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ABSTRACT 

It is shown that the solution trichotomy described by Watson (1984) applies to 

a much larger class of minimax problems and has additional robustness properties 

beyond those discussed by him. We also address a number of practical issues, 

demonstrating, in particular, that the fixed-interval smoothing algorithm can be 

used, when finite and possibly nonconsecutive data are available, to obtain the 

minimax solution, the corresponding component estimate, and the robust mean 

square estimation error. 

KEYWORDS. Signal extraction; Nonstationary time series; Seasonal adjustment; 

= Robust methods; Missing data. 



1. INTRODUCTION 

In the Hillmer-Tiao minimum mean square signal extraction approach to 

seasonal adjustment, see Hillmer, Bell and Tiao (1983) or Burman (1980), the 

observed series is modeled as a nonstationary seasonal ARMA process xt having 

a decomposition of the form 

Xt = nt + St + et , ‘( 1.1) 

in which st and nt are “minimum variance” seasonal and nonseasonal components, 

and et is a white noise process (usually nonnero) admitting a continuous family of 

decompositions 

et = et” + $ , mSxSM , U-2) 

* into uncorrelated white noise series et” and 2 with variances a-m and M-a, 

respectively. Thus, by means of the definitions 

nr = nt + et” 

11.3) 

a family of possible nonseasonal-seasonal component decompositions of xt is 

obtained, 

xt = nt + SF , mSaiM , (1.4) 

arising from possible apportionments of et. 

Given some set of x-variables, say {xt+ jEJ}, let f;T = it(J) denote the 

linear function of the given variables for which the mean square error 

A 

E{nf - nr}* (1.5) 

is minimized. ‘1 The determination of such a component estimate is what is meant 

by signal extraction, but complementary to the task of determining an optimal 
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estimate of the nonseasonal component of xt, there is the problem of deciding on a 

choice of a. The authors referred to above prefer a=M, arguing that the 

decomposition of xt with the most predictable seasonal component should be used 

(which sometimes does not force the choice ar=M, see section 6 below.) On the 

other hand, many data users prefer to have the nonseasonal component be as 

predictable as possible, which suggests the choice a=m. Watson (1984) has 

proposed two minimax criteria for making this choice, leading to an estimate nt , % 

where B*=@*(t) solves 

p* : % 2 min,sbrM maXmsusM EM-n t > , 

*a** 
orto nt ,where@ **=/l?**(t) 1 so ves the analogue of (1.6) for first differences, 

B ** : min,sgrM maxmsa;S;M E{An? - Ant > . Aa 2 

* 

0.6) 

0.71 

Watson gives an analysis of (1.6) and (1.7) only for the situation in which 

complete bi-infinite data are available (J = (-~,~) =&f {O&l, . ..}) and the transfer 

Aa function of the filter determining the estimates n t is given by the pseudo-spectrum 

ratio analogue of the classical Wiener-Kolmogoroff formula [see Appendix l), as 

under Assumption A of Bell (1984). He demonstrates for (l-6), and analogously for 

(1.7), that one of three possible numbers, m, M and &,, in our later notation, is the 

solution (actually he doesn’t discuss uniqueness), observing that E{@ - nt > , %I 2 

when applicable, provides a robust estimate of the mean squared estimation error. 

Watson’s very stimulating paper leaves a number of practical questions 

unanswered concerning the solution of (1.6) (and (1.7)) : (i) Does the same kind of 

m, M, @c trichotomy occur when there are only finitely many, possibly 

nonconsecutive observations ? (ii) Is the solution always a function just of the 

coefficients of the optimal filter ? (iii) If a state space smoothing algorithm is 

A@ used for the determination of n t, so that filter coefficients are not directly 

available, can the solution be determined from quantities calculated by the 

algorithm ? (iv) Is there a sense in which the quantity E(np* - nt } is always a *p 2 

robust estimate of mean square estimation error ? (v) How can E{ne* - nt > be $ 2 

calculated 3 (vi) Do the same results hold if the et, mS&M are, say, moving 
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average processes ? In work in progress at the Census Bureau, J.P. Burman has 

begun exploring the use of MA(l) components et in (l.l), see Appendix 1 for some 

considerations motivating this possibility. 

The goal of this paper is to provide answers to these questions and others. In 

outline, its content is as follows. An elementary minimax problem is discussed in 

section 2 and shown, in sections 3 and 4, to cover very general cases of (1.6) and 

(1.7) and to provide an affirmative answer to questions [i), (iv) and (vi). Questions 

(iii) and (v) are addressed in subsection 3.2, and (ii) is treated in subsection 3.3. In 

section 5, it is shown that our general assumptions (4.2) and (3.3) are satisfied for 

the most familiar category of nonstationary time series under Assumption A of 

Bell (1984). A simple but quite illuminating example is analyzed in section 6. 

A comment concerning the significance of (i) is in order. It could turn out that 

Watson’s solution of (1.6) (or (1.7)) for the case of bi-infinite data provides an 

adequate approximation to the exact solution for the finite data situation, for most 

of the observation times, for many series. Of course, such an empirical issue * 
cannot be investigated without a method which provides the exact answer (under 

the same model assumptions). Nevertheless, it would be surprising if the bi-infinite 

* solution consistently provided good approximations near the ends of the series. 

This, however, is precisely where recent observations lie, which are usually the 

observations of most interest to consumers of seasonally adjusted data. It seems 

important, therefore, to have a solution method for the case of finitely many 

observations. 

2. THE SOLUTION OF A SPECIAL QUADRATIC MiNIMAX PROBLEM 

In the next two sections of this paper, we will be interested in determining the 

(unique) value p* of lp solving the minimax problem 

B* : min,sbs;M maXmsasM F(O) 12.1) 

for given real numbers m<M and for what will be shown to be special cases of the 

linear-quadratic function 

F(a,@) = A+D(f3-m)'+(a-m)(C-2DfB-m)) ID>01 . (2.2) 

The value & of /3 for which the linear function C(p) = C-2D(#3-m) is zero will 

turn out to be of particular interest. Clearly 



PO = m + C/2D , P-3) 

or, if C(a) and C(p) are known for two values, a and /3 , 

Bo = B - w-4 C(B) mf+c(~))-’ . (2.4) 

The assertions (2.5) - (2.7) below are verified in Appendix 2. 

(2.5) For each fized a, the unique value of @ minimizing F(a#) over any 

interval containing a is /3 = a . 

(2.6) There is a unique solution /3* of (2.1). /t is that number in the interval 

[m,M] which is closest to the number /SO defined by (2.3). That is, 6’ = &, m 

or M, depending on whether (i) mlpoSM, (ii) &,<m or (iii) &>M holds. 

Since C(/3) is a decreasing function of 8, these conditions are equivalent to 

(i)’ C(M)sOSC(m), (ii)’ C(m)<0 and (iii)’ C(M)>O, respectively. In case (i), 

* therefore, F(aJ*) is independenf of a . 

(2.7) The solution /3* of (2.1) described in (2.6) is a/so the unique value of a 
mazimiaing F(a,a) over [m,M] and we have 

maxmsusM %-w) = Wf,8’1 = minmrgrM maxmsusM F(a,Bl . P-8) 

3. ANALYSIS OF (1.6) IN A GENERAL CONTEXT 

We shall now show that the mean square expression in (1.6) always has the 

form (2.2) when certain covariances associated with the random variable et used to 

define n: = nt + et are proportional to [a-m). By (2.6) - (2.8), it follows that (1.6) 

has a unique solution p*(t) which defines a unique robust estimate 

E{nr(‘l - ?rfl’frl}* of the mean sq uare estimation error. We also describe a practical 

A ml procedure for calculating this robust estimate and methods for calculating nt 

when ARMA models are available for xt, nt, et and sf = xt - et for some a>m. 

However, the initial discussion of (1.6) relies only on general properties of least 

mean square approximations and has no necessary connection with time series or 
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time series models. (The subscript t is fixed and could be omitted.) 

Our assumptions are that for some finite or infinite set of integers J, the 

random variables nt, et, m&GM and x t-,, jcJ are defined on the same probability 

space, have mean 0 and finite variance(s), and have the following three additional 

properties : 

var(et) = (a-m)d(t,t) , m&&M 

for some d(t,t) > 0 , 

cov(nt,et) = [a-mjf(t,t) , m&GM 

for some f(t,t), and 

cov(xt-;,e?) = (a-m)g(t-j,t) , ml&M 

(3.1) 

(3.2) 

(3.3) 

* for some g(t-j,t) defined for all jEJ. 

In the nonstationary ARMA model signal extraction context, we shall show in 

section 5 that special cases of (3.2) and (3.3) are inevitable consequences of (3.1) 

and Assumption A of Bell (1984). It will also be observed in section 6 that the 

traditional assumption of uncorrelated components, suggested by the 

pseudospectrum decompositions. described in Appendix 1, which also implies special 

cases of (3.2) and (3.3), is less convenient than Assumption A. 

3.1 Solution of (1.6) 

Let OBS = OBS(J) denote the space of all linear combinations of xt+ JEJ, 

together with their mean square limits if J is infinite. For any random variable y 

with mean zero and finite variance of the sort to be considered beiow, we will 

denote by G the least mean square approximation to y in OBS, and recall that it 

A 

is characterized by the property that y-y is uncorrelated with every random 

variable in OBS. Therefore, if we have two such random variables y and z, then 

G+: is the least mean square approximation in OBS to y+z. Also, note that if 

cov(y,xt-J = cov(z,xt-i), jcJ, then y-z is uncorrelated with OBS, so that i-:=0, 
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i.e., i=i. By using this argument, it follows from (3.3) that if we set 

zt = (M-rn)-‘~~ , then 

A 

et = (a-rn)Tt , m&GM . (3.4) 

A 

Thus (3.3) has the important consequence that tp = nt + 2: is a linear function 

of a, 

A A 

n? = nt + (a-m)rt 

= if + (a-p&?-y)-‘{ fl nt -n73 , m%x4M , (3.5) 

for any distinct pair fi,r in [m,M]. We shall also assume 

* 

E:; # 0. (3.6) 

Otherwise we would have f;p 
A 

= nt for all a, and (1.6) would be trivial. 

Since eov(nt-t t, e;l-:e) = cov(nt,et) - cov(i,,tf), the formulas (3.2) and (3.4) 

imply that 

A A A 

cov(nt-nt, ef^-ef) = (a-m) {f(t,t) - cov(n&)} 

= (a-m)(@-m)-’ cov(nt--f;t, et- e”!) . (3.7) 

A 

Also, since E{et-ehfj2 = E{ef}2 - E{ e f}2 , we obtain from (3.1) and (3.4) that 

A 

E{ef - et}2 = (a-m)d(t,t) - (a-m)’ Er: . (3.81 

Ab 2 These are the key formulas for the analysis of E{nf- nt} , m&x&M . We 

can now show that 
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E{n~-~~}2 = E{nt-it}2 + (p-m)2E’eV: + (a-m){Ct-PEZ: (@--m)} 

with 

Ct = d(t,t) + 2(f(t,t) - cov(“n,, &)} . 

(3.9) 

(3.10) 

Indeed, from the decomposition 

$-if 
A 

= {nc-nt} + {et- e”P} + (a-/s)& 

we obtain 

E{nT- ifI2 
A A A A 

= E{nt- n t}2+E(ep-e ~}2+(a-/3)2E~: + 2 cov(nt- n t, ef- e t) 

and (3.9) and (3.10) follow readily from (3.7) and (3.8). 

. The formulas (3.9) and (3.10) show that the minimax problem (1.6) is a special 

case of the problem (2.1) and (2.2) already solved in section 2. Of course, we must 

describe how, in practice, one can obtain the following three quantities : [i) the 

* pivotal value 

&(t) = m + Ct/W~f) , (3.11) 

which identifies the unique solution p*(t) of (1.6) as in (2.6); (ii) the minimax robust 

mean square error measure 

E(ne*(‘l-- i f*(t))2 = E(nt- f; J2+E{e(P*(‘)- z e*(t))2 + 2cov[nt- t t @‘)-i fit)] , (3.12) 

A 
WI . and, (iii] whichever estimate nt IS desired. (Some analysts might prefer a choice 

A 

nf(Y with a(t) # p*(t) but still wish to use the robust measure (3.12)). There is a 

practical and quite general context in which all of these quantities are readily 

calculated, which we describe in the next subsection. 

3.2 Utilizing State Space Smoothing Algorithms 

Suppose that observations xti, . . . ,xtN (ti<t2< . . . <tN) are available, along with a 

state space representation of the process xt, t&, which satisfies the conditions 

permitting the use of the Kalman Filter, and whose state vector contains, say, 

nt = ny and either e(, or sp = xt-nt-ef for some /J#rn among its entries (see also 
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subsection 3.4). This can usually be accomplished in a variety of ways when 

ARMA models (stationary or not) are available for the series xt, nt, et and sf, 

as several of the papers in Parzen (1984) demonstrate. 

Then the minimum mean square error estimates tt, tr and s^e in the space 

OBJ spanned by {xt,, . . . ,xtN) can be calculated for t E {t,, . . . ,tN} by the familiar 

state space smoothing algorithms (Anderson and Moore, 1979; Parzen 1984). These 

algorithms also produce the associated estimation error variances and covariances. 

Even when et is not a state vector entry (as happens in the example of section 6 

below), we can use the fact that t E (tl, . . . ,tN} implies 

nt + et + se 
A 

= xt = “b A19 nt + et + st 

AB A A 

to dalculate et = x,-nt-se and 

ef-tf = -(nt-Gt) - (se-Z$ . (3.13) 

From it and ehf, we can obtain ie for all a using (3.5). Utilizing E{nt-f;t}2, 

E{~&fs}~ and cov(nt-n”t se-:$ 
A 

, , we can determine E{ee-sf}2 and 

eov(nt-;t 8 etg-,“f) via (313) . . 

Having these quantities, we can calculate Er: from (3.8) with a=@ and Ct 

from (3.7) and (3.9), and therefore &e(t) in (3.11). By (2.6), this determines the 

solution /3*(t) of the minimax problem (1.6). Finally, if the robust measure 

E{n~r(tl-fit* } ’ [‘I 2 has not already been obtained, that is, if B*(t) # m,@, then it can 

be derived from (3.12), using (3.7) and (3.8) with a=p*(t) to evaluate the terms on 

the right hand side. 

As the example of section 6 below shows, the development of the kind of 

state space representation needed for the anlysis described in this section requires 

a spectral factorization as well as some straightforward computations to determine 

the initializing covariance matrix. The payoff, as we have just seen, is that then a 

single run of the fixed-interval smoothing algorithm over t&G& yields the 

solution to the minimax problem, and also yields the associated estimates and 

robust mean square error measures, for all t E (t,, .__ ,tN} . 
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3.3 Utilizing Filter Coefficients 

Another approach utilizes the coefficients h$, hft, jcJ (a#&) of filters 

determining two estimates ir (= C, AB ,EJ hrt xc-i) and nt as functions of xt-i, jcJ, for 

each t of interest. Given such information, it follows from (3.5) that all estimates 

and their associated filters can be readily obtained. We shall show in this section 

that the filter coefficient information can be combined with the covariance 

information (3.1) - (3.3) to obtain the pivotal value @e(t), and hence the solution 

/3*(t), very simply in the most typical situations. This approach does not 

immediately produce the minimax robust mean square error measure 

E{n~*l’l- n t AB’(rl 2 } , however , and it also has the practical disadvantage that there do 

not appear to be any attractive computational algorithms known at present for 

w obtaining these coefficients for finite observation sets {xt-i : jcJ} = {xti : 1$&N). 

In analogy with the notation of section 2, let us’denote the multiplier of a-m 

*on the right in (3.9) by C&V). Since Ei@-m) = cov(ifr, Gt), by [3.4), it follows 

from (3.9) and (3.10) that 

C,(&) = d(t,t) + 2f(t,t) - 2eov(:e, :t) . (3.14) 

%- Since nt = CitI, hei xt-i (mean square convergence if J is infinite), we have, from 

(3.3) and (3.51, 

COV(f;f, yt) = cj,J hej g(t-j t) , * (3.15) 

Thus C,(p) and Ct(a) can be determined from the given filter coefficients and the 

values of d(t,t) and f(t,t) . By (2.4), the pivotal value &(t) determining the minimax 

solution p*(t) can be calculated as 

The simplest case is the one in which ey, -m<t<m is a white noise process which 

is uncorrelated with the other components of xt. Then d(t,t) = 1 f(t,t) = 0 and 
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&it) = { 
0 if j#O 

1 if j=O ’ 

From these values, it follows via [3.14) - (3.15) that 

C,(B) = 1 - 2 htqo _ (3.16) 

If (3.16) holds, then, by (2.61, the ordering of hm t,. and hfib relative to l/2 determine 

the solutions of (1.6) as in the special situation considered in Watson (1984). 

However, we shall see in section 6 that even when J = (-m,=), the solution 

described by Watson can be incorrect for the intializing values of the model 

equations, because of the inapplicability of (3.16) there. 

3.4 Intervals different from [m,M] 

In our motivating discussion in Appendix 1, the interval [m,M] was described 

* as the largest interval over which the process et could be defined. This property 

has played no role in our analysis, however. More precisely, let us, in the spirit of 

section 1, make the additional assumption that for any m in [m,M] and any as;, 

the processes er and $ = et-e: are uncorrelated. Then)for any M in (G,M], if we 

replace the quantities m,M,er 
--- 

and nt in all previous formulas by m,M,er and 

nt = nt+e?, valid results are obtained. In particular, Be(t) in (3.11) can be 

determined by an analysis over either [m,M] or [m,M]. For the solution 

methodology described in subsection 3.2, an alternative is, therefore, to have -n-r and 
-- 

either $ or sf in the state vector, for some G>m and @(m,MJ . 

4. ANALYSIS OF (1.7) IN A GENERAL CONTEXT 

The fact that the best approximation in OBS to the first difference An: is 

given by At: 
A A 

= nt- n:, makes it possible to use the results of section 3 to solve 

(1.7) at the same level of generality used for (1.6). If we consistently replace et and 

nt and their best approximations, in the assumptions (3.1) - (3.3), (3.6) and in the 
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remaining formulas of subsections 3.1, 3.3 and 3.4, by the corresponding differences 

Aer, Ant etc., then the resulting formulas and assertions are correct. For the 

approach of subsection 3.2, replacing the entries in the state equation by their first 

differences yields a state equation appropriate for estimation from data Axt, but 

this is not what is wanted. To use the given. data xt, it is probably simplest to 

develop a state equation whose entries contain nt, ntml, et and et,, or entries 

yielding these quantities by linear combination. 

We now present generalizations of (3.1) and (3.2) which ensure that their 

analogues hold when et and nt are replaced by first differences. Suppose, for 

simplicity, that e; and nt are defined for all t. It then clearly suffices to assume 

that 

cov(ep, et) = [u-m)d(r,t) , mSu$M (4.1) 

=and 

cov(n,, et] = (a-m)f(r,t) , rn&xsM (4.21 

hold for some d(r,t) and f(r,t), for all r and t. From (4.1) and (4.2) we obtain the 

following analogues of (3.1) and (3.2) : 

E{AeF}2 = (u-m){d(t,t)+d(t-l,t-l)-2d(t,t-1)) , (4.3) 

cov(Ant,Aef) = (or-m){f[t,t)+f(t-i,t-1)-f(t-l,t)-f(t,t-1)} . 14.41 

From (3.3), we have 

eov(xt-i, Ae:) = (a-m){g(t-j,t)-g(t-j,t-i)} . (4.5) 

The analysis of (1.7) then proceeds by replacing the quantities d(t,t), f(t,t) and 

g(t-j,t) in the analysis of (1.6) by the corresponding quantity on the right in (4.3), 

(4.4) and (4-S), respectively, (We must assume Ayt#O. Of course (1.7) is trivial if 

Agt=O .) For example, under the assumptions used to derive (3.16), we have 

g(v) = d(v) = 1 for all t, g(r,s) = d(r,s) = 0 for rfs, and f(r,s)=O for all 

r,s E {t-l,t}. Therefore, since 
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cov(Ant, ATt) A8 = cov( n t , e t)+cov( n t-1, &-i)-cov( n t , e t&covCn t-i, zt) , A@ N Apl A, IV A, 

the analogue of (3.16) for (1.7) is 

C&T) = 2{1-h~o-he,,~+he,+h~-,,-,} , 

a formula obtained by Watson (1984) for an ARMA model case with J=(-~,~), 

under Bell’s Assumption A. 

To illustrate the generality of the results obtained here and in the previous 

section, let us note that the relations (4.1), (4.2) and (3.3) transform into similar 

formulas if ef is replaced by a nonstationary moving average $ = Ci ct,ieti. Thus, 

if the coefficients ct,i are known, then by making straightforward changes like those 

described above to the formulas of section 3, we can solve the analogues of (1.6) 

and (1.7) with n: replaced by 2 = nt+$, m&&M . 
* 

5. BELL’S ASSUMPTION A AND THE ASSUMPTIONS (3.2) AND (3.3) 

In this section, we show that, in conjunction with other standard assumptions, 

the initializing Assumption A of Bell (1984) and our (4.1) imply that (3.2) and (3.3) 

hold, with functions f(r,t) and g(r,t) which are easily determined. This shows that 

our analyses of (1.6) and (1.7) are applicable when this assumption is made. 

We now assume that the random variables xi, nt and et, m&GM, are defined 

for all t = O,*l, .._ , each with mean zero and finite variance, where the series er is 

stabiunary and satisfies (4.1) with d(r,t) = d,(r-t) for some symmetric positive 

definite function d,(a). Motivated by the situation described in Appendix 1, we shall 

also assume the existence of minimal-degree backshift-operator polynomials 6,(B) 

and &[B), not depending on a, which transform the series r$ = nt+ep and 

ST = xt-r$ into uncottelated mean-zero stationary series, uf = 6,(B)nf and 

vr = 6,(B)s,“, m&GM. If S,(B) denotes the greatest common divisor of d,(B) and 

a,(B), then quite generally (Findley, 19853, the corresponding minimal degree 

polynomial transformation to stationarity for xt is b,(B) = 6,(B)6,(B)/&(B), which 

has degree d(x) = d( n)+d(s)-d(c), using an obvious notation. For m&&M, we 

clearly have 



16 

Ut” = u?+d,(B)ef 

vf = v~+b,(B){e~-$3 

and 

(5.0 

15.2) 

The two series in the first decomposition in (5.3) are uncorrelated because this 

is true of the series ur and vr, but, with the motivation of Appendix 1, we shall 

make the slighty stronger assumption that the three series in the final 

decomposition in (5.3) are uncorrelated. Using the inversion procedures described in 

Findley (19851, it is easy to see that this is equivalent to the following assumption. 

* 

(5.4) For any u in [m,M], the series {I$}, {ef} and {vf} are uncorrelated. 

We have used curly brackets in (5.4) to emphasize that each observation of 

one series is assumed to be uncorrelated with all observations of the two other 

series. The formulation (5.4) is convenient when a state space representation 

permitting the use of the Kalman Filter algorithm is sought. as the example in the 

next section illustrates. 

Suppose that 6,(B) = 1 - 6rB - .._ - &@,Bdf*’ and that 1,#r,t2, ._. are the 

coefficients of the formal expansion [S,(B)]-’ = 1 + #rB + .&B2 + .._ . Define the 

series wt = d,(B)xt. Then 

Xt = 6,xt-, + . . . + &j[+-d[x] + wt (5.5) 

holds for all t, from which it follows that the series (xi} determines and is 

completely determined by the series {wt) and a set of d(x) starting values, say, 

Xl, . . . ,xQ). From (5.5) it follows that, for t>d(x), 

4x1 t-d(x)-1 
xt = C ai,tXi + C 

i=l j=O 
Cjwt-j I (5.6) 
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with a similar equation holding for ts0, see Bell (1984) for detaiis. From (5.6) and 

(5.4) we obtain, for example, that for any q,r and any u in [m,M], 

cov(wi, ep) = 
d(x) 

-(a-m> jCo di d,(q-j-r) . (5.7) 
= 

. 

Thus (3.3) will hold for all values of t-j if it holds for t-j = 1, .__ ,d(x). Also, if 

this happens, then (3.2) will hold : Indeed, by an argument analogous to that given 

above, (3.2) will hold for all values of t if it holds for the initializing values 

n1, .-. ,nd(n)t and equation (4.1) of Bell (1984) and our (5.1) and (5.2) show that these 

values can be written as linear combinations of x1, u$, e;, vr, i=l, .._ ,d(x) with 

coefficients which are independent of CL. Clearly, therefore, (3.2) and (3.3) will hold 

if, for example, for all values of t and CY, 

cov(xi, et) = 0 , lli6d(x) . (5.8) 

We will now show that (5.8) is implied by the fruitful starting value 

specification described as Assumption A in Bell (19841, which’ has the following 

formulation in our context. 

(5.9) Bell’s Assumption A : The starting values x1, . . . ,xQ] are 

uncorrelated with the series fur} and (vt}, m$aSM , and (5.4) holds 

In fact, it follows immediately from (5.1) and (5.2) (first choose a=m) and (5.9) 

that xi, _._ ,x+1 are uncorrelated with all mean square limits of linear combinations 

of G,(B)et , t = 0, &I, ~.. . Since er , t = 0, f, .__ can be obtained from such limits 

via the inverse filter d,‘(B), see Findley (19853, the condition (5.8) is a consequence 

of (5.9), as are thus aiso (3.2) (and (4.2)) and (3.3) , This is what we wanted to 

show. 

6. A SIMPLE EXAMPLE 

In this section, we use a simple ARMA model example to illustrate what is 

involved in carrying out the solution procedure of subsection (3.2) under assumption 

(5.9) in the usual seasonal ARMA model context, and to demonstrate some 

consequences, including two rather unexpected ones, of this assumption. 
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Consider a “semiannual” time series xi satisfying the seasonal model 

(l-B2)xr = et - 8&t-, (lSl<l) (6.11 

with initializing values xl and x 2, where zt is a white noise proccess with variance 

EE: = 1. The pseudospectrum f,(A) of xt has the family of pseudospectral 

decompositions 

jl-8eiA/ 1 1 1 1 
i2A2 = 

11-e I 4(1-e)* m + a 4(1+812 Il+eiAl 
-a 

. 
= f:(A) + f:(h), mSa6M , (6.2) 

where m = -minAfi(h) and M = minAfi(h). Since max&eiA~=max~{2f2cos h}=4, 

* it follows that m = -(1-8)-2/16 and M = (1+8)-2/16. The component pseudospectra 

f:(A) and f:(A) are those of processes nt and sf satisfying 

[l-B)nt = uf 

(6.31 

(l+B)s; = v: , 

where uf and vf are white noise processes if a=0 and moving average processes of 

order 1 otherwise, for mlasM. For example, I$ has the spectral density 

f:(h) = {4(1-8)*)-l + all-eiA12 

(6.4) 

= at(a) /l-$aeiAl 

with at(a) and $‘?J$“I-Sl) determined by the second equation in (6.4), which is 

equivalent to the pair of nonlinear equations 

{4(1-8)*)-l +2a = ff:(a {1+($“)2} 

(6.5) 
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a = f72u(a)$” . 

In particular, $“’ = -1 and @t(m) = -m, so that, since nl = nr, 

(1-B)ni = a: + a:, , (6.6) 

where a: is a white noise process with variance -m. Thus, for the decomposition 

model 

xL = nL + e: + st , 

with white noise process ey, corresponding to the pseudospectrum decomposition 

f,(X) =fz(A) + I-m) + f:(A) , 

* 
we have the state space representation 

x: = [ 1 0 1 ] nt + et 

[ I * 

&i 

SF 

(6.7) 

The Kaiman Filter and related smoothing algorithms are applicable to (6.7) for 

thti provided that the series {ef} is uncorrelated with the series {a:} and {v:} 

(guaranteed by (5.4)) and that, for times t&+1, the variables a:, v: and et are 

uncorrelated with ntr and st,. This condition is satisfied under (5.9) if the 

designation of the observation time origin is chosen in such a way that t&2. 

(Recall our convention that t=l denotes the initializing time for the ARMA 

equation). To see this, note that since nf = np + ut and sf = -sf + v:, we have 
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xl = nf + sf 

x2 = r-r; + sf = nf - sf + u; + v,” , 

whence 

Since 

n4 = {x, + x2 + (-1)‘~~ - vy}/2 , i = 1,2 

sf = (-1)’ {x, - Xl - ut + (-l)‘vt)/2, i = 1,2 . 

16.8) 

(6.91 

ut = uf + (1-B) ef 

(6.10) 

vf = vf” + (l+B) {ey - er} , 
- 

it follows from (6.9) that a:, VT and ef are uncorrelated with n2 and si for tZ3 _ 

The Kalman Filter algorithm for (6.7) initialized at t=t, requires the variance 

(= -m) of et, the covariance matrix E(ar, vf) of the noise vector [a: vfIT and the 

covariance matrix C(nt,, at, sf,) of the initializing state vector. From (6.2) and (6.5) 

C[a(m, vf) = 
[ ,” 4:1* 

(6.11) 

For the computation of C(nt,, a& st,), it is important to observe from (6.9) and 

C6.10) that nr, sq,i = 1,2 are correlated with e:, i = 1,2. Rather unexpectedly, this 

happens in such a way that var(nF>, var(sf) and cov(nf, sr) do not depend on a. 

(Thus, in particular, the addition of er to ni does not increase the variance.) Indeed, 

the contribution of U2p and v; to these quantities is 

~(E{u~}~ + E{v;}~)/~ = *(M-m) . Consequently, for tl=2 we have 
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>{x,+x2}2+M-m . 

-m/2 -m 

f{Ex:-Ex$-M+m ’ & x2-xl}2+M-m 
/ 

_ (6.12) 

After these preliminaries, the fixed interval smoothing algorithm can be applied 

as indicated in subsection (3.2) to solve (1.6). In order to illustrate explicitly the 

dependence of the solution 8*(t) of (1.6) on the parameter 8 in (S.l), we now turn to 
A 

the asymptotic case 3 = (- QO,~), where, under (S-9), the filter coefficients for nf are 

determined by 

.$) = ll-8eiA]-2 [{4(l-8)2}-‘]l+eiA~2+a~l-ei2A~] 
I 

* = CF-, hq eiia , 

where 

(6.13) 

We will determine @e(t) with the aid of (3.14) and (3.15). For this example, 

d(t,t)=l, and f(t,t) and g(r,t) are easy to calculate. Since cov(uF, et) = 0 and 

v,” = vr-(l+B)e f, it follows from (6.3) and (6.9) that 

covh, et> = cov(nl, et) =- cov(ef+ef, et)/2 . 

Hence 

f(t,t) = { 
42 f t=1,2 

0 , otherwise 
(6.14) 

The formula for g(r,t) = (a-m)-' cov(xr, ef) is slightly more complex. Set 

wt = (l-B2)xk. Th en, from (6.1), we have 
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xr = 

n 

x2 + c W2k , r=2n, nL2 

k=2 

n 

I xi + c w*Lr-1 , r=2n-1, n22 

k=2 

1 

X2 - c W2k , r=2n, r&O 

k=n+l 

xl - i w2k-L , r=!h-1, r&O 

k=n+l 

(6.15) 

Since wt = (l+B)uF+(l-B’)et+(l-B)vr and Ciz2 (1-B2)e$ = e&-et, etc., it 

a follows from (5.9) and (6.15) that 

dr,t) = 

0 all t , r = 1,2 

1 t=r , r # 42 

-1 t=1 , r odd , #l . (6.16) 

-1 t=2 ) r even , #2 

0 otherwise . 

For t#1,2, therefore, (3.16) applies and, from (6.131, 

C,(B) = 1 - 48 - (l-8)-” , 

so that for t# 1,2 

/3,,(t) = (1 - (l-e)-‘}/4 . (6.17) 

Thus, for example, &(t#l,2)E[m,M], and fi*(t#l,2)=&(t#1,2) if and only if 

-(1+8)2(1-8) 2 {(1-8)“(1+8)‘-(1+8)“] 5 (l-8)” 
. 

whose solution can be numerically approximated to any desired accuracy. From 

(6.17) we are led to the following numerically approximate solution of (1.6) I 
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m ,8~ CO.083, l] 

B*(t#v) = B&l I 8 E [-1, -0.352]+0.154, 0.0831 . 

M , 8 E [-0.352, -0.1541 

For the case when t=1,2, we obtain from (6.14) and (6.16) that 

G(8) = 2& hz 9 so that, from (6.13) , 

G(8) = 8(1-B)-’ - 4a , 

which reveals that 

B&=1,2) = + 8(1-e)-’ . 

Applying (2.6), it can be verified that, to the rounded value, 

/3*( t=1,2) = i 
M , 8 E [0.435, 1) 

&, , 8 E (-1, 0.4351 

which is clearly different from the values /S*(t#l,2) obtained above from Watson’s 

formula (3.16). 

To return to the discussion of the method of subsection 3.2, the example 

discussed above illustrates that once a nonlinear system of equations, exemplified 

by (6.5), has been solved (“spectral factorization”), then the determination of 

initializing covariance matrices like (6.11) and (6.12) under (5.9) involves only 

straightforward calculations. Bell (1984) provides the needed generalization of (6.9). 

If, instead of [5.9), it is assumed that the component series {nt}, (et} and {sf} are 

uncorrelated with one another, then the determination of the initializing covariance 

matrices is substantially more complex, due, in part, to the requirement that the 

covariance structure of xt defined by (6.7) should not depend on a, see Findley 

(1935b). We observe, finally, that there are good numerical algorithms for 

performing the spectral factorization, see Anderson and Gartland (1985). 
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APPENDIX 1 : SOURCES OF (1.3) - (1.4) WITH MOVING AVERAGE et 

. 

The model-based approaches to seasonal adjustment referred to in section 1 

typically have the following ingredients. There is a minimal-degree 

backshift-operator polynomial transformation b,(B), whose roots are on the unit 

circle, such that wt = &(B)x, is a mean-zero stationary ARMA(p,q) process, with 

spectral density f,(h), say, whose autoregressive polynomal will be denoted by 

p(B). Further, 6,(B) admits a factorization 6,(B) = &(B)&(B) into components 

associated with the nonseasonal, respectively, seasonal components of xt. For 

example, if 6,(B) = l-B’*, then 6,(B) = 1-B and 6,(B) = l+B+ . . . +B”. There 

usually exists a partial fraction decomposition of the pseudospectrum 

f,(h) = f,(h)/16,(e’A]12 of xt of the form 

UAI ma&Q ma,W 

16,(eiA)12 = l&(eiA)(p(eiA)12 + Id8(eiA)/* 

- * 

= f:(h) + f:(h) + ma&) , 

where ma,,(X), ma,(X) and ma&) are 

processes of orders q(u) 6 d(n) + p-l, 

+ mdW 

(Al-l) 

spectral densities of moving average 

q(v) 4 d(s)-1 and q(O) = q-p-d(x), 
respectively. (We set ma&) = 0 if this last number is negative. Order 0 refers to 

a white noise process.) Frequently there are additional decompositions of f,(h) 

having the same denominators, and these denominators are often the only really 

compelling feature of the decomposition. One possibility is illustrated in the 

example of section 6. Another is that ma&), if nonzero, can be decomposed into 

components which are assigned to the other two terms. Or, more generally, suppose 

for example, that ma,(h) is always positive on [--~F,IF]. Let mar(X) be the spectral 

density of a moving average process, of any order q(l)ZO, with the property that 

ma&l - ma,(A) 16,(eiA)~(eiA)12 is always non-negative, and so is a moving 

average spectral density. Then there is an associated family of pseudospectrum 

decompositions 

MN = unw ma,(h)+a[man(h)+ma@)]} + {f,(h)+(l-a)Cmao(A>+mai(h>l) 
, 

mdXU maWI 
= lB,(eiA)rp(eiA)~ + lfS8(eiA)12 ’ msasM 

(A1.2) 

associated with decompositons of xt of the form (1.3) - (1.4), where m could be 
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defined as the smallest number for which the first expression in curly brackets in 

(A1.2) is always nonnegative (so m5;O) and M could be chosen to be the largest 

positive number for which the other expression in curly brackets is always 

nonnegative. 

In this example, the “minimal” process nt has pseudosprectrum 

f&l + Cm-11 @-Gd> + mha0lU 

and the process ef (a>m) is a moving average process of order not exceeding 

max {q[O),q(l)} with spectral density (a-m) {mac(A)+mar(h)}. 

A somewhat different situation motivating the use of an mar(h) term is the 

following. Sometimes the partial fraction decompostion of f,(X) leads to a form of 

(Al.l) which is improper in the sense that one (or more) of the numerators is 

negative for some values of A. If, for example, fn(h)+fe[h) is nonnegative, but f,(h) 

= is negative for some h, one could seek an mar(X) with the property that both 

f,(A)-ma,(h) and f,(h)+mai(h) are nonnegative. 

. 

APPENDIX 2 : PROOFS OF (2.5) - (2.7) 

Differentiating F(a,p) with respect to 6, we obtain 

which reveals that for each fixed a, the function @ -) F(Q3) is uniquely minimized 

at j3 = a, establishing (2.5). The derivative of the function a + F(a,a) is given by 

FJa,a) = C - 2D(a-m) (A2.1) 

so that F(a,a) is uniquely maximized at a = PO. Since F(a,&J is independent of a, 

we thus have 

for all a#/30#p. A s a consequence, we obtain 
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. 

max, F(a,a) = F(/30,/30) 6 mina max, F(a,#3) . 

Since the reversed inequality is obvious, the assertions of (2.6) and C2.7) follow for 

the case [(i)) in which m$So6M, the uniqueness assertion being a consequence of 

the strict inequality in (A2.2). 

In case (ii), C-2D(g- m is negative if mS&M, so for fixed /3, F(a,p) is ) 

maximized at a=m. Since F(m$) is uniquely minimized at /?=m, the assertion of 

(2.6) follows. The assertions of (2.7) follow from (A2.1) or by inspection. 

Case (iii) is handled similarly to case (ii). 
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Footnote (page 4) 

1) It is impiicit in the optimality and convergence assumptions of the papers 

reference above that the random variables xl, n: and sr have finite variances 

(increasing to 00 as t+=) : This is merely the assumption that the random 

variables initializing the ARMA difference equation for xt have finite variance, see 

Bell (1984), especially Bell’s equation (3.1). Thus (1.5) and the mean square 

expressions in (1.6) and (1.7) below are finite. 


