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Abstract— We derive expressions for the group velocities
of transverse electric and transverse magnetic electromagnetic
waves in a stretched single-mode fiber. Stretching can occur either
as a result of temperature changes of the spool on which the fiber
is wound, or as a result of axial vibrations that accelerate and
hence deform the spool. Long single-mode fibers are typically
used in optoelectronic oscillators, where the group velocity plays a
central role in determining the oscillator frequencies. The present
idealized calculation assumes there is a fractional length change
δl/l, that results in stress in the fiber. This stress changes the
optical properties of the fiber, and hence the group velocities,
through its stress-optic coefficients. The principal result of the
present calculation is that for optoelectronic oscillators, the main
effect on the frequencies comes from the change of length itself
rather than from the change in group velocities.

I. INTRODUCTION

We discuss the effect of fiber length changes, due to
vibration, on the frequencies of an optoelectronic oscillator.
A typical optoelectronic device consists of a length of fiber
into which modulated laser light is injected, an amplifier, a
filter and a detector, with feedback arranged so that the device
oscillates. A typical such device [1] gives a large number of
modes with frequencies

ωK =
(2K + 1)π

τd
, (1)

where K is an integer, and τd is the group delay through the
fiber, neglecting small delays through other components of
the system. The value of K is selected by the filter. If l is the
length of the fiber (assumed to be tightly wound on a cylin-
drical spool) and vg is the group velocity of electromagnetic
waves down the fiber, then τd = l/vg . We can then construct a
model of fractional frequency shifts caused by changes in fiber
length, δl. Foremost is the change in length itself–an increase
in length will cause the frequency to decrease. Independently,
a change in length will result in stresses within the fiber that
can change the optical properties of the fiber, resulting in a
change in the group velocity. When these changes are small,
the fractional frequency shift is a superposition of these two
contributions:

δf

f
=

1
vg

( ∂vg

∂( δl
l )

− vg

)δl

l
. (2)

In this paper we investigate the dependence of the group
velocity on changes in length of the fiber. The fiber is modelled
as a step-index, single-mode cylindrical fiber with cladding
having an outer radius much larger than the core radius. The

index of refraction of the cladding material is assumed to
be slightly less than that of the core, so that total internal
reflection occurs in the core. The fiber is assumed to be wound
tightly on a cylindrical spool; although the fiber is not actually
straight–it is wound around a spool–the radius of curvature of
the fiber is very large compared to the radius of the core. The
resulting traction and compression stresses are neglected here
and the fiber is modelled as though it were straight.

We assume the fiber is in close contact with the spool. We
can then identify at least two effects that can change its length.
We observe in the laboratory, for example, that when a metallic
spool wound with fiber is heated, then before it is possible that
the fiber itself could suffer a temperature change, there is a
drift in frequency. We attribute this to changes in fiber length
due to thermal expansion of the spool. Also, when the spool
is clamped to a shake table and subject to a low-frequency
acceleration g(t), the spool will be deformed due to internal
stresses within the spool material, resulting in length changes
in the fiber.

The calculations described here show that for both trans-
verse electric (TE) and transerse magnetic (TM) modes, and
for reasonable fiber parameters, dependence of the group
velocity on length changes is quite small and can be neglected
in a first approximation. In Section II we discuss deformation
of the elastic spool material. In Section III we discuss solutions
of Maxwell’s equations for TE and TM modes in the fiber.
Technical details of these solutions are given in the Appendix.
Section IV discusses solution of the dispersion relations that
result from imposing appropriate boundary conditions at the
core-cladding interface. Section V outlines the changes in
the calculations when the fiber length changes. Results and
conclusions are given in Section VI.

II. FIBER LENGTH CHANGES DUE TO SPOOL

DEFORMATION

We model the spool as a solid cylinder with uniform density
ρ, Young’s modulus E, and Poisson’s ratio ν. Suppose the
spool is placed on a table with its axis vertical and is deformed
under the influence of gravity, g. A horizontal slab of thickness
dz must have more pressure on its lower surface than on its
upper surface, in order to support the mass of the slab. We
assume the relevant component of the stress tensor, σzz , is
uniform across the slab, and that this is the only non-zero
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stress tensor component. Then

∂σzz

∂z
= −ρg . (3)

The speed of sound in the spool material is assumed to be
so high that resonances of the spool itself are very high
in frequency. Then if the shake table applies an additional
time-dependent acceleration g(t), the spool will very quickly
assume another deformed shape described by changes in the
stress tensor, given by Eq. (3). Assuming the spool is clamped
at the bottom, then

σzz = ρg(t)(h − z) , (4)

where h is the height of the top of the spool. The relations
between the strain and stress tensors can be found in many
textbooks [2]. For the simple geometry discussed here, we
have for the non-zero components of the strain tensor

εxx =
∂ux

∂x
= − ν

E
σzz , (5)

εyy =
∂uy

∂y
= − ν

E
σzz , (6)

εzz =
∂uz

∂z
=

1
E

σzz , (7)

where ux, uy, uz are displacements. These equations can im-
mediately be integrated to give a change in radius of the spool:

δR =
νρg(t)(h − z)R

E
. (8)

If the spool is wound with Nl turns per unit length, then the
fractional change of length of fiber that is in contact with the
spool can be obtained by integrating with respect to z, giving
the result

δl

l
=

νρg(t)h
4E

. (9)

The numerical factor in this result may vary depending on
how the spool is clamped. In any case, Eq. (9) contains some
reasonable results for this model: the stiffer the spool, the
smaller the length change; the denser the spool, the larger
the length change because the forces are larger. Eq. (9) also
shows a linear dependence on the time-dependent acceleration.
Assuming now that length changes are given in terms of
reasonable parameters, in the next section we discuss the
solution of Maxwell’s equations within the deformed fiber.

III. ELECTROMAGNETIC WAVES IN A SINGLE-MODE

FIBER

The next stage in the development of this model consists
of solving Maxwell’s equations in a stretched fiber. Assuming
δl/l (the strain) is given, the elastic constants of the fiber
will determine the stresses in the fiber. Then the stress-optic
coefficients will determine changes in the dielectric tensor
and hence in the indices of refraction. Further, under length
changes the fiber radius will change as described by Poisson’s
ratio, and this has to be accounted for.

A. TE Modes

Our objective is to obtain expressions for the group velocity
of electromagnetic waves propagating along the fiber axis, that
is, in the z-direction. We assume the angular frequency is ω
and the wavenumber is k so that the z-dependence and time-
dependence of all fields is

ei(kz−ωt) . (10)

Cylindrical coordinates are appropriate for this geometry.
For the TE mode, there is only an azimuthal component
of the electric field, and the magnetic field has radial and
axial components (see Appendix); there is one undetermined
constant multiplying the fields. Figure 1 shows the geometry
of the cylindrical fiber. The outer cladding radius is very
large compared to the core radius, and we assume the fields
approach zero far outside the core. In the core, the fields are
described by ordinary Bessel functions of argument

zcr =
√

µεcω2 − k2r . (11)

In the cladding material, the fields are described by modified
Bessel functions Kn(zclr), where

zcl =
√

k2 − µεclω2 . (12)

In these equations, the dielectric constant ε and index of
refraction n are related by ε = ε0n

2 in SI units. In order to
obtain solutions of the appropriate form, both zc and zcl must
be real. When the frequency is given, as is the case when
externally produced laser light enters the fiber, this places
limits on the possible values of k:

ωncl

c
≤ k ≤ ωnc

c
. (13)

There is one undetermined constant multiplying the field com-
ponents in the cladding region. At the core/cladding interface,
the tangential components of the electric and magnetic fields
must be equal. These two conditions give two linear equations
in the two undetermined constants, and the determinant of
the coefficients of these constants must vanish in order for a
solution to exist. The vanishing of the determinant can occur at
only one positive value of k for each frequency. This condition
is the dispersion relation, or relation between frequency and
wave number:

ζ2
c J0(ζc)K1(ζcl) + ζ2

clJ1(ζc)K0(ζcl) = 0 , (14)

where

ζc = a(1 − ν
δl

l
)zc; ζcl = a(1 − ν

δl

l
)zcl . (15)

Here ν is Poisson’s ratio and describes the reduction in
core radius that accompanies the lengthening of the fiber.
Expressing the dispersion relation in this way shows that the
wavenumber corresponding to a given frequency will depend
on the fiber length because the core radius will change.

Now imagine solving the dispersion relation, Eq. (14) for
two values of frequency that differ by dω, and that the
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corresponding values of wavenumber differ by dk. The group
velocity is then

vg =
dω

dk
. (16)

It is remarkable that the form of the dispersion relation, Eq.
(14), lends itself to an explicit solution for the group velocity.
To express the result, we define the auxiliary functions

F1 = J0(ζc)K1(ζcl) + ζc
dJ0(ζc)

dζc
K1(ζcl)

+ζcl
dJ1(ζc)

dζc
K0(ζcl) ; (17)

F2 = J1(ζc)K0(ζcl) + ζc
dK1(ζcl)

dζc
J0(ζc)

+ζcl
dK0(ζcl)

dζcl
J1(ζc) . (18)

The group velocity is then

vg =
kc2

ω

F1/ζc − F2/ζcl

n2
cF1/ζc − n2

clF2/ζcl
. (19)

The derivation leading from the dispersion relation to Eq. (19)
is exact. However, the dispersion relation is transcendental and
cannot be solved explicitly but must be solved numerically for
each frequency.

B. TM Modes

For the transverse magnetic mode, there is only an azimuthal
component of magnetic field, while there are radial and
axial components of the electric field. In the core, again
the solutions are described by ordinary Bessel functions,
with one undetermined constant multiplying all the fields. In
the cladding, the solutions are described by modified Bessel
functions that fall off rapidly as the radius increases; there is
a second undetermined constant multiplying all the fields. The
boundary conditions that must be satisfied are: The tangential
components of the electric field, and the normal component of
the displacement vector, must be continuous. These give two
linear conditions on the two undetermined constants, and again
the determinant of the coefficients is a dispersion relation that
fixes the wavenumber k, when the frequency is given. The
dispersion relation for the TM mode is

ζcn
2
clJ0(ζc)K1(ζcl) + ζcln

2
cJ1(ζc)K0(ζcl) = 0. (20)

This equation can be differentiated to yield an explicit expres-
sion for the group velocity of the TM mode. We define two
auxiliary functions:

G1 = n2
clJ0(ζc)K1(ζcl) + ζcn

2
cl

dJ0(ζc)
dζc

K1(ζcl)

+ζcln
2
c

dJ1(ζc)
dζc

K0(ζcl) ; (21)

G2 = n2
cJ1(ζc)K0(ζcl) + ζcn

2
c

dK1(ζcl)
dζcl

J0(ζc)

+ζcln
2
cl

dK0(ζcl)
dζcl

J1(ζc) . (22)

Then the group velocity is given by

vg =
dω

dk
=

kc2

ω

ζcln
2
cG1 − ζcn

2
clG2

ζclG1 − ζcG2
. (23)

IV. NUMERICAL CALCULATIONS

In order to calculate the group velocity, as in Eq. (19), at
some specified frequency, we must have previously solved the
dispersion relation to find the corresponding wavenumber k.
If done numerically this must be done with care; otherwise
there is a considerable loss of accuracy. For example, Newton’s
method for solving a transcendental equation does not work
well here. A method that works is to begin with a trial value
of k and a convenient step size, stepping in the right direction
until the sign of the dispersion relation changes. Then the step
size is accurately divided by some integer–such as 6–and the
direction of stepping is reversed. This process works quite well
and gives sufficient accuracy for our purposes.

We give here numerical results for an unstretched fiber with
reasonable parameters, preparatory to recomputing the group
velocity for a stretched fiber (next Section). The values used
are

nc = 1.5362 , ncl = 1.5306 , (24)

a = 8.3 × 10−6 m , (25)

λ = 1550 nanometers . (26)

Here λ is the operating wavelength of the laser light. The
refractive indices are typical for a single-mode fiber. For the
TE mode,

k = 6.21627 × 106 m−1 , vg = 1.9497 × 108m/s . (27)

For the TM mode,

k = 6.21625 × 106 m−1 , vg = 1.9510 × 108m/s . (28)

V. STRETCHED FIBER

In order to obtain the partial derivative of the group velocity
in Eq. (2), the calculations described above must be repeated
for a stretched fiber. In this case the important quantity that
changes is the radius of the core/cladding interface:

a → a(1 − ν
δl

l
) . (29)

Also, the refractive indices of the core and possibly the
cladding material change. The sequence of calculations here
is to first assume the fractional change in length is given.
This gives the strain tensor. The stress-optic coefficients (when
available) provide the dielectric tensor and hence the changed
refractive indices. Then changes will be proportional to the
fractional length change. This calculation cannot be carried
to completion analytically, but considerable progress can be
made when the length change is small.

Let the stress-optic coefficients of the core be c1 and c2,
and let the Lamè coefficient and bulk modulus of the core be
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[3]

λ =
νE

(1 + ν)(1 − 2ν)
, (30)

µ =
E

2(1 + ν)
, (31)

where E is Young’s modulus of the core and ν is Poisson’s
ratio for the core. There will be similar relations for the
cladding. The principal stresses (there is no shear) in a
longitudinally stretched fiber are

σxx = σyy =
(
λ − 2ν(λ + µ)

)δl

l
, (32)

σzz = (λ − 2νλ + 2µ)
δl

l
, (33)

where µ is the core shear modulus. The principal indices of
refraction are then:

nx = ny = n0 + c1(λ − 2ν(λ + µ))
δl

l

+c2(2λ + 4νµ)
δl

l
, (34)

nz = n0 + c1(λ − 2ν(λ + µ))
δl

l

+c2(2λ + 4ν(λ + µ))
δl

l
. (35)

Thus under stretching, the fiber material becomes anisotropic.
These indices of refraction, along with the modified core
radius, are inserted in the dispersion relations and the cal-
culation of group velocity is repeated for a small assumed
numerical value of the fractional change in length. We give
results here for the following reasonable values of the stress-
optic coefficients and elastic constants of the core material:

c1 = −1.297 × 10−12m2/Newton , (36)

c2 = −4.835 × 10−12m2/Newton , (37)

ν = 0.17, (38)

E = 7.3 × 10−12Newton2/m , (39)

µ = 2.62 × 10−12Newton2/m , (40)

λ =
2µν

1 − 2ν
= 1.35 × 1010Newton2/m . (41)

Then we obtain for the core:

ncore = nc − 0.044375
δl

l
. (42)

Unfortunately, numbers for the stress-optic coefficients of
cladding material do not seem to be available. Therefore in
the absence of better information, we shall use a similar result
for the cladding:

nclad = ncl − 0.044375
δl

l
. (43)

Proceeding with these assumptions for a stretched fiber, we
again compute the group velocities, then take differences to
obtain the following final results. For the TE mode,

∂vg

∂ δl
l

= 5.614 × 106m/s , (44)

and for the TM mode,

∂vg

∂ δl
l

= 5.614 × 106m/s , (45)

The partial derivatives in Eqs. (44) and (45) are small com-
pared to vg , given in Eqs. (27) and (28). Hence, from Eq.
(2),

δf

f
≈ −δl

l
(46)

for small length fluctuations.

VI. CONCLUSIONS

This paper provides a simplified model for computation of
changes in the group velocity of transverse electric and trans-
verse magnetic waves propagating down a straight stretched
fiber. The principal conclusion reached by this analysis is that
changes in the group velocity are quite small, and that we can
neglect them in a first approximation so that the fractional
frequency shift due to vibration-induced fiber length changes
in an optoelectronic oscillator can be adequately approximated
by

δf

f
≈ −δl

l
. (47)
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APPENDIX

In this appendix we give a self-contained solution of
Maxwell’s equations for a clad step-index fiber having az-
imuthal symmetry, when the fields do not depend on the
azimuthal angle φ. More general solutions are discussed in
many textbooks, e.g., [5], without, however, carrying out the
calculation of the group velocity. Here we have made a number
of simplifying assumptions. The fiber is assumed to have a
uniform circular cross section of radius a (or a(1−δl/l)), and
is assumed to be straight, so that the strain tensor has no shear
components. All fields are assumed to have a unique frequency
and z-wavenumber, as in Eq. (10). In addition, the fields are
assumed not to depend on the azimuthal angle φ around the
z-axis. Differential operators in cylindrical coordinates can be
found in many textbooks. [4]

Transverse Electric Mode. Since the fields only depend on
radius r and axial coordinate z, Maxwell’s equations simplify.
In terms of components in the radial, z, and azimuthal direc-
tions the transverse electric mode solutions in the core reduce
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Fig. 1. Coordinate system used to express solutions to Maxwell’s equations
for a circular fiber of radius a. Ordinary polar coordinates in the x− y plane
are also used.

to

Er = Ez = Bφ = 0 r, ; (48)

Eφ = C
dJ0(zcr)

dr
r, , (49)

Br = − k

ω
C

dJ0(zcr)
dr

, (50)

Bz =
iz2

c

ω
CJ0(zcr) , (51)

where the z-dependence, given by Eq. (10), has been sup-
pressed, zc is defined in Eq. (11), and J0 is the ordinary Bessel
Function of order 0. The constant C is an overall amplitude
that at this point is undertermined since Maxwell’s equations
are linear.

In the clad material, the fields must fall off rapidly as the
distance from the core increases. We assume here that the
outer radius of the cladding is sufficiently large that leakage
of fields past the cladding is negligible. Then the solutions in
the cladding region are

Er = Ez = Bφ = 0 , (52)

Eφ = D
dK0(zclr)

dr
, (53)

Br = − k

ω
D

dK0(zclr)
dr

, (54)

Bz = − iz2
cl

ω
DK0(zclr) . (55)

Here K0 is the modified Bessel function of order 0, and D
is an overall undetermined constant. In order to satisfy the
boundary conditions at the core/cladding interface, D and
C must be related. The relevant boundary conditions in the
present case are continuity of the tangential component of
Eφ, and continuity of the tangential component of Hz . These
conditions give two equations

C
dJ0(zcr)

dr
− D

dK0(zclr)
dr

= 0 ,

−Cz2
cJ0(zcr) − Dz2

clK0(zclr) = 0 . (56)

The arguments of the Bessel functions must be evaluated at
the radius a, or a(1 − νδl/l) for the stretched fiber.

The determinant of the coefficients of C and D in Eqs.
(56) must vanish in order to obtain a self-consistent solution.
This condition can be satisfied by only one positive value
of the wavenumber k for a given frequency, and thus gives
the dispersion relation for TE modes. (See main text for
discussion.) There is then one relation between C and D and
one overall undetermined field amplitude.

Transverse Magnetic mode. In this case the only non-zero
component of the magnetic field is in the azimuthal direction.
In the core, the solutions to Maxwell’s equations are

Br = Bz = Eφ = 0 , (57)

Bφ = µεcC
dJ0(zcr)

dr
, (58)

Er =
k

ω
C

dJ0(zcr)
dr

. (59)

(60)

where again the z-dependence, given by Eq. (10), has been
suppressed; εc is the dielectric constant of the core, εc = ε0n

2
c .

The solutions in the cladding region are

Br = Bz = Eφ = 0 , (61)

Bφ = µεclD
dK0(zclr)

dr
, (62)

Er =
k

ω
D

dK0(zclr)
dr

, (63)

Ez =
iz2

cl

ω
DK0(zclr) , (64)

and εcl = ε0n
2
cl. The boundary conditions that must be satis-

fied in this case are: continuity of the tangential components
of the electric field, and radial components of the displacement
vector. The determinant of the coefficients of C and D gives
the dispersion relation, and differentiation of the dispersion
relation gives an explicit expression for the group velocity, as
discussed in Section III above.
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