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ABSTRACT 

 
This paper reviews the PVUSA power rating method [1-6] 
and presents two additional methods that seek to improve 
this method in terms of model precision and increased 
seasonal applicability.  It presents the results of an 
evaluation of each method based upon regression analysis 
of over 12 MW of operating photovoltaic (PV) systems 
located in a wide variety of climates.  These systems include 
a variety of PV technologies, mounting configurations, and 
array sizes to ensure the conclusions are applicable to a 
wide range of PV designs and technologies.  The work 
presented in this paper will be submitted to ASTM for use in 
the development of a standard test method for certifying the 
power rating of PV projects.   
 

BACKGROUND AND PURPOSE 

 
Two metrics critical to the initial and on-going evaluation of 
PV system performance include power ratings and total 
energy production. While total energy production is the most 
important factor in determining the economic value of a 
system, a flat-plate PV project’s power rating remains a 
critical metric in contracting for, and acceptance of, PV 
projects. Typically, energy production is evaluated over long 
periods, such as a year, while power rating tests can be 
conducted in relatively short periods – even as short as a 
few days. 
 
The motivation for this work is the need to develop a system 
power rating protocol for use in PV plant acceptance testing. 
Of particular interest is a test that can be executed in a short 
period of time at any time of year that will give reasonable 
assurance that the delivered system is capable of producing 
the amount of energy expected in the contract. At present, 
there is no recognized industry standard for testing and 
rating the AC electrical power capacity of PV systems. The 
lack of a clear standard has resulted in confusion for system 
providers, customers, and investors as well as costly 
complications to the contracting process.  In order to 
advance the industry, it is important to standardize on a 
single, industry-accepted best practice to verify the power 
capacity of a PV project. 
 

One important consideration for a standard is ease of use. It 
is important that the method chosen be transparent and 
relatively easy to understand and implement by a variety of 
stakeholders. The PVUSA method does a good job of 
meeting these needs through its simple, fast analysis 
method and use of standard meteorological equipment. The 
new methods presented attempt to retain these benefits 
while reducing model uncertainty and increasing seasonal 
applicability. 
 
Since some PV projects are completed during the winter 
months, expanding the months of the year in which the test 
can be performed is important. The original PVUSA equation 
required collecting enough empirical data to satisfy a 
minimum of 10 hours of solar irradiance above 1,000 W/m

2
.  

In practice, this meant winter ratings were not possible, and 
ratings at other times of the year could take up to 30 days to 
collect a satisfactorily large data set.  In some locations it is 
not possible to obtain 10 hours of data above 1000 W/m

2
 at 

any time of year. 
 

RELATED STANDARDS 
 

Several existing standards are related to this proposed 
method, and should be acknowledged here. ASTM E2527 is 
a standard that employs the PVUSA System Rating 
described above for the purpose of rating concentrating PV 
plants [7]. IEC 61829 outlines procedures for PV array IV 
testing, and cites IEC 60891 as a method for translating 
measured results to the reference condition. The IEC 
standards address measurements of the DC system, 
excluding the inverter, transformer, or other power 
conditioning equipment. 
 
We have made efforts to harmonize our proposed method 
with existing international norms, however, our 
recommendations may differ from these norms to the extent 
that our purposes are different. In particular, we are 
interested in an AC system rating. Current standards for flat-
plate PV only addresses projects where an IV curve of the 
entire DC array is possible, which is not practical for large 
PV projects such as the ones described in this paper. The 
method under development here requires only an AC power 
measurement and can be applied to any PV Project whether 
it is 1kW or a large multi-Megawatt utility project. 



 
 PVUSA AC SYSTEM RATING 

 

The PVUSA AC rating method was developed by engineers 
working on the PVUSA project initiated by Pacific Gas & 
Electric Company in the late 1980s [1-5].  One of their 
primary goals was to assess in a side-by-side setting the 
relative AC-level performance of the plethora of available PV 
technologies.  They recognized that extrapolation to the 
Standard Test Condition (STC) from field data would be a 
problem and unfairly benefit technologies with high 
temperature coefficients or operating temperature [8, 9].   
They chose to address this issue by choosing a set of 
conditions closer to expected actual operating conditions in a 
majority of locations, resulting in the PVUSA Test Conditions 
(PTC) of 1000W/m

2
, 20 degrees C air temperature, and a 

wind speed of 1 m/s.  
 
The original PVUSA regression method is presented in 
Equation 1, below.  
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Where:  
P = AC power in kW at the specific test condition  
I = Plane of array irradiance (W/m2) 
Ta = Ambient temperature (C) 
WS = Wind speed (m/s) 
A - D = Regression constants derived from operational data 
 

ALTERNATIVE RATING METHODS 
 

Both of the alternative rating methods explored for this work 
involve characterizing the relationship of module 
temperature to irradiance, ambient temperature, and wind 
speed using a thermal model that is separate from the main 
form of the AC power rating regression.  
 
For improved accuracy, this thermal model should be 
constrained to relatively stable operating conditions, 
nominally clear days, particularly when the measured 
variables are average values over several minutes (5 to 60).  
Module heat capacitance, thermal transients, temperature 
gradients across the module, and radiative heat transfer are 
not easily addressed, particularly during rapidly varying 
weather conditions, without adding significant complexity.  
However, experience has shown that the following simple 
model does a reasonable job [10,12] for a variety of PV 
technologies and mounting configurations, providing module 

temperature during stable conditions within about ±5°C [4]. 
This equation provides an explicitly determined module 
temperature associated with the PTC rating condition. 
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Where: 
Ie = Effective Irradiance (dimensionless, discussed below) 
a, b = regression coefficients derived from operational data 

Tm = Measured module temperature (°C) 
Ta, WS as defined above 
 

Method 1 – BEW Method 
 

This method was developed by assuming photovoltaic 
conversion efficiency varies with both temperature and 
irradiance. The original PVUSA equation substituted an 
expression for module temperature which is a linear function 
of irradiance, air temperature, and wind speed, which 
suggests that module temperature will drop linearly with 
increasing wind speed. However, as the wind speed 
increases this cooling effect is muted. The BEW method 
begins by finding the regression coefficients defined in Eqn.2 
so that this effect can be modeled in the power rating. 
 
The original PVUSA model also assumed that the inverter 
efficiency is constant.   A more accurate assumption is to 
model the major loss mechanisms in an inverter as tare 
losses or fixed and to model the ohmic losses as 
proportional to current squared.  The current can be 
modeled as approximately proportional to irradiance in a 
maximum-power-tracking PV system.  Equations 3 and 4 
represent these more detailed assumptions. Eqn. 4 is a 
linearized form of Eqn. 3. 
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Where: 
P, Ta, I,,WS are as defined above 
C1 – C5 = regression constants for the nonlinear form 
C1L – C9L = regression constants for the linear form 
 
Eqn. 3 is the preferred form, however, regression using a 
non-linear form is relatively complex and results are 
dependent on both the loss function used to minimize 
residuals and on initial “guesses” for the coefficients. Eqn. 4, 
though simpler to evaluate, utilizes nine coefficients. This 
makes it less constrained than a regression with four 
coefficients as in the PVUSA method, but can introduce 
more scatter in the model and instability in the regression 
coefficients. 
 
Method 2 – King 3-Part Method 

 
Method 2 was developed by integrating different aspects 
from the PV array performance model and the inverter 
performance model developed by Sandia National 
Laboratories [10-12]. This model quantifies PV system 
performance in three separate steps or parts by defining 
parametric relationships for the effective solar irradiance, the 
electrical performance of array and inverter, and the 
operating temperature as related to weather conditions.  
 
The first part of this method involves measuring the solar 
irradiance while addressing the factors unique to PV 
technologies, all of which can significantly influence the 
accuracy of PV system power ratings. For instance, solar 



irradiance measurements, as well as PV array performance, 
are influenced by solar spectral variation, solar angle-of-
incidence (AOI), ratio of diffuse to direct components of solar 
irradiance, temperature, calibration and accuracy of 
irradiance sensors, soiling, and other factors. Measuring an 
appropriate solar irradiance value is perhaps the most 
important, the most difficult, and often the most neglected 
aspect of PV system performance measurements. The 
concept of ‘effective’ solar irradiance, Ee, as discussed 
elsewhere [10], provides a means for minimizing the 
influence of these factors and results in a system power 
rating more closely related to the established performance 
standards for PV cells and modules. There are multiple 
methods for determining the effective irradiance; the 
simplest, and the one employed for these analyses, is to use 
a ‘matched’ and ‘clean’ reference cell accurately oriented in 
the plane-of-array.      
 
The second part of this method characterizes system 
performance in a manner similar to the other methods, by 
using periodic measurements of system AC-power, effective 
irradiance, and module temperature, followed by regression 
analysis using the model described by Eqn. 5.  The intent of 
this model formulation was to retain some physical 
significance in each of the four terms, resulting in regression 
coefficients that provide meaningful information. For 
instance, the ‘a’ coefficient has units of kW and is an 
estimate of the array STC power as diminished by inverter 
efficiency, the ‘d’ coefficient has units of kW/°C and is an 
estimate of the AC-power temperature coefficient, the 
second term in the equation mimics the logarithmic 
relationship between PV module voltage and irradiance, and 
the third term attempts to account for any further non-linear 
behavior of the array and/or inverter at low or high irradiance 
levels.    
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Where: 
Ie, Tm as defined above 
A1 – A4 =  regression coefficients 

To = Reference module temperature, typically 25°C 
 
The third part of this method provides an empirical 
relationship for module temperature as a function of 
irradiance, ambient temperature, and wind speed, as 
previously described by Eqn. (2).  
 

PROJECTS EVALUATED 

 
Operational data from several PV systems were utilized to 
validate the different test methods. These projects include a 
10MW PV Project located in Germany, 2MW of PV Projects 
located in San Francisco, four small PV Projects located at 
NREL’s Outdoor Test Facility in Golden, CO, and a small 
mc-Si array located at Sandia National Laboratories in 
Albuquerque, NM.   
 

The intent was to include operational data from a wide 
variety of climates, PV technologies, mounting types, and 
array sizes to compare methods and ensure that the 
recommended method is applicable to a wide variety of PV 
designs and technologies.  Table 1 provides a design 
summary of these projects.  The number in parenthesis is 
the number of data sets evaluated with this feature. 
 
Table 1. Summary of the type and number of projects evaluated   

Climate Module 
Technology 

Mounting Type System Size 

Clear (5) 
Diffuse (7) 
 

c/mc- Si (11) 
Thin film (2) 
 

BIPV  (6) 
Horizontal (7) 
1-axis Track (1) 
Latitude Tilt (4) 

Under 5 kW (5) 
Over 5 kW (9) 
 

 
Data Filtering 

 
In evaluating the AC rating, measured data with the following 
operational issues were removed because they are not 
relevant to understanding the power rating.   
 

• Inverter outages 

• Periods with snow 

• Excessive soiling 

• Shading 
 
However, it should be noted that these factors must be 
addressed in determining the overall system energy 
production [15, 16]. Development of a system energy rating 
procedure compatible with this power rating method is 
important future work, but is outside the scope of this paper. 

 
OTHER CONSIDERATIONS 

  

There are several influences that are independent of the 
form of regression model used. For instance: soiling 
(modules and irradiance sensor); degradation (permanent or 
seasonal annealing); spectral effects (modules relative to 
pyranometers or reference cells) [8,9]; calibration of 
thermopile pyranometers as a function of AOI, as well as 
accuracy of mounting in the plane of the array; location of 
wind sensor as it impacts the module operating temperature, 
inverter performance characteristics (MPPT, input voltage 
and temperature influence on efficiency); accuracy of ac-
power meter, as well as all other instrumentation [13]. Each 
of these influences can have significant impact on the 
precision of the result, and must be considered. The future 
standard should provide guidance on test uncertainty, but 
leave the final decision up to the parties conducting the 
specific acceptance test.  
 
While an in-depth discussion of an uncertainty analysis is 
outside the scope of this paper, we will briefly address the 
issue of irradiance sensor choice: pyranometer vs. reference 
cell.  
 
Relative to irradiance measured with a thermal pyranometer, 
solar irradiance determined with a properly calibrated and 
packaged reference cell results in less scatter in regression 
analyses because spectral, AOI, and diffuse irradiance 
effects are implicitly compensated. If a matched reference 



cell is used to collect irradiance data, the measured data is 
taken with respect to a predefined reference spectrum.  In 
principle there should be no seasonal or air mass related 
spectral effects in the data. Data collected with a properly 
calibrated and packaged reference cell should have less 
scatter than a thermal detector (pyranometer) because 
scatter from varying outdoor spectral irradiance is eliminated 
and the time constant of the reference cell is matched to the 
PV array eliminating scatter when the light is rapidly varying.  
If a thermal detector (pyranometer) is used to measure the 
total irradiance; then the data is measured with respect to 
the prevailing site and seasonal conditions.  This may be the 
goal for side by side comparisons of various technologies or 
for locations where it is considered a loss if they cannot fully 
utilize the solar spectrum.   
 

RESULTS AND DISCUSSION 
 

The two primary improvements sought through this work are 
increased seasonal applicability and reduced uncertainty of 
the result. Figure 1 below illustrates the PTC ratings 
obtained from a 670 kW segment of the 10 MW Project 
located in Germany during three different months using each 
of the three methods. The methods were applied to several 
subsets of the available data:  
 
1. All data above 100 W/m

2
 with pyranometer 

2. All data above 100 W/m
2
 with reference cell 

3. Clear-day data above 100 W/m
2
 with pyranometer 

4. Clear-day data above 100 W/m
2
 with reference cell 

 
Note that while the 3-Part method addresses the concept of 
reference cells and “effective irradiance” explicitly, use of this 
concept is not specific to the 3-Part method. Using irradiance 
data obtained through a reference cell will implicitly introduce 
this concept into any of the methods evaluated here, and this 
is demonstrated in Figure 1 and Table 2.  
 
The error bars in Figure 1 represent the standard error of the 
regression model result. Note that the model error is only 
one component of the total uncertainty associated with the 
power rating. (Additional discussion of uncertainty is found in 
subsequent sections.) Table 2 details the results shown in 
Figure 1.  
 
For the 10 MW Project described above, the model 
error/uncertainty for each case was similar for all three 
models, with the BEW linear model tending to have the 
smallest model uncertainty for April and June. There was 
variance in system rating from month to month in all of the 
models, and was anywhere from 2-6%. The King 3-Part 
model had the smallest seasonal variation. This analysis 
also illustrated that both model uncertainty and seasonal 
variation are reduced for all three models when a reference 
cell is used for irradiance sensing compared to a 
pyranometer. Limiting the data set to clear days had the 
effect of further reducing model error.   
 

 
Figure 1.  PTC Plant ratings for a 670 kWp segment of a 10MW PV 
project located in Germany 

 
Table 2.  PTC plant ratings and standard error for a 670 kWp 
segment of a 10MW PV project located in Germany 

 
 

Figure 1 shows that none of the methods were robust 
enough to handle the January dataset well. While the ratings 
for April and June are all in good agreement (model errors 
are overlapping in all cases for these months), the January 
ratings were hugely varied.  The original PVUSA method 
restricted to clear days seems to be the best option for 
January rating of this system. 
 
While neither of the new models suggests a clear winter-
rating improvement for the Bavaria system, which has 
relatively extreme winter conditions, the authors evaluated 
multiple systems in fairer climates. These results do suggest 
that the proposed alternatives to the PVUSA method offer a 
reduction in model uncertainty during winter months. Table 3 
shows the system power rating and standard error of the 
model for the King 3-part and the original PVUSA method for 
each of five different systems, each using a different module 
technology. For five of the six technologies, the King 3-Part 
method resulted in a reduced uncertainty compared to the 
original PVUSA method; for the mc-Si system, the 
uncertainty is unchanged. Data sets used in this analysis all 
included irradiance data measured above 400 W/m

2
 using a 

reference cell. 
 



Table 3. Ratings and model error, 3-Part and PVUSA for NREL and 
Sandia systems (each 1-2 kWp). All regressions performed against 
irradiance data measured by a reference cell on clear days only 

 
 

The standard errors for the regressions shown in Table 3 are 
smaller than those calculated for the Germany Project. The 
average standard error for April and June for the NREL and 
Sandia systems is between 1% for the 3-part method and 
1.5% for the PVUSA method, while the April and June 
standard error for the Germany Project is on the order of 2.5-
4% depending on the method. The Germany Project 
uncertainty is probably more representative of the 
uncertainty we would expect for large plants in general, 
since it covers a large area (nearly 4,000 modules for the 
segment  illustrated in Fig. 1 and Table 1) and will be subject 
to much larger variation in the temperature model due to 
non-uniform temperatures throughout the array. The small 
projects fielded at NREL and Sandia are much smaller (1-2 
kW).  The measured data collected for these projects are 
more controlled and homogenous. 
 

Table 4 details a similar comparison of model error between 
the original PVUSA method and both the linear and non-
linear versions of the BEW method for the same systems 
that were evaluated in Table 3. Table 4 evaluates model 
uncertainty using the mean bias error and root mean square 
error obtained from curve fits derived with various 
combinations of power models and time periods. This 
analysis included a “stress-test” of the models by using them 
to evaluate data from only one and two weeks in January. 
 
All three models predicted PTC Power well in April, but in 
January the one-week data set showed large MBE for the 
mc-Si data that was cut by at least a factor of four for the two 
week data set. Both the nonlinear and linearized models 
were able to work with the low irradiance data in January, 
but the PVUSA model was not usable due to the lack of data 
near the rating conditions.  The linearized model performed 
very similar to the nonlinear model suggesting that the 
additional computational complexity of the nonlinear model 
may not be required in order to obtain PV system ratings in 
the winter months. 

Table 4. Ratings and model error, BEW and PVUSA for NREL and 
Sandia systems (each 1-2 kWp). All regressions performed against 
irradiance data measured by a pyranometer for all days 

 
 

REGRESSION DIAGNOSTICS 
 

In understanding the uncertainty of the analysis it is helpful 
to look at the regression statistics. High p values (>0.05) 
indicate that the particular regression coefficient is unstable 
and may lead to erroneous conclusions. For example, p 
values for our January regressions for the Germany Project 
are high, explaining the large variation in results between 
models. In practice, high p values are an indication that the 
data collected for the given predictor variable is insufficient 
for system rating. The standard error and 95% confidence 
interval of the estimate provides an indication of the 
accuracy of the regression analysis and can be used in 
uncertainty analysis.  
 

CONCLUSIONS 
 

Our analysis results to date suggest that both the BEW and 
the King 3-Part methods offer moderate improvements in 
model uncertainty and seasonal applicability. Apart from the 
regression methods themselves, our analyses illustrate how 
variations in data collection and test procedure affect results. 
In particular, selecting a matched reference cell rather than a 
pyranometer for irradiance measurement will reduce model 
uncertainty and seasonal variability in the result. Limiting the 
analysis to only clear days further reduces uncertainty and 
variability in the model. These procedural choices seem to 
be more important than the particular form of regression 
equation chosen. Because reduced uncertainty in the 
regression result was a key criterion in this work, we will 
recommend to the ASTM committee that reference cells be 
listed as the preferred sensor for this type of testing. 
Pyranometers can of course be used, but increased scatter 
about the model function (and resulting rating) will occur.   
 



The issue of clear days vs. all days during a time period is 
also of interest. The original PVUSA method 
recommended the collection of at least 30 days of data, 
but our analysis shows that similar results can be 
obtained with much smaller data sets when the data is 
limited to clear days. If several clear days occur shortly 
after the commencement of the test period, then using just a 
few clear days would shorten the test period, however, a 
long string of cloudy days could delay testing beyond the 
period required if all data is considered.  
 
Finally, based on the analyses performed for this work, we 
can help to inform one of the most problematic issues of 
project acceptance from a commercial perspective – that of 
the appropriate level of uncertainty to attach to a system 
rating result. While a full uncertainty analysis is outside the 
scope of this paper, we can point out the largest sources of 
uncertainty in this type of test. They include:  

• Model uncertainty, which we estimate at 2-8% 

• Solar Irradiance measurement uncertainty, which 
ranges between 2-5% 

• Module temperature measurement uncertainty, 
which ranges between 2-4% 

• AC power measurement uncertainty, which ranges 
between 0.4-1%. 

 
Therefore, we estimate that total overall uncertainty of 
power ratings using these methods will be on the order 
of 3.5 – 7.5%.  All uncertainties discussed in this paper are 
at a 95% confidence interval.  
 
If uncertainty is important, a formal analysis should be 
conducted [14]. Before system testing, it is recommended 
that all parties to the test agree to the uncertainty analysis 
methods and how the uncertainty analysis results can be 
applied to the performance test results in the form of a 
tolerance. 

FUTURE WORK 
 

The analyses completed in support of this effort help to 
illuminate a number of the intricacies and considerations 
discussed above. This paper represents the first step in 
developing a power rating standard, and has identified 
several key areas in which further work is needed. These 
areas include: 1) a full uncertainty analysis for each of the 
methods using various sensor types and data limitations.  2) 
Resolution on recommendations for key test procedures 
including: the length of test period, the minimum irradiance 
required, the choice of the rating condition (e.g. include 
reference spectrum or not), as well module temperature 
measurements and their role in ratings, and  3) development 
of a companion standard for system energy ratings. 
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