
October 2, 2005

Votoscope Software by Harri Hursti

So, what I have been working on has now been named as "Votoscope". It is free, open source
software - when I release it mid-month, it is once and for all out of my hands. As source code, it
is not polished to be optimized, absolutely opposite, sacrifices in source code everything to be
easy to understand with less than average programming skills - it is more a tutorial how to build
a optical mark recognization software than a end product, but it gets the job done.

The idea was very simple :

1) I found out that high speed scanners of Diebold are actually 3 step process - first ballots are
imaged as digital images and stord as individual files to image server and then images are
interpreted by OMR software and then results are transmitted to cenrtal tabulator for final
processing - but the files are left to image server. Other manufactures have similar design for
their high speed scanners - hartintercivic confirmed that this is the case with all their scanners
including precinct based.

2) Few election supervisors had made point to me that ballots are public records and citizens
have access to them via Freedom on Information Act and Public Record Requests. As paper
ballots those can not be allowed to be more than inspected to preserve intergrity. In case of
digital image exists... in most cases only reasonable cost to copy it on CDs or DVDs. So, no
new laws are required.

 3) I got access to few 100s of images from number of states - I was shoked by poor quality of
the images -- bad maintenance, bad calibration, auto-calibration going wrong, physical paper
trail problems etc - things were seriously wrong even in square one. Then I learened (as fact I
know, not hearsay) that some manufactures had put speed over accurancy and assumptions over
user interventions to gain competitive edge.

So, I decided to write my own software to analyze the images - and then I also wrote a simple
tabulator software with "what-if capabilities" and this means "what if instead of 18% of grey the
sure recognition without user intervention would be 19%" and this is valid question, because
locations running with auto calibration EVERY BALLOT has different calibration, even within
the same ballot, BUT TRESHOLDS ARE FIXED IN COMMERCIAL SOFTWARES! This is
actually, in my opinion, much more important than my previous discovery. Even this tutorial-
level program processes one race at the time, with normal $700 home PC, over 10000 ballots
per hour - and it is learning as it goes, which helps user to teach it ballot styles and rotations
only as needed making even counties of 1000s ballot styles managable. It is also network
enabled, so who ever having number of computers in local area network can pararrell process
the election each workstation processing over 10000 ballots per hour and one user entering new
ballot styles and rotations as needed. My own "central tablulator" imported 250000 ballots into
database in less than 15 minutes (one race, same home pc) and processed with forensic
information (like reference white balance from between ovals to track bad calibration) in less
than 30 minutes.

