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1. Introduction

Denote by T the spell duration of an individual participating in a government benefits program.
T measures the length of time that an individual takes to exit the program. There are a variety
of methods one can use to gain an understanding of the behavior of T. To investigate its
behavior, we use data extracted from the 1987 panel of the Survey of Income and Program
Participation (SIPP).

SIPP is a longitudinal panel survey conducted by the Census Bureau and designed to provide data
on income distribution and poverty at the national level (see Nelson, et al, 1984, for an overview
of the SIPP). The data collected in SIPP are often employed in the study of cost and
effectiveness of Federal programs. Policy makers also entertain the data to evaluate the policies
that motivate household independence form the welfare programs. Knowledge of the distribution
of T permits us to make direct inference on the estimated cost of a relevant program. The
dynamic behavior of T and the extent to which household characteristics affect the distribution
of T, are crucial for our understanding of the effects of proposed changes in program regulations
and benefit levels.

While duration data extracted form the SIPP have been used frequently to achieve the above
purposes (Bane and Welsh, 1985; Fields and Jakubson, 1985; Short, 1985, 1992; Ross, 1988),
practitioners often find that they suffer some inherent problems. Here are some of the
complications normally being recognized in the analysis of spell durations when the spell data
are extracted from the longitudinal panel survey: (1) multiple occurrences, (2) random left
truncation, (3) random right censorship, (4) random number of repeated occurrences, (5)
dependencies of truncation of censoring mechanisms of the spell durations.

There are a variety of methods proposed and developed to circumvent these problems in different
contexts. Allison (1982, 1984) proposed solutions for (1) and (3) in the analysis of event
histories; Flinn and Heckman (1982) developed an econometric model-specific solution for (2);
Cox and Oakes (1984) developed an analysis for (3) by treating censoring variables as
predetermined constants; Turnbull (1974), Tuma and Hannan (1982), and recently, Sun (1992)
developed approaches to censored and interval-truncated data. All approaches generally lead to
either biases or suboptimal uses of the information in the estimation process. Rarely has the
analysis been conducted in the way that it is general enough to not only optimize the use of
information, but also to encompass all of the problems above.

Therefore, as the major objective of this paper, we attempt to develop a procedure that will
accomplish this task. We construct a general procedure that is applicable to any data as long as
they have similar characteristics to those observed in a longitudinal panel survey. The procedure
makes use of the EM algorithm (Dempster, Laird and Rubin, 1977) and iteratively maximizes



the appropriate likelihood function if it cannot be determined explicitly.

Parametric models that capture the effects of possible time varying factors are well developed
for lifetime data (see Fleming and Harrington, 1991; Cox and Oakes, 1984; and Lawless, 1982).
We classify them in three categories: accelerated failure time models (Kalbfleisch and Prentice,
1980; Lawless, 1982), proportional hazards models (Cox, 1972), and Markov models (Tuma,
1976; Tuma and Hannan, 1979). We focus our attention on the accelerated failure time models
and define a generalized accelerated failure time model for the multivariate spell duration. We
then develop a parametric estimation procedure that treats multiple spells as spell vectors having
joint multivariate distribution when dependencies among the spells cannot be ignored.

2. Parametric Models for Survival Analysis

To start our discussion, we assume that there aren independent sampling units and for each
sampling uniti we observemi spells, with the last spell possibly censored. We also assume all
spells begin at some observed starting pointt=1 except for the first spell which might be
truncated from the left.

Let the hazard functionh(t) = Pr{T = t T≥t} be the probability that a unit exits the program at
time t when in fact this unit is still at risk of an exit at timet. Sett i = (ti1,...,tim)′ to be a vector

of times and define as the spell length vector associated with uniti andTi (Ti1 ,Ti2 ,...,Timi

)

write its joint distribution function as

(2.0)Fi (ti) Pr(Ti1 ≤ ti1 ,Ti2 ≤ ti2 ,...,Timi

).

Accelerated Failure Time

Let T0 = (T01,...,T0m)′ denote the vector of spell durations with baseline distribution corresponding
to zero value covariates. Also let
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be the matrices of covariates and parameters respectively, where for 1≤j≤m,X j = (Xj1,...,Xjp)′, are
covariate vectors associated with thejth spell andßj = (ßj1,...,ßjp)′ are parameter vectors to be
determined.

The following definition is a generalization of univariate accelerated failure time models (Cox
and Oakes, 1984; and Lawless, 1982).

Definition 1. A model is said to exhibit generalized accelerated failure times if the existence of
a nonzero matrix of covariatesX = (X1,...,Xm) implies that the spell duration vector isT = ΛT0,
whereΛ = exp(B′X) is the mx m diagonal matrix with jth diagonal element



λj = exp (ß′jX j).

Now define, for each sampling uniti = 1,2,...,n,

δil = 1 if the first spell is not left-truncated
= 0 otherwise,

and δir = 1 if the last spell is not right-censored
= 0 otherwise,

To begin our discussion, we will assume that for each sampling unit, a repeated spell is
completely described by the characteristics associated with that unit within the duration of the
spell. We use the following assumption.

Assumption 1. For each sampling unit i, conditionary on the explanatory variables,X ij ,
j = 1,...,mi, the spells are independent. In other words, Tij is independent of Tij , for j ≠ j’ when
X ij , andX ij , are known.

The assumption is not unreasonable, as long as we have in our data, a large number of
explanatory variables to capture most of the behavior differences among spells. When the
assumption is true, we may drop the subscript for theβ and writeB as
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.

If a unit i already participated in a program before the survey starts, we will denote the truncation
time Ti0 as the length of time between the actual program entry time and the time the survey
began. And, throughout, fori = 1, 2,...,n, we denoteTi1

* as the left-truncated spells and

as the right-censored spells, which is censored by a random amount ofTiMi

min(TiMi

,timi

)

time . We will also use the following notation for the spell vectors.timi

T i (Ti1 ,Ti2 ,...,TiMi

)

T0
i (Ti0 Ti1 ,Ti2 ,...,TiMi

)

T0i (Ti0 ,T i )

T0
n (T10,T20,...,Tn0)

δ i (δil ,δir )

3. Estimating the General Model

Following the notation in section 2, if a unit already participated in a program before the survey
starts, and ifTi1

* is the spell observed to be truncated, we have



(3.1)Pr(Ti1 ti1 Ti0 ti0)
Pr(Ti1 ti0 ti1)

Si1 (ti0)
,

whereSi1 is the survival function forTi1.

For ease of notation, we will replace the probability function by the joint density function and
write f*(T i

*,δi,Mi, ß,X) as the joint density of the observed data. The following results are
applicable to both discrete and continuous variables.

Closely following the development of Little and Rubin (1987) in the analysis of missing data,
and assuming all the measure theoretical difficulties are not present, we decompose the

conditional joint density of as(T0i,δi,Mi)

f (T0i,δi,Mi β,X)

fl (δil T0i,δir,Mi,θl) fT(T0i ,δir ,Mi β,X),

where we useθl as the parameter forδil , Therefore,

f (T i ,Mi β ,X)

⌡
⌠fl (δil T0i ,δir, ,Mi ,θl ) fT(T0i ,δir ,Mi β ,X)dTi0

Now, we use the following assumption.

Assumption 2. The truncation mechanism does not depend on the initial spell truncation
time.

Clearly, when Assumption 2 is satisfied, above equation becomes

f (T i ,δi ,Mi β ,X)

fl (δil T0i ,δir, ,Mi ,θl )⌡
⌠fT(T0i ,δir ,Mi β ,X)dTi0

We now use the notationθ ⊥ λ to mean thatθ is independent ofλ. Therefore, ifθl ⊥ ß, the
estimation problem for ß is simply reduced to the maximization problem for the likelihood

function deduced from the joint density function n

i 1 ⌡
⌠fT(T0i ,δir ,Mi β ,X)dTi0

To simplify the problem further, we apply Bayes theorem again, for a random sample of sizen,

n

i 1
⌡
⌠fT(T0i ,δir ,Mi β ,X)dTi0

n

i 1
⌡
⌠fM (Mi T0i ,δir ,θM) fT(T0i ,δir β ,X)dTi0



Again, we use the following mild assumption.

Assumption 3. For i=1,...,n, the number of spells Mi are independent of the initial spell
truncation times Ti0.

Denote theMi x 1 unit vector by1i. Then for i = 1,...,n, theMi are inevitably dependent upon

and are restricted by the length of the panel. Therefore, this assumption would be1 i T i ,

violated if the is not independent of ti0. And this is certainly true by equation (3.1). ForTi1

illustration, we will assume that the Assumption 3 is true. We have

n

i 1
⌡
⌠fT(T0i ,δir ,Mi β ,X)dTi0

n

i 1

fM (Mi T0i ,δir ,θM)⌡
⌠fT(T0i ,δir β ,X)dTi0 .

Further, suppose thatθM ⊥ ß, then equivalently, it becomes sufficient for us to maximize the
likelihood function deduced from

n

i 1 ⌡
⌠fT(T0i ,δir , β ,X)dTi0 .

Denote g(· ß,X) as the joint density function for the vector Then applying(Ti1,...,TiMi
,δir ) .

Bayes theorem again, we obtain

fT(T0i ,δir β,X)

fT(T i ,δir Ti0 ,β,X) f0(Ti0 β,X)

g(T0
i,δir β,X)

Si1 (Ti0 β,X)
f0(Ti0 β,X)

Where the second equality follows from equation (3.1),

Si1 (Ti0 β,X) ⌡
⌠∞

Ti0

g1(t β,X)dt,

with

g1(t β,X) ⌡
⌠g(t0

i ,δir β ,X)dti2...dtiMi

dδir,

the marginal density function ofTi1.

Finally, we define the likelihood function deduced from this reduced model to be



L(β X,T ,δir)∝⌡
⌠

n

i 1

g(T0
i,δir β,X)

Si1(Ti0 β,X)
f0(Ti0 β,X)dT0.

(3.2)
We want to maximize (3.2) with respect to ß. That is, we want to find a solution for maxßL(ß X,T*).
In general, this is very difficult to do directly when the expressions forg, f0, andSi1 are complex. To
present a general solution for this problem, we will use the EM algorithm (Dempster, Laird, and Rubin,
1977) indirectly at each step to maximize the conditional expected log likelihood function with the
augmented data matrix that includes as its arguments the truncation timesTn

0 and the observed spell
matrix T*.

Let T = (T 0i
* ′), i=1,...,n be the augmented data matrix that includes the truncation times. Define the

augmented data log likelihood function to be

ll (β X,T)∝log
n

i 1

g(T0
i,δir β,X)

Si1(Ti0 β,X)
f0(Ti0 β,X).

(3.3)

Given the current estimate for ß , we want to find which is the solution ofβ̂(j) β̂(j 1)

maxE
β

ll (β T,X) T ,β̂(j),X ,

that is, by (3.3), at each step, to solve

(3.4)maxE
β
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i 1

log










g(T0
i,δir β,X)f0(Ti0 β,X)

Si1(Ti0 β,X)
T ,β̂(j),X .

Now equation (3.4) is the objective function when Assumption 3′ is satisfied. If this assumption is not
true, then (3.4) becomes

maxE
β













n

i 1

log










g(T0
i,δir β,X)f0(Ti0 β,X)fM(Mi T0i,δir,θM)

Si1(Ti0 β,X)
T ,β̂(j),X .

Clearly, the task now becomes how to specify the density functions (probability functions, in the discrete
case) forg, f0, and possiblyfM. But by Assumption 1, we can writeg as a product of marginal density
functions. Therefore, since the objective function involvesSi1, i.e. the survival function ofTi1, some
obvious candidates are those distributions that have explicit expressions for the survival function.
Therefore, Weibull, Gompertz-Makeham, compound exponential, orthogonal polynomial, and log logistic
distributions are certainly the classes of distributions that could be entertained as the baseline distributions
for the marginal spells. We illustrate in examples with Weibull and log logistic distributions. In the last
example we use a distribution with U-shaped hazard function.

Example 1. Suppose we want to fit the accelerated lifetime model with a baseline Weibull distribution,
which has the following density, hazard rate, and survival functions respectively,

f(t) kt k 1exp( t k), h(t) kt k 1, S(t) exp( t k).

AssumingTi0 has the same distribution asTi1 then



logf (ti0,ti1) log










g(ti0 ti1 β Xi1)f0(ti0 β Xi1)

Si1(ti0 β Xi1)
2logk 2kβ Xi1 (k 1)[log(ti0 ti1) logti0 ] exp( kβ Xi1)(ti0 ti1)k.

Therefore, the step of finding conditional expectation for the log likelihood function becomes to

find and then substitute it for the value ofE (ti0 ti1)
k ti1,β̂(j) Xi1 , (ti0 ti1)

k.

Example 2. For a baseline log logistic distribution, which has the following density, hazard rate, and
survival functions respectively,

f(t) kt k 1

(1 t k)2,
h(t) kt k 1

1 t k,
S(t) 1

1 t k.

AssumingTi0 has the same distribution asTi1, then

logf (ti0,ti1) log










g(ti0 ti1 β Xi1)f0(ti0 β Xi1)

Si1(ti0 β Xi1)

2 logk kβ Xi1 (k 1) [log(ti0 ti1) logti0 ] 2 log exp(kβ Xi1) (ti0 ti1)
k log exp(kβ Xi1) t k

i0

And we need to find

E log exp(kβ Xi1) (ti0 ti1)
k ti1,β̂(j)Xi1

and

E log exp(kβ Xi1) t k
i0 ti1,β̂(j)Xi1

to replace log{exp(kß′X i1)+(ti0+t i1
*)k} and respectively.log exp(kβ Xi1) t k

i0

Example 3. For a U-shaped hazard function, we use

f(t) kt k 1exp(1 t k exp(t k)), h(t) kt k 1exp(1 exp(t k), S(t) exp(1 exp(t k)).

AssumingTi0 has the same distribution asTi1, then

logf (ti0,ti1) log










g(ti0 ti1 β Xi1)f0(ti0 β Xi1)

Si1(ti0 β Xi1)
1 2logk 2kβ Xi1 exp(kβ Xi1)t

k
i0 exp(kβ Xi1) (ti0 ti1)

k

exp (ti0 ti1)
kexp(kβ Xi1)

Here we need to find

E (ti0 ti1)
k ti1,β̂(j)Xi1 ,

E t k
i0 ti1,β̂(j)Xi1 ,

and



E exp (ti0 ti1)
kexp(kβ Xi1) ti1,β̂(j)Xi1

then substitutes them for the values of and respectively.(ti0 ti1)
k, t k

i0 , exp (ti0 ti1)
kexp(kβ Xi1)

4. Concluding Remark

In this paper, we developed and summarized a parametric estimation procedure for the distributions of
spell durations extracted from the SIPP data set. We presented an explicit solution for handling the left-
truncated spells that normally are treated as nonexistent of are discarded in the analysis of spell durations.
Also, the number of spells for each sampling unit can also be assumed to be stochastic and depend on the
length of spells for each unit.

In the sequel of this paper, we will complete the task of estimation for the models we developed. First,
we will simulate the data with different distributional assumptions and check for the consistency of the
models. Then, we will apply these models to the actual data to see if there is empirical support for our
models. Finally, we will use topical module or recipient history data to evaluate the accuracy of the
models. We also will like to extend our ideas into the proportional hazard and the markov models.
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