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ABSTRACT  
 
Position determination of a spacecraft far from earth can 
be aided by binning the times of arrival of x-ray photons 
from a millisecond pulsar and matching the pulse shape to 
a standard shape by adjusting the phase of the observed 
signal.  Usually studies of such measurements assume the 
frequency of the incoming signal is known, and show that 
the uncertainty in the component of position vector along 
the line of sight varies as 1/2

obsT −  where obsT  is the total 
observation time.  Here we extend such analyses to 
include determination of velocity.  Cramer-Rao lower 
bounds on the uncertainties of position and velocity are 
derived based on analysis of the Fisher Information 

Matrix.  In one spatial dimension, the results can be 
expressed in terms of a minimal ellipse in position-
velocity space whose size and orientation are determined 
by the observation time and by a single quantity 
depending on the standard pulse shape.  For long 
observation times, the area of this ellipse decreases as 

2
obsT − .  If position were known, the uncertainty in 

velocity would decrease as 3/2
obsT − .  If the spacecraft 

acceleration can be neglected, then by Liouville’s theorem 
between measurements the area of the ellipse remains 
constant while its shape elongates in the position 
dimension.   Another measurement of position and 
velocity may be combined with this minimum uncertainty 
ellipse to reduce the area further.  Sequences of 
measurements can be used either as inputs to a Kalman 
filter, or described in terms of a set of recurrence relations 
for the parameters of the minimum uncertainty ellipse.  
We shall discuss the derivation of these results and some 
simulations based on this theory. 
 
 
I.  INTRODUCTION  
 
Many studies of navigation based on binning the times-of-
arrival (TOAs) of x-ray photons from pulsars concentrate 
on determining the phase of the incoming signal, (the 
phase determines the detector position) assuming the 
frequency of the signal pulses is known.  On the other 
hand position and velocity go hand-in-hand in most orbit 
determination procedures.  In this paper we study the 
determination of velocity as well as position and 
demonstrate that position cannot be accurately determined 
unless the detector velocity is either known or determined 
from the same data used to determine position.  This 
paper is restricted to one spatial dimension; position and 
velocity can then be pictured in a two-dimensional “phase 
space” in which velocity is plotted vertically and position 
is plotted horizontally. 
 
To illustrate the problem, Figure 1 gives five plots of 
binned TOA counts from the Crab pulsar signal, 
measured by the USA detector, after reduction of the 
measurements to the solar system barycenter.  A total of 
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1,415,710 counts were received in 389.8 s, and the counts 
were accumulated into 1024 bins.  The known frequency 
of the Crab signal was 0f =29.8426722111886 Hz.  The 
center plot in Figure 1 was binned using a period 01/ f .  
Background counts due to the Crab nebula have not been 
subtracted out.  The two plots nearest to the central plot 
correspond to fractional frequency offsets of only one part 
in 105, due possibly to longitudinal Doppler shifts 
resulting from detector motion.  One may observe from 
these two plots that the positions of the peaks—and hence 
the measured phase of the signal—is strongly correlated 
with the frequency error and hence with the velocity error, 

/v cδ .  We shall discuss this correlation in a later section.  
The sought-after peak is almost completely washed out 
when the fractional error in frequency reaches five parts 
in 105 in this example.  Clearly accurate determination of 
signal phase is strongly dependent on knowledge of the 
signal frequency, and hence on knowledge of the detector 
velocity.   
 

 
Figure 1. 1024-bin measurements of the Crab pulsar 
signal assuming different frequencies.  The five plots, in 
order from bottom to top, assume fractional frequency 
offsets of 5( 5, 1, 0, 1, 5) 10−− − + + × , respectively.  No 
backgrounds have been subtracted out.  Constant offsets 
of (-2000, -1000, 0, +1000, and +2000) have been added 
to the respective plots so that the plots are easier to see.  

 
The outline of this paper is as follows:  in Sect. II, we 
develop the theory of the Cramer-Rao lower bound on 
determination of both position and velocity, assuming 
Poisson statistics for the noise in the counts. For a 
measurement lasting a large number of periods, the 
minimum uncertainties in position and velocity, and the 
correlation between position and velocity, are simply 
related and a single integral suffices to characterize both 
uncertainties and their correlation.  In Sect. III we show 
how, after a measurement update, the uncertainty in 
position will evolve in time due to the uncertainty in 
velocity effectively causing the ellipse to elongate in the 
spatial direction.  In Sect. IV we discuss a possible 
sequence of measurements of both position and velocity, 

lasting for an observation time obsT , followed by 
evolution of the uncertainties in position and velocity for 
a time TΔ , then another measurement, and so on.  We 
shall describe the minimum uncertainties in terms of an 
ellipse in phase space.  Sect. V discusses how a 
subsequent measurement can be combined with the time-
dependent ellipse, and a set of recurrence relations are 
derived that can be used to describe a sequence of 
measurements in terms of evolving ellipses.  Simulations 
are discussed in Sect. VI. 
 
 
II.  CRAMER-RAO LOWER BOUND  
  
In the following, we shall limit the scope of our analysis 
to one spatial dimension by considering a detector 
traveling at a constant velocity along the pulsar’s line of 
sight.  Let x  and v  represent the position and velocity 
parameters to be determined from the photon TOA 
measurements taken over the interval 1 2( , )t t  of duration 

2 1obsT t t= − .  Suppose that the source frequency 0f  is a 
known constant, and that the pulsar phase, denoted 0φ , is 
also known at some reference location, 0x , and time 
epoch, 0t . We shall take the reference point to be at the 
origin, 0x = , and the epoch at which the phase is 0φ  to 
be 0t = .  The observed phase and frequency of the pulsar 
signal are then related to the position and velocity of the 
detector according to: 
 ( )0 0 1 /f t x cφ φ= + +  (2.1) 

 ( )0 1 /f f v c= +  (2.2) 

where x  is the detector position, and φ  is the observed 
phase, both defined at the start of the observation, at 
time 1t ; f is the observed frequency due to detector 
motion toward the source.   The above relationships can 
be used to solve for position and velocity given estimates 
of the observed phase and frequency, and vice versa.  We 
shall use the notation, ( )xφ  and ( )f v , or more 
compactly, xφ  and vf , to refer to these relationships.  
The TOA of x-ray photons may now be modeled as a 
Poisson point process with a periodic rate function of the 
form: 

 ( ) ( )1; , (1 / ) ( )x vt x v v c h f t tλ α φ β⎡ ⎤≡ + + − +⎣ ⎦ ,    

 1 2( , )t t t∈  (2.3) 

where α and β denote the arrival rates of the source and 
background photons at the reference point. The factor 
(1 / )v c+  arises because the count rates uniformly 
increase when the detector is in motion towards the 
source.  The function ( )h φ  is the normalized dc-removed 
pulse profile of the source.  It is usually defined on the 
phase interval, (0, 1 cycle)φ ∈ , but its definition is 
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extended here to cover all phases by making it a periodic 
function, that is, by letting ( ) ( )h m hφ φ+ =  for all 
integers m.  By definition, the function ( )h φ , satisfies the 
following two conditions:  

 
(0,1)

min ( ) 0h
φ

φ
∈

=  , and  
1

0
( ) 1h dφ φ =∫ . (2.4) 

We shall place the estimation parameters into a vector, 

[ ]T,x v=θ , and use 1̂θ  and 2̂θ  to refer to estimates of 
position and velocity.  Also, we shall transform the 
photon TOA measurements into an observation vector by 
partitioning the entire observation interval into N  bins of 
duration tδ , and placing the number of photons counted 

in each bin into the vector, T
1 2, , , Nz z z= ⎡ ⎤⎣ ⎦z K , as 

illustrated in Figure 2.  This transformation can be carried 
out with tδ  set arbitrarily small and the resulting number 
of bins, N , arbitrarily large.   
 

64748 64748 64748 64748

tδ
2 1 obs

1

t t T

t N tδ

= +

= +
1t

Time
(sec)

1z 2z 1Nz − Nz

 
Figure 2.  Photon binning and notation.  

 
The Cramer-Rao lower bound for this problem is given by 
the formula [2,3]: 

 1ˆcov ( ) ( )−≥θ I θ  (2.5) 

where θ̂  is any unbiased vector estimate of θ  with 
ˆcov( )θ  denoting its covariance matrix, ( )I θ  is the 2×2 

Fisher information matrix, and the matrix inequality is 
understood in the sense that ( )1ˆcov ( ) ( )−−θ I θ  is positive 

semi-definite.  The elements of the Fisher information 
matrix are given by: 

 [ ]
2 ln ( ; )( ) Eij

i j

p
θ θ

⎛ ⎞∂
= − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

z θI θ  ,    , 1, 2i j =  (2.6) 

where the expectation is taken with respect to ( ; )p z θ , 
using the true value of θ .  For tδ  sufficiently small, the 
rate of arrival of photons over the n-th bin can be taken as 
constant: 

 ( )
1

1 ( 1)

1( ) ; ,
t n t

n
t n t

t x v dt
t

δ

δ
λ λ

δ

+

+ −
≡ ∫θ  (2.7) 

The bin count, nz , is a Poisson random variable with 
probability mass function (pmf): 

 ( ) ( ) ( )
( )

; exp ( ) ,
!

0, 1, 2,

z
n

n n
t

p z z t
z

z

λ δ
λ δ= = −

=

θ
θ θ

K

 (2.8) 

For the Poisson distribution, the mean and variance are: 
 E( ) var( ) ( )n n nz z tλ δ= = θ . (2.9) 

Since nz  is an independent random sequence, the joint 
pmf of the sequence is the product of the pmfs of the 
individual random variables in the sequence:  

 
( ) ( )

1

( )
( ; ) exp ( )

!

nzN
n

n
nn

t
p t

z
λ δ

λ δ
=

= −∏
θ

z θ θ . (2.10) 

We now proceed to evaluate the right-hand side of Eq. 
(2.6): 

 ( ) ( )
1

ln ( ; ) ln ( ) ln ! ( )
N

n n n n
n

p z t z tλ δ λ δ
=

= − −∑z θ θ θ (2.11) 

( )222

1

ln ( )( )ln ( ; )E E( ) .
N

nn
n

i j i j i jn

ttp z
λ δλ δ

θ θ θ θ θ θ=

⎛ ⎞ ∂∂∂
− = −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∑
θθz θ

  (2.12) 
Substituting Eq. (2.9) for E( )nz , 

( ) ( )2 2

2

ln ( ) ln ( )
E( ) ( )

( ) 1 ( ) ( )
( )

n n
n n

i j i j

n
n n

i j n i j

t t
z t

t
t t

t

λ δ λ δ
λ δ

θ θ θ θ

λ δ
λ δ λ δ

θ θ λ δ θ θ

∂ ∂
=

∂ ∂ ∂ ∂

⎛ ⎞⎛ ⎞∂ ∂ ∂
= − ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

θ θ
θ

θ
θ θ

θ

 

  (2.13) 
and Eq. (2.12) reduces to: 

 
2

1

( ) ( )ln ( ; ) 1E
( )

N
n n

i j n i jn

p t
λ λ

δ
θ θ λ θ θ=

⎛ ⎞ ∂ ∂∂
− =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑ θ θz θ
θ

 

  (2.14) 
Since the bin size is arbitrarily small, we may now take 
the limit as 0tδ →  to obtain: 

 [ ]
2

1

( ; ) ( ; )
( )

( ; )

t
i j

ij
t

t t
dt

t

λ λ
θ θ

λ

∂ ∂
∂ ∂

= ∫
θ θ

I θ
θ

,    , 1, 2i j =  

  (2.15) 
The derivatives needed for evaluation of the components 
of ( )I θ  are 

 

0

1

0
1

2

(1 / ) ' ;

( ) (1 / ) ( ) ' .

f
v c h

x c
fh v c t t h

v c c

αλ λ
θ

αλ λ α β
θ

∂ ∂
= = +

∂ ∂

∂ ∂ +
= = + + −

∂ ∂

(2.16) 
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Evaluating 11I , after cancellations we obtain 
  

 
2

0
11 2

22

1

(1 / )
( ') .

f
I v c

c

t

t

h dt
h
α
α β

= +
+∫   (2.17) 

The /v c  correction is so small that it can be neglected 
here.  We shall assume that the observation time obsT  is 
very large compared with the period 1

0P f −=  of the 
signal.  The integrand of Eq. (2.17) is periodic so if we 
neglect contributions to the integral from fractions of a 
cycle near the endpoints, and the number of cycles of 
observation is cN , then in each cycle we can let 

't nP t= +  where n is an integer running from 1 to cN .  
Then 

 
2 2

0
11 2

1 ( 1)

( ') '
cN

n

n P

n P

f hI dt
hc
α
α β

= −
=

+∑∫  (2.18) 

Lastly, we change the variable on integration so that the 
integration is over the phase from 0 to 1.  Let 't Pφ= ; 
then 

 
2 21

0
11 2 0

( ')
c

f P hI N d
hc
α φ
α β

=
+∫ . (2.19) 

The product ,obsNP T= the observation time, so  

 
2 21

0
11 2 0

( ')
obs

f hI T d
hc
α φ
α β

=
+∫ . (2.20) 

 Evaluation of the off-diagonal component of the 
information matrix using Eqs. (2.16) gives 

( )2 2

1 1

22
0 0

12 21 12 2
'

' (1 / ) ( ) .
t t

t t

hf f
I I h dt v c t t dt

hc c

α
α

α β
= = + + −

+∫ ∫   

  (2.21) 
Again we may neglect the /v c correction term and 
contributions to the integrals from fractions of a cycle 
near the endpoints.  The first integral in Eq. (1.20) then 
vanishes because of the periodicity of h and its 
derivatives.  Making use of the periodicity of the rate 
function, we can integrate over a single cycle if we let 

' ( ) ;t nP t n Pφ= + = +  then   

2
0

12 2 01

2 21
0

2 01
2 22 21 1

0 0
2 20 0

( ') ( ') '

( ') ( )

( ') ( ')( 1) .
2 2

c

c

N P

n
N

n

c c c

f hI nP t dt
hc

f P h n d
hc

f P f Ph hN N d N d
h hc c

α
α β

α φ φ
α β

α αφ φ φ
α β α β

=

=

= +
+

= +
+

= + +
+ +

∑∫

∑∫

∫ ∫
 
   (2.22) 

Since 1φ < , the second integral is smaller than the first.  
Also, we are assuming 1cN >> , so the first term 
dominates and to a very good approximation we obtain 
  

 
21

20
12 2 0

1 ( ') .
2 obs

f hI T d
hc
α φ
α β

=
+∫   (2.23) 

The integral that appears in this expression is the same 
one that determines 11I . This trend continues with the 
evaluation of 22I  when similar approximations are made.   
 After substituting from the second of Eqs. (2.16), 
squaring, neglecting /v c  corrections and small 
contributions from fractions of a cycle near the endpoints, 
and letting ( )t n Pφ= +  we obtain 

( )

( )

( ) ( )

21 1

22 2 20 01 1

22 2 31 1
20 0

2 20 01 1
2 2 22 3 2 31 1

0 0
2 20 01 1

2 '

'2
'

' '2
.

c c

c c

c c

N N

n n
N N

n n
N N

n n

P PI h d n h d
c c

hf P f P
h d n d

hc c

h hf P f P
n d d

h hc c

α β φ α φ

α
α φ φ φ

α β

α α φ
φ φ φ

α β α β

= =

= =

= =

= + +

+ +
+

+ +
+ +

∑ ∑∫ ∫

∑ ∑∫ ∫

∑ ∑∫ ∫
  (2.24) 
When 1,cN >>  by far the largest contribution comes 
from the fourth term in Eq. (2.24).  The result is   

 

( )

( )

22 3 1
0

22 2 0
22 1

30
2 0

'( 1) (2 1)
6

'1 .
3

c c c

obs

hf P N N N
I d

hc

hf
T d

hc

α
φ

α β

α
φ

α β

+ +
=

+

+

∫
∫

(2.25) 

Thus, the same integral, characteristic of the signal, 
determines all the elements of the Fisher information 
matrix.  If we define 

 
( )21

0

'
,

h
L d

h
α

φ
α β

≡
+∫  (2.26) 

then the inverse of the fisher information matrix is 

 
22

1
2 2 3

0

4 / 6 /
( ) .

6 / 12 /
obs obs

obs obs

T Tc
f L T T

−
⎛ ⎞−
⎜ ⎟=
⎜ ⎟−⎝ ⎠

I θ  (2.27) 

 
 
III. IDENTIFICATION AND EVOLUTION OF 
PHASE SPACE UNCERTAINTY ELLIPSE 
 
To aid in visualizing the implications of Eq. (2.27), we 
shall assume that the noise components giving rise to the 
minimum uncertainties are jointly Gaussian, and shall 
construct a probability density that has the same second 
moments as given by the covariances of Eq. (2.5).  The 
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probability density will be of the form of a bivariate 
normal distribution, and apart from normalization is 

 
2 2

2 2 2
1exp ,

1 2 2x vx v

x xv vρ
σ σρ σ σ

⎛ ⎞⎛ ⎞
⎜ ⎟− − +⎜ ⎟⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 (3.1) 

where we have assumed the mean values of x  and v  are 
zero; this assumption is only to simplify the calculations 
and is not essential.  The normalization constant for the 
distribution, Eq. (3.1) is 2 1(2 1 ) .x yπσ σ ρ −−  The 
probability density will fall to 1/ e  of its maximum value 
on the ellipse described by the equation  

 
2 2

2 2 2
1 1.

1 2 2x vx v

x xv vρ
σ σρ σ σ

⎛ ⎞
− + =⎜ ⎟⎜ ⎟− ⎝ ⎠

 (3.2) 

We shall use this ellipse as a model of the region in phase 
space within which the probability mass of the best 
unbiased estimator is concentrated—that is the meaning 
of the Cramer-Rao lower bound on the covariance matrix. 
The covariance matrix corresponding to this distribution 
is 

 
2

2
.x x v

x v v

σ ρσ σ

ρσ σ σ

⎛ ⎞
⎜ ⎟Σ =
⎜ ⎟
⎝ ⎠

 (3.3) 

We identify these constants with the minimum 
expectation values given by the inverse of the Fisher 
information matrix.  We then find after some calculation 
that 

 

2
2

0
2

2
3

0
2

2
0

14 ;

112 ;

16 ,

x
obs

v
obs

x v
obs

c
f T L

c
f T L

c
f T L

σ

σ

ρσ σ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

 (3.4) 

which give 

 3 .
4

ρ = −  (3.5) 

Thus with the approximations made here, the coefficient 
of correlation between position and velocity for one 
measurement is a constant. 
 
The velocity measurement is basically a measurement of 
the observed signal frequency, and the uncertainty in this 
measurement decreases as 3/2

obsT − .  Such dependence on 
observation time is typically associated with measurement 
noise [4]—in the present case, it is due to counting 
statistics. 
 
 
 

IV.  ELLIPSE EVOLUTION BETWEEN UPDATES 
 
Now we follow the ellipse through its evolution between 
measurement updates.  According to Liouville’s theorem, 
the area of a region in phase space, when no acceleration 
acts, will be conserved.  An ellipse described by the 
parameters of Eq. (3.2) has area 

 22 1 .x vA π ρ σ σ= −  (4.1)  

In the absence of additional information, with no 
acceleration a point ( , )x v on the ellipse will move during a 
time TΔ to ( , ).x v T v+ Δ   The ellipse will elongate in the 
direction of the x − axis and will be described by a new 
equation: 

 
( ) ( )2 2

2 2 2
1 1.

1 2 2x vx v

x v T x v T v vρ
σ σρ σ σ

⎛ ⎞− Δ − Δ
⎜ ⎟− + =
⎜ ⎟− ⎝ ⎠

(4.2) 

This is equivalent to an ellipse with new parameters: 

 
( )2 2

2 2 2
1 1.

1 2 2x vx v k

x xv vρ
σ σρ σ σ

−
⎡ ⎤⎛ ⎞

− + =⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
 (4.3) 

where we have introduced a new notation in order to 
make the equations more compact.  Here the superscript    
“(-)” means that all constants inside the brackets are 
associated with the end of the evolution cycle, just before 
the thk measurement update.  Similarly the ellipse 
parameters after a measurement update will be denoted 
with a superscript “(+)”.  We regard an event step, labeled 
by k , in the measurement process, as consisting of the 
result of evolution until just before an update, followed by 
an update.  An uncertainty such as xσ  during this process 

would be denoted at the end of the evolution by [ ]( )
x kσ −  

and after update k  by [ ]( )
x kσ + , and after the next update 

by [ ]( )
1x kσ +
+ . With these conventions, the parameters of the 

evolving ellipse are obtained by identifying Eqs. (4.3) and 
(4.2), and are 

 

[ ] [ ]

[ ]

[ ]

( ) ( )
1

( )( ) 2 2 2

1
( )

( )

2 2 2
1

;

2 ;

.
2

v vk k

x x x v vk k

x v
k

x x v v k

T T

T

T T

σ σ

σ σ ρσ σ σ

ρσ σ
ρ

σ ρσ σ σ

− +
−

+
−

−
+

−

−

=

⎡ ⎤= + Δ + Δ⎢ ⎥⎣ ⎦

⎡ ⎤+ Δ⎢ ⎥=
⎢ ⎥+ Δ + Δ⎣ ⎦

 (4.4) 

If TΔ  varies from step to step, then the notation allows 
the index 1k −  also to be attached to TΔ  during 
evolution.   
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The minimum uncertainty in the velocity direction does 
not change during the evolution, as one would expect.  
The area of the evolving ellipse, from Eq. (4.1), is 

 
( ) ( )

2 2

1
2 1 2 1 ,x v x v

k k
A π ρ σ σ π ρ σ σ

− +

−

⎡ ⎤ ⎡ ⎤= − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
(4.5) 

after using the solutions (4.4). 
 
 
V.  RECURRENCE RELATIONS 
 
We next investigate the modification of the minimum 
uncertainty ellipse when another measurement is made 
and the uncertainty information is updated.  This will be 
done for a general k .  Assume that at some point after 
k steps in the sequence of measurement, evolution, 
measurement, evolution, etc., and just before a 
measurement update the minimum uncertainty ellipse is 
described by Eq. (4.3).    
 
Then suppose that another measurement of position and 
velocity is obtained by binning the TOAs of photons from 
the source.  By itself, this measurement would be 
described by a probability density similar to Eq. (3.1). 
The result of the evolution is also represented by a 
probability density of this form.  We assume these 
probability densities are independent and combine them 
by multiplying densities; this is equivalent to adding 
exponents.  Addition of two quadratic forms in ( , )x v  
gives another quadratic form, and we can identify the 
resulting form as determining another ellipse 
corresponding to the end of step k in the sequence.  
Identifying the parameters of the resulting ellipse by 
labels k and (+) gives the following set of equations:  

( ) ( )

2 2 2 2 2 2

( )

2 2

( )

2 2

( )

2 2 2 2

2 2

1 1 1 1 1 1 ;
1 1 1

1 1
1 1

1 ;
1

1 1 1 1
1 1

1 1 2
1

e

x x xk k k
e

x v x vk k

x v x k
e

v vk k

v

T

ρ σ ρ σ ρ σ

ρ ρ
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  (5.1) 
On the right, the superscript “e” means the independent 
experimentally determined values of the ellipse par-
ameters obtained by binning TOAs at step k .  Then the 

updated ellipse parameters just after the k  update are on 
the left sides.  These equations can be solved explicitly 
for the ellipse parameters at the beginning of step 1k + .  
The algebra is lengthy and will not be given here.  The 
results are expressed more easily if the following 
auxiliary quantities are defined: 
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  (5.3) 
The systems of equations (4.4), (5.3),  provide a complete 
set of recurrence relations for a sequence of 
measurements.  In the next section we apply these 
equations to an example of navigation along the line-of-
sight to the Crab pulsar. 
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Figure 3.  Intensity profile function used to model the 
Crab pulsar.  The period is 33.5 ms.  The time-averaged 
arrival rate of photons is 1000α β+ =  counts/sec. 

 
VI. EXAMPLE—NAVIGATION USING CRAB 
PULSAR 
 
In this example we use a model analytic expression for 
the pulse shape of the Crab pulsar, illustrated in Figure 3.  
For simplicity in this example we shall assume the time 
intervals between updates are all equal, 360TΔ = s.  The 
time of observation, obsT , is also assumed to be 360 s so 
that while measurements are being accumulated for this  
time interval, the ellipse parameters are evolving 
according to Eqs. (4.4).  Each measurement gives the 
same information, determined by a single integral, Eq. 
(2.26).  We use the profile in Figure 3 but assume there 
are 500 source counts/s and 500 background counts/s.  
These numbers are chosen for illustrative purposes only; 
in an actual situation the count rates will depend on that 
properties of the particular detector.  In the present case 
the value of the integral L is 

 5 12.873 10 .L s−= ×  (6.1) 
For the assumed observation time, the experimentally 
determined ellipse parameters after one measurement are 
obtained using the relationships in Eqs. (3.4) and (3.5), 
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 (6.2)  

Thus after 360 s of observations the uncertainties in 
position and velocity are 1.98 km and 9.51 m/s, res-
pectively and the correlation between them is 

0.866.ρ = −   
 
The values of the ellipse parameters given in Eq. (6.2) are 
based on the Cramer-Rao lower bound evaluated using 
the Crab pulse profile. These theoretical predictions are 

now validated via a Monte Carlo simulation using the 
setup diagrammed in Figure 4. The true values of position 
and velocity are set to 3,350.90636 km and 10.0 km/s in 
the simulation. Photon TOAs are then generated as 
realizations of a non-homogeneous Poisson process with 

( ; , )t x vλ  as the rate function.  Estimates of the position 
and velocity parameters are obtained by processing the 
photon TOAs through the maximum likelihood estimator 
(MLE) described in reference [1]. 
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Figure 4.  Simulation of photon TOAs using the Crab 
pulse profile and subsequent maximum likelihood 
estimation of position and velocity. 

 
Figure 5 shows the result of the MLE simulation. A 
scatter plot of position vs. velocity estimation error is 
shown for 10,000 realizations of the photon TOAs over a 
360 s observation interval.  Figure 6 compares the ellipse 
parameters obtained via the MLE Monte-Carlo simulation 
against the Cramer-Rao theoretical predications.      
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Figure 5.  Scatter plot of the position vs. velocity estima-
tion errors for 10,000 independent realizations of the 
photon TOAs over a 360 s observation interval processed 
through the MLE. 

Position 
RMS Error, 
[σ x ]e  ( m )

Velocity 
RMS Error,

 [σ v ]e  ( m/s )

Correlation
Coefficient,

 [ρ ]e

MLE
Simulation 2,046.25 9.935 -0.855

Cramer-Rao 
Theory 1,975.65 9.505 -0.866

 
Figure 6.  Comparison of the MLE Monte-Carlo simu-
lation vs. the Cramer-Rao theoretical results. 
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Figure 7 shows the uncertainty ellipse after the first 
measurement and its evolution after an additional 360 s. 
The correlation between position and velocity is reflected 
in the tilting of the axes.  A positive error in v  would 
correspond to a negative error in position, consistent with 
the binning results shown in Figure 1. 
 
Figure 8 shows the minimum uncertainty ellipse evolved 
after 360 s and the result of a measurement update at that 
time.  Figure 9 is a log-log plot of velocity uncertainties.  
The lower line is a plot of the velocity uncertainty given 
in Eq. (3.4) as a function of time showing the 3/2

obsT −  
dependence on observation time.  The upper line shows 
the results of measurement updates every 360 s, assuming 
that each measurement is independent and that phase 
information is lost after each measurement.  This shows 
that in order to take advantage of the rapid decrease of 
velocity uncertainty, one must maintain the phase from 

  
Figure 7.  Uncertainty ellipse after one measurement 
lasting 360 s, and ellipse after subsequent evolution 
through 360 s. 

 

 
Figure 8.  Minimum uncertainty ellipses after evolving for 
360 s and then updating with a second set of observations. 

 
one measurement interval to the next.  During the total 
observation time of about a million seconds in this figure, 

there were 10000 measurement updates.  The position 
uncertainty shown in Figure 10 decreases as the inverse 
square root of the total time, so the slope of the graph is -
1/2 except during coasting intervals. 
 

 
Figure 9.  The lower straight line is a plot of Eq. (3.4), 
while the upper line shows the 1/2

obsT −  dependence that 
would result if independent measurements of 360 s 
duration are used with the recurrence relations.  In the 
latter case phase information is lost at each update. 

 

 
Figure 10.  Plot of uncertainty in position using a series 
consisting of repeated measurements and updates, with no 
phase information carried forward from one time interval 
to the next. 

 
 
VII. OTHER LINEAR COMBINATIONS 
 
A quadratic form such as that in (3.1) can be diagonalized 
by choosing different linear combinations of parameters.  
In the present case, (3.1) is equivalent to  
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2 2 2
/ /1 1 1exp
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x x
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  (6.3) 
as can readily seen by expanding the squares.  One of the 
linear combinations, 
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 / ,x vx vσ σ±  (6.4) 

has smaller uncertainty than the other.  In the case of a 
single measurement lasting time ,obsT  these linear 
combinations, from Eq. (3.4), are 

 1/
3x v obsx v x T vσ σ± = ± . (6.5) 

The corresponding uncertainties are 

 .
1

xσ
ρ±

 (6.6) 

These uncertainties correspond to the semi-major and 
semi-minor axes of the minimum uncertainty ellipse 
reduced to length units.  However, we shall not make use 
of such linear combinations in this paper. 
 
 
VIII.  DISCUSSION 
 
If the only parameter determined by the TOA 
observations were the phase, and hence the detector 
position, the resulting uncertainty would be smaller by a 
factor of 2.  This factor is a penalty imposed by the 
theory, when two parameters are to be determined.   
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