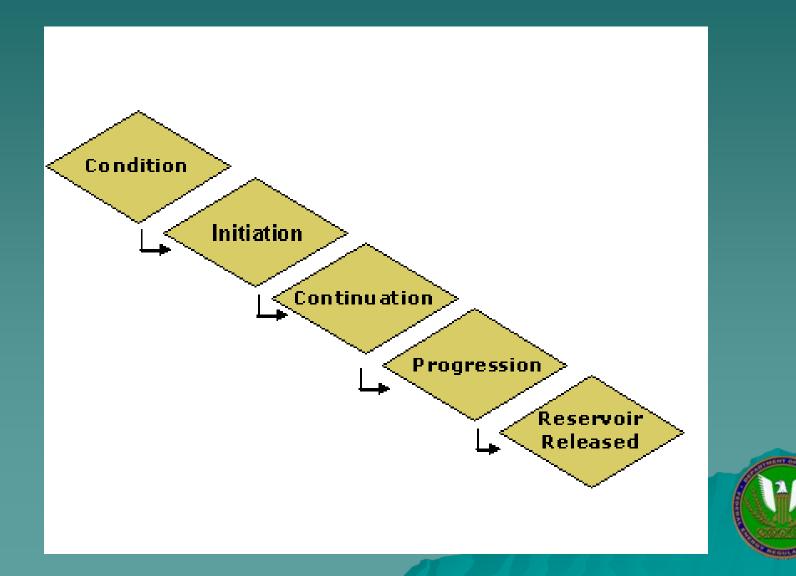
What Can Owners Do to Prepare for RIDM?

RIDM Level 1 Workshop – Spring 2012

Better Potential Failure Modes (PFMs)

- Risk analysis requires PFMs be written thoroughly and as event trees
- Typically FERC PFMs are written as simplified descriptions without detail
- Some include multiple loading conditions per PFM
- Some include multiple PFMs, e.g., multiple exits for an internal erosion PFM

Better PFMs


• All PFMs need to be reevaluated and revised as needed

 One failure mode (loading, etc,) per PFM

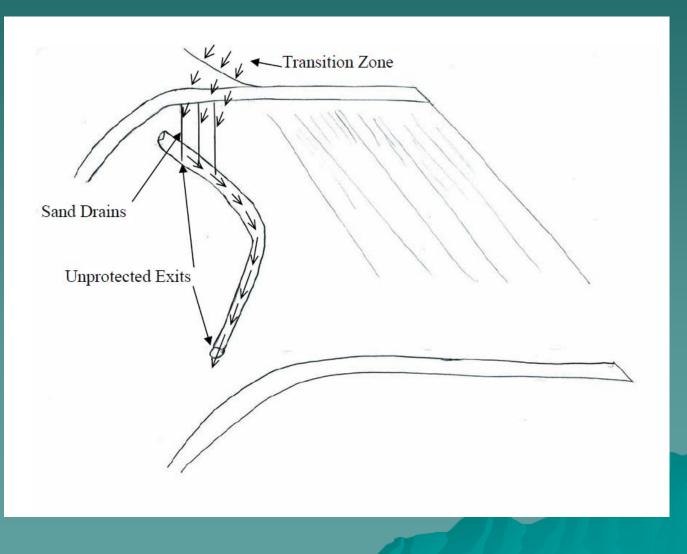
Critical PFMs need thorough event tree type descriptions

Internal Erosion Event List from BOR Best Practices

- Second Action Act
 - Scontinuation Unfiltered or inadequately filtered exit exists
 - Progression Roof forms to support a pipe*
 - Progression Upstream zone fails to fill crack
 - Progression Constriction or upstream zone fails to limit flows
 - SIntervention fails to prevent "break-through"

Dam breaches

*Node eliminated for Progressive Erosion

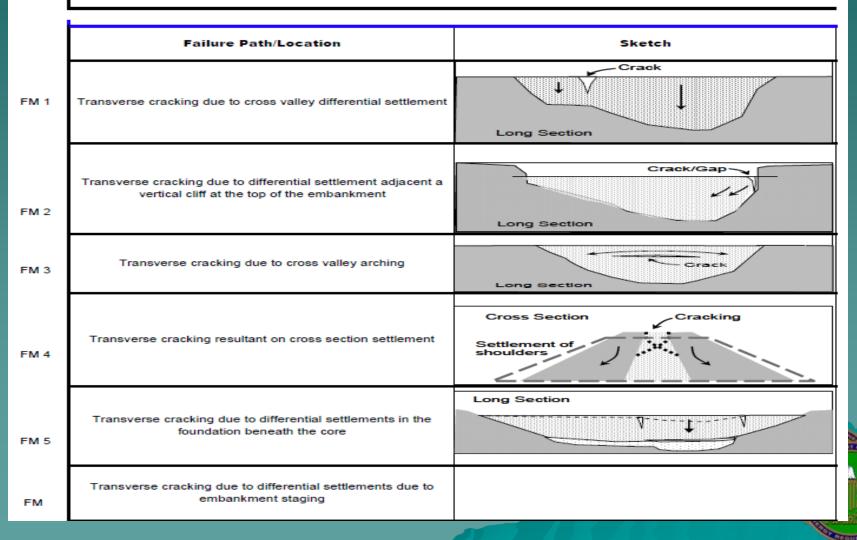

PFM 1A

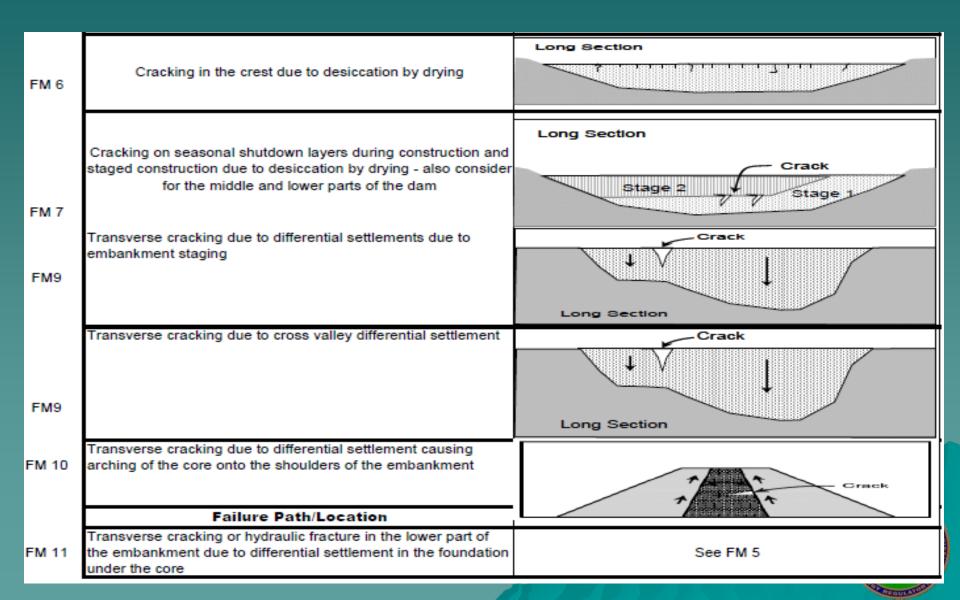
- Unedited (insufficient detail 3 PFMs): Seepage or piping through the right abutment mud flow leads to an embankment failure, results in uncontrolled release of reservoir
- Edited PMF 1A: This PFM scenario involves seepage through the right abutment (mud flow) that is collected by one of the 8 and 12-inch CMP conduits. This section of the dam has no core and a limited transition zone.
 - Initiation: One of the 12-inch conduits collapses due to deterioration
 - Continuation: A hole is formed in the conduit that provides an unfiltered exit for seepage flows (No filter exists).
 - Progression: Soil material begins to pass freely into the conduit (roof exists), transported by the seepage flow.
 - Progression: A pipe develops upstream from the conduit through the mudflows and transition zone by backward erosion (roof develops) to the reservoir
 - Progression: The pipe continues to enlarge as soil is transported into the 12-inch conduit.
 - Progression: Collapse of the overlying soil occurs resulting in settlement of the ground/crest to below reservoir level.
 - Breach: Subsequent overtopping results in down cutting, leading to breach and an uncontrolled release of reservoir.

PFM 1B

- Unedited (insufficient detail 3 PFMs): Seepage or piping through the right abutment mud flow leads to an embankment failure, results in uncontrolled release of reservoir
- Edited PMF 1A: This PFM scenario involves seepage through the right abutment (mud flow) that is collected by the 72/54-inch CMP conduit. This section of the dam has no core and a limited transition zone.
 - Initiation: Deterioration of the CMP leads to a large opening in the top or sides of the conduit.
 - Continuation: A hole is formed in the conduit that provides an unfiltered exit for seepage flows (No filter exists).
 - Progression: Soil material begins to pass freely into the conduit, transported by the seepage flow.
 - Progression: A pipe develops, potentially through the sand drains which appears to be a potential weak link since they may intercept a more pervious layer in the overlying soil which results in an increased gradient into the pipe than might otherwise exist (roof exists).
 - Progression: A large void develops over time through the mudflow materials up to near the reservoir
 - Progression: Collapse of the overlying soil occurs, resulting in settlement of the ground/crest to below reservoir level.
 - Breach: Subsequent overtopping results in down cutting, leading to breach and an uncontrolled release of reservoir.

Internal Erosion PFM – Sketch




PFM 1C

- Unedited (insufficient detail 3 PFMs): Seepage or piping through the right abutment mud flow leads to an embankment failure, results in uncontrolled release of reservoir
- Edited PMF 1A: This PFM scenario involves seepage through the right abutment (mud flow) that is collected by the 72/54-inch CMP conduit buried and tunneled into the abutment. This section of the dam has no core and a limited transition zone.
- Initiation: Deterioration of the wood lagging around the tunneled 54inch diameter portion of the CMP leads to formation of voided areas along the outside of the conduit.
 - Continuation: This increases the gradient along the side of the conduit, initiating soil transport at the downstream end of the conduit. (No filter exists).
 - Progression: Soil material begins to pass freely along the conduit, transported by the seepage flow.
 - Progression: A pipe develops, potentially through the sand drains (roof exists).
 - Progression: A large void develops over time through the mudflow materials up to near the reservoir
 - Progression: Collapse of the overlying soil occurs, resulting in settlement of the ground/crest to below reservoir level.
 - Breach: Subsequent overtopping results in down cutting, leading to breach and an uncontrolled release of reservoir.

Failure Mode: Internal Erosion through the Embankment

Consider cracking of the upper part of the embankment as appropriate

FM 12 FM 13	Transverse cracking at the foundation contact due to small scale irregularities in the foundation profile under the core Transverse cracking due to desiccation on construction lifts, seasonal shutdown surfaces during construction and staging construction surfaces.	Long Section
	Consider high permeability zones	in the embankment as appropriate
	Failure Path/Location	
FM 14	Poorly compacted or high permeability layer in the embankment	Cross Section High Permeability Zone
FM 15	Poorly compacted or high permeability layer on the core- foundation contact	
FM 16	Poorly compacted or high permeability layers in the crest due to freezing	Long Section
FM 17	Seasonal shutdown layers during construction and staged construction surfaces due to freezing	Long Section

FM 18	Poorly compacted or high permeability zone around a conduit through the embankment	Long Section High Permeability Zone
FM 19A	Erosion into a (non-pressurized) conduit	Open Joint Or Grack
FM 19B	Erosion into a (non-pressurized) conduit leading to erosion along the conduit.	Open Joint Or Crack
FM 20	Poorly compacted zone associated with a spillway or abutment wall	
FM 21	Crack/gap adjacent to a spillway or abutment wall	Crack Gap Splliway
FM 23	Wrap around details for connection of embankment dam to concrete gravity dam	Crack/Gap

Internal Erosion through the Foundation				
FM 24	All modes of internal erosion of the foundation (backward erosion, suffusion, erosion in a crack) (Soil foundation)	JSSESSON SOLUTION OF SOLUTIONO OF SO		
FM 25	Backward erosion in a cohesionless soil foundation Suffusion in a cohesion less soil in the foundation (Soil foundation)	Backward erosion piping		
FM 26	Erosion in a crack in cohesive soil in the foundation	Desiccation cracks in clay		
		Stress Relief Defects		
FM 27	Erosion in defects in a rock foundation	Valley Bulge Features		
		Long Section Limestone. doionte		

	Internal Erosion of the Embankment into or at the Foundation		
	Table 3.5	Transverse cracks in the middle and lower parts of embankment dams	
		Stress Relief Defects Long Section	
M 28	Internal erosion of the embankment into or at a rock foundation	Valley Bulge Features Long Section	
		Long Section Limestone. doionite	
°M 29	Internal erosion of the embankment into or at a soil foundation	Backward erosion piping	
		Erosion of core by water flowing in open rock defects	
		Bydraulic fracture In cut-off trench	

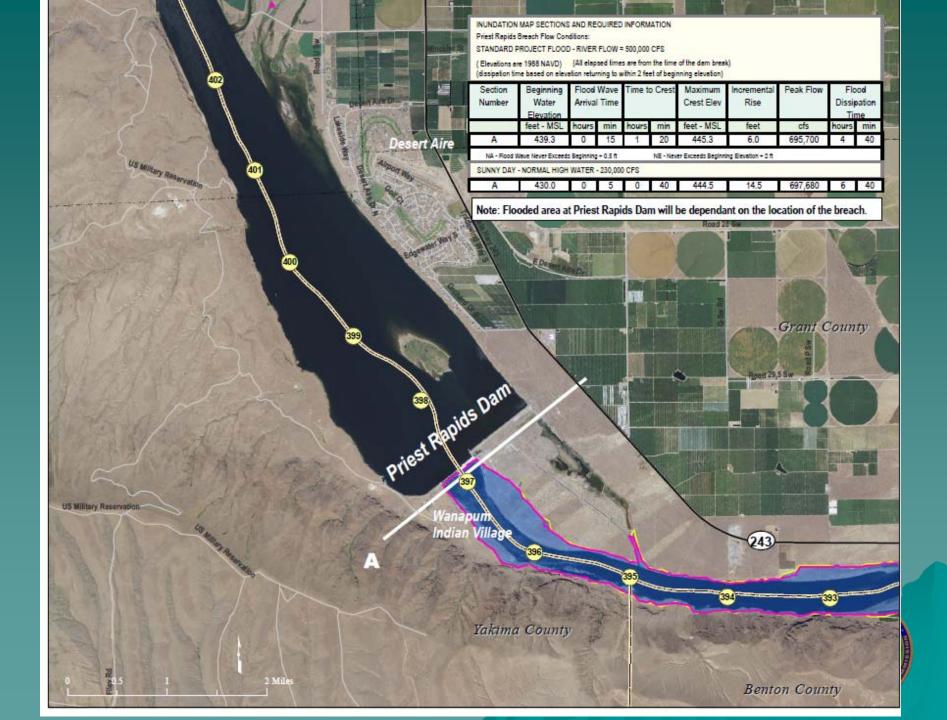
Calculate Population at Risk (PAR)

- A basic tenet of owning a dam is that each owner should know the risk associated with each dam.
- The first step in knowing the risk is knowing the PAR
- Several methods can be used to develop this information
- However, it starts with calculating the inundation zones from dam failures associated with specific PFMs.

Aerial Photo of Priest Rapids Dam Priest Rapids Project, P-2114 (Courtesy of Grant County PUD)

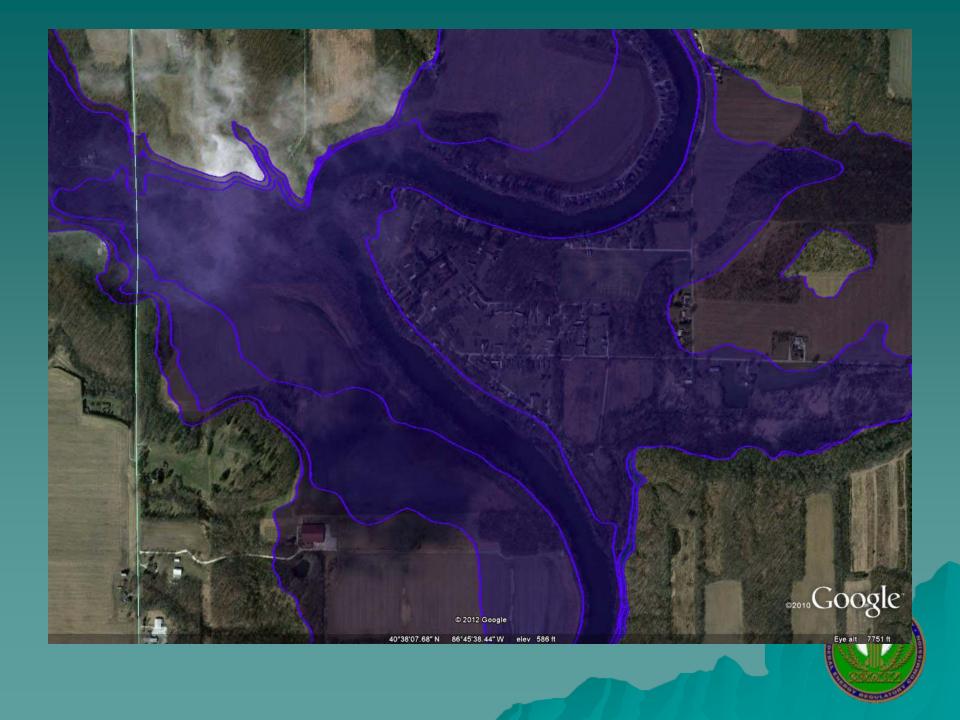
Aerial Photo of Priest Rapids Dam Google Earth

Looking Downstream at Priest Rapids Right Embankment



Looking Downstream at Priest Rapids Right Abutment

Right Embankment Failure


- Right embankment has liquefaction concerns
- Currently part of a seismic risk analysis (pilot study)
- Current EAP inundation maps do not flood village
- For risk, either a new PFM specific dambreak will be needed
- Or, assume all residents of village are in Population at Risk (PAR)
- But, how deep is the flow?

Refine Dam Break Modeling

- If new dambreak studies are needed, update old models to HEC-RAS, preferably GeoRAS
- Create GIS based inundation areas
- Use potential failure modes to guide dam break model runs, not 'worst case scenario'
- For IDF/PMF get incremental inundation information.

Estimate Consequences

 Download Census data for inundation areas (or simply estimate from Google Earth).

Perform a quick PAR estimate.

 Locate any critical infrastructure downstream (HAZUS).

😑 🔟 TRN

eqAirportFlty eqBusFlty egFerryFlty eqHighwayBridge egHighwaySegment egHighwayTunnel eqLightRailBridge eqLightRailFlty eqLightRailSegment egLightRailTunnel egPortFlty egRailFlty eqRailwayBridge egRailwaySegment eqRailwayTunnel egRunway flExposureTransport flHighwayBridge flLightRailBridge fIRailwayBridge hzAirportFlty hzBusFlty ••• $\overline{}$ hzFerryFlty hzHighwayBridge ••• hzHighwaySegment $\overline{}$ hzHighwayTunnel ••• hzLightRailBridge hzLightRailFlty hzLightRailSegment $\overline{}$ hzLightRailTunnel hzPortFlty hzRailFlty hzRailwayBridge hzRailwaySegment ÷-hzRailwayTunnel ••• hzRunway

🗆 间 UTIL

- eqCommunicationFlty
- eqElectricPowerFlty
- 🔲 eqNaturalGasDL
- eqNaturalGasFlty
- 🔲 eqNaturalGasPI
- 🔲 eqOilFlty
- 🔲 eqOilPl
- 📃 eqPotableWaterDL
- eqPotableWaterFlty
- eqPotableWaterPI
- eqWasteWaterDL
- 💷 eqWasteWaterFlty
- eqWasteWaterPI
- flElectricPowerFlty
- flExposureUtil
- fINaturalGasFlty
- 🔲 flNaturalGasPl
- flOilFlty
- flOilPl
- fIPotableWaterFlty
- fIPotableWaterPI
- flWasteWaterFlty
- flWasteWaterPl
- hzCommunicationFlty
- hzElectricPowerFlty
- 단 hzNaturalGasFlty
- 🛨 hzNaturalGasPI
- hzOilFlty
- 🛨 hzOilPl
- hzPotableWaterFlty
- 🛨 hzPotableWaterPl
- 😳 hzWasteWaterFlty
- 🛨 hzWasteWaterPI

🗆 间 EF

- eqCareFlty eqEmergencyCtr
- eqFireStation
- eqPoliceStation
- eqSchool

💷 flCareFlty

- flEmergencyCtr
- flFireStation
- fIPoliceStation
- flSchool
- hzCareFlty
- hzEmergencyCtr
- hzFireStation
- hzPoliceStation
- 😳 hzSchool

🖃 间 HPLF

- eqDams
- egHazmat
- eqLevees
- eqMilitary
- eqNuclearFlty
- ⊡ hzDams
- 😳 hzHazmat
- hzLevees
 - hzMilitary
- hzNuclearFlty

HAZUS Infrastructure Data Sets

Probabilistic Analyses

 If there are questions about the potential for a large flood to overtop and fail the dam, for instance from failure of a gate to operate or debris blockage of gates, consider performing an FFA.

 If a new seismicity analysis is needed, consider performing a probabilistic seismic hazard assessment.

Reevaluate Priorities

- Dam safety issues were prioritized in 2007 in the FERC's Chicago Regional Office
- The 10 highest dam safety issues were selected
- During the recent SLPRA work, those risks were reevaluated.
- Of the top 10, only 1 remained a higher risk after the reevaluation.
- The other 9 were found to be much smaller risks than previously assumed because of small consequences or low likelihood, i.e., failure from a very unlikely event like an extreme flood.
- Note that only a QRA could fully evaluate the likelihood and consequence at these dams, so these conclusions are not definitive, but they do show a need for recalibrating our priorities.

