancet 1985;ii:244–246.
- Weller RO, Steart PV, Powell-Jackson JD. Pathology of Creutzfeldt-Jakob disease associated with pituitary derived human growth hormone administration. Neuropathol Appl Neurobiol 1986;12:117-129.
- Anderson JR, Allen CMC, Weller RO. Creutzfeldt-Jakob disease following human pituitary-derived growth hormone administration. Neuropathol Appl Neurobiol 1990;16:543. Abstract.
- Buchanan CR, Preece MA, Milner RDG. Mortality, neoplasia, and Creutzfeldt-Jakob disease in patients treated with human pituitary growth hormone in the United Kingdom. BMJ 1991;302:824–828.
- Preece MA. Creutzfeldt-Jakob disease following treatment with human pituitary hormones. Clin Endocrinol 1991;34:527–529.

- Ellis CJ, Katifi H, Weller RO. A further British case of growth hormone induced Creutzfeldt-Jakob disease. J Neurol Neurosurg Psychiatry 1992;55:1200-1202.
- 55. Markus HS, Duchen LW, Parkin EM, et al. Creutzfeldt-Jakob disease in recipients of human growth hormone in the United Kingdom: a clinical and radiographic study. Quart J Med 1992;82:43–51.
- Powell-Jackson J, Weller RO, Kennedy P, Preece MA, Whitecombe EM, Newsome-Davis J. Creutzfeldt-Jakob disease after administration of human growth hormone. Neurology 1994;44:291–293.
- Brandel J-P, Preece M, Brown P, et al. Distribution of codon 129 genotypes in human growth hormone-treated CJD patients in France and the United Kingdom. Lancet 2003;362:128-130.
- Swerdlow AJ, Higgins CD, Adlard P, Jones ME, Preece MA. Creutzfeldt-Jakob disease in United Kingdom patients treated with human pituitary growth hormone. Neurology 2003;61:783–791.

United States

- Koch TK, Berg BO, DeArmond SE, Gravina RF. Creutzfeldt-Jakob disease in a young adult with idiopathic hypopituitarism: possible relation to the administration of cadaveric human growth hormone. N Engl J Med 1985;313:731–733.
- Gibbs CJ, Joy A, Heffner R, et al. Clinical and pathological features and laboratory confirmation of Creutzfeldt-Jakob disease in a recipient of pituitary derived human growth hormone. N Engl J Med 1985;313:734– 738.
- Brown P, Gajdusek DC, Gibbs CJ Jr, Asher DM. Potential epidemic of Creutzfeldt-Jakob disease from human growth hormone therapy. N Engl J Med 1985;313:728–731.
- 62. Tintner R, Brown P, Hedley-Whyte ET, Rappaport EB, Piccardo CP, Gajdusek DC. Neuropathological verification of Creutzfeldt-Jakob disease in the exhumed American recipient of human pituitary growth hormone: epidemiologic and pathogenetic implications. Neurology 1986; 36:932–936.
- Marzewski DJ, Towfighi J, Harrington MG, et al. Creutzfeldt-Jakob disease following pituitary-derived growth hormone therapy: a new American case. Neurology 1988;38:1131–1133.
- New MI, Brown P, Temeck JW, et al. Pre-clinical Creutzfeldt-Jakob disease discovered at autopsy in a human growth hormone recipient. Neurology 1988;38:1133–1134.
- Brown P. Human growth hormone therapy and Creutzfeldt-Jakob disease: a drama in three acts. Pediatrics 1988;81:85–92.
- Brown P. The decline and fall of iatrogenic Creutzfeldt-Jakob disease associated with human growth hormone therapy. Neurology 1988;38: 1135-1137.
- Fradkin JE, Schonberger LB, Mills JL, et al. Creutzfeldt-Jakob disease in pituitary growth hormone recipients in the United States. JAMA 1991;265:880–884.
- Gibbs CJ Jr, Asher DM, Brown PW, Fradkin JE, Gajdusek DC. Creutzfeldt-Jakob disease infectivity of growth hormone derived from human pituitary glands. N Engl J Med 1993;328:358-359.
- Mills JL, Schonberger LB, Wysowski DK, et al. Long term mortality in the United States cohort of pituitary-derived growth hormone recipients. J Pediatr 2004;144:430-436.

Other countries

- Croxon M, Brown P, Synek B, et al. A new case of Creutzfeldt-Jakob disease associated with human growth hormone therapy in New Zealand. Neurology 1988;38:1128–1130.
- Mecário ME, Moura-Neto V, Vaisman M, et al. Abnormal proteins in the cerebrospinal fluid of a patient with Creutzfeldt-Jakob disease following administration of human pituitary growth hormone. Brazilian J Med Biol Res 1992;25:1127–1130.
- Roos RA, Wintzen AR, Will RG, Ironside JW, van Duinen SG. Een patient met de ziekte van Creutzfeldt-Jaiob na behandeling met humaan groeihormoon. Ned Tijdschr Geneeskd 1996;140:1190-1193.
- Wientjens DP, Rikken B, Wit JM, Hofman A, Stricker BHC. A nationwide cohort study on Creutzfeldt-Jakob disease among human growth hormone recipients. Neuroepidemiology 2000;19:201–205.
- Hamad A, Hamad A, Sokrab TEO, Momeni S. Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 2001;56:987. Letter. [Case of hGH CJD in Qatar.]

Human pituitary gonadotropic hormone (Australia)

- Cochius JI, Burns RJ, Blumbergs PC, Mack K, Alderman CP. Creutzfeldt-Jakob disease in a recipient of human pituitary-derived gonadotropin. Aust N Z J Med 1990;20:592–593.
- Cochius JI, Hyman N, Esiri MM. Creutzfeldt-Jakob disease in a recipient of human pituitary-derived gonadotropin: a second case. J Neurol Neurosurg Psychiatry 1992;55:1094–1095.
- Klein RD, Dumble RJ. Transmission of Creutzfeldt-Jakob disease by blood transfusion. Lancet 1993;341:768.
- Healy DL, Evans J. Creutzfeldt-Jakob disease after pituitary gonadotropins: the prion is the problem. BMJ 1993;307:517–518.

392 NEUROLOGY 67 August (1 of 2) 2006

vCJD blood transfusion (United Kingdom)

- Llewelyn CA, Hewitt RE, Knight RSE, et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 2004; 363:417-421.
- Peden AH, Head MW, Ritchie DE, et al. Autopsy detection of preclinical vCJD transmission following blood transfusion from a *PRNP* codon 129 heterozygote. Lancet 2004;364:527–529.
- Health Protection Agency. A new case of transfusion-associated variant Creutzfeldt-Jakob disease. CDR Weekly 2006;16(6).

Possible but insufficiently documented or otherwise unlikely cases (not included in category tallies)

- Schoene WC, Masters CL, Gibbs CJ Jr, et al. Transmissible spongiform encephalopathy (Creutzfeldt-Jakob disease): atypical clinical and pathological findings. Arch Neurol 1981;38:473–477.
- Miller DC. Creutzfeldt-Jakob disease in histopathology technicians. N Engl J Med 1988;318:853-854.
- 84. Tange RA, Troost D, Limburg M. Progressive fatal dementia (Creutzfeldt-Jakob disease) in a patient who received homograft tissue for tympanic membrane closure. Eur Arch Otorhinolaryngol 1990;247: 199-201.
- Gorman DG, Benson DF, Vogel DG, Vinters HV. Creutzfeldt-Jakob disease in a pathologist. Neurology 1992;42:463.
- Berger JR, David JN. Creutzfeldt-Jakob disease in a physician: a review of the disorder in health care workers. Neurology 1993;43:205–206.
- Uchiyama S, Ishida C, Yago S, Kurumaya H, Kitamoto T. An autopsy case of Creutzfeldt-Jakob disease associated with corneal transplantation [in Japanese]. Dementia 1994;8:466–473.

- Créange A, Grey F, Cesaro P, et al. Creutzfeldt-Jakob disease after liver transplantation. Ann Neurol 1995;38:269–272.
- Brown P, Preece M, Brandel J-P. Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 2000;55:1075–1081. [Includes unpublished case following bone transplant.]
- Dobbins JG, Belay ED, Malecki J, et al. Creutzfeldt-Jakob disease in a recipient of a dura mater graft processed in the US: cause or coincidence? Neuroepidemiology 2000;19:62–66.
- Croes EA, Ros G, Jansen GH, Nijssen PCG, van Duijn CM. Creutzfeldt-Jakob disease 38 years after diagnostic use of human growth hormone. J Neurol Neurosurg Psychiatry 2002;72:792–793.
- Rabinstein AA, Whiteman ML, Shebert RT. Abnormal diffusionweighted magnetic resonance imaging in Creutzfeldt-Jakob disease following corneal transplantations. Arch Neurol 2002;59:637–639.

Reviews

- Brown P, Preece MA, Will RG. "Friendly fire" in medicine: hormones, homografts, and Creutzfeldt-Jakob disease. Lancet 1992;340: 24-27.
- Brown P, Cervenáková L, Goldfarb LG, et al. Iatrogenic Creutzfeldt-Jakob disease: an example of the interplay between ancient genes and modern medicine. Neurology 1994;44:291–293.
- 95. Brown P, Cervenáková L, McShane L, et al.. Polymorphic genotype matching in acquired Creutzfeldt-Jakob disease: an analysis of donor/ recipient case pairs. In: Morrison DRO, ed. Prions and brain diseases in animals and humans. New York: Plenum, 1998:19–24. Nato ASI Series A: Life Sciences; vol 295.
- 96. Brown P, Preece M, Brandel J-P, et al. Iatrogenic Creutzfeldt-Jakob disease at the millennium. Neurology 2000;55:1075–1081.