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Comparison of X-12-ARIMA Trading Day and Holiday Regressors

With Country Specific Regressors

Christopher G. Roberts∗, Scott H. Holan †and Brian Monsell‡

University of Missouri-Columbia and U.S. Census Bureau

Abstract

Several methods exist which can adjust for trading day and holiday effects in monthly economic

time series. This paper reviews and compares two such methodologies for conducting proper

adjustments. The two methodologies are based upon the U.S. Census Bureau’s X-12-ARIMA

method and one developed by the Statistical Offices of the European Communities, commonly

referred to as Eurostat. Three different methods are used to compare the U.S. Census Bureau

procedure and the Eurostat-inspired procedure. These methods are spectral analysis, sample-

size corrected AIC comparisons, and examination of out-of-sample forecast errors. Finally, these

comparisons are conducted using nearly 100 U.S. Census Bureau time series of manufacturing

data, retail sales, and housing starts. This empirical study is the first of its kind and therefore

provides an important contribution to the seasonal adjustment community.

Keywords: Eurostat; Holiday effect; Model selection; RegARIMA model; Trading day effect;

X-12-ARIMA.

Disclaimer This paper is released to inform interested parties of ongoing research and to encour-

age discussion of work in progress. The views expressed are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Many time series are reported on a monthly basis and represent an aggregation of unobserved

daily values. Since the daily values are unobserved, these particular time series often contain various
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elements that must be adjusted for in order to properly analyze the data. One of these elements

is called a trading day effect (also called the day-of-week effect), which results from a combination

of an underlying weekly periodicity in the unobserved daily data along with how many days of

the week occur five times in a given month. For example, August of 2003 began on a Friday, so

there were five Fridays, Saturdays, and Sundays in that month and only four of each of the other

four days. In August of 2005, there were five Mondays, Tuesdays, and Wednesdays. Thus, the

weekly periodicity combined with the differing numbers of each specific weekday will more than

likely have a considerable effect on the time series, making it difficult to properly analyze the data

unless these effects are adequately accounted for. A specific example of this occurrence is in ticket

sales at a movie theater reported on a monthly basis. Sales are typically low at the beginning of

the week and higher during the weekend. This weekly trend must be properly accounted for by

trading day adjustment before a meaningful analysis of the data can be conducted. Additionally,

holidays have a tendency to affect monthly time series. These elements, often called calendar effects,

can be adjusted for using regARIMA models, which are regression models with seasonal ARIMA

(autoregressive integrated moving average) errors. For a discussion of regARIMA models, see Bell

(2004).

Methods used to adjust for trading day effects usually involve some form of counting the number

of specific weekdays in a given month (i.e., the number of Mondays in January 2008, the number

of Tuesdays in January 2008, . . . , the number of Sundays in January 2008) and then using these

values as regressors. The U.S. Census Bureau has a particular procedure that it uses in its seasonal

adjustment program, X-12-ARIMA (U.S. Census Bureau, 2007). In particular, the procedure first

counts the numbers of each specific day (Monday, Tuesday, . . . , Sunday) for each given month,

thus producing seven values. Next, the number of Sundays for the month are subtracted from each

of the other six days of the week (number of Mondays minus number of Sundays, . . . , number of

Saturdays minus number of Sundays), giving six distinct trading day regressors. These regressors

can be expressed as

TDj,t = Dj,t −D7,t, (1)

where Dj,t is the number of days in month t for weekday j, for j = 1, . . . , 7 where 1 corresponds

to Monday, 2 corresponds to Tuesday, . . . , 7 corresponds to Sunday. These trading day regressors

attempt to adjust for the day-of-week effect in the monthly data.

A justification of these regressors is rather straightforward. Assuming that each day of the week

has a fixed effect (or contribution), say αj , we can write the overall effect of a particular month t as∑7
j=1 αjDj,t. This can be rewritten as the sum of two values, ᾱ

∑7
j=1Dj,t and

∑7
j=1 (αj − ᾱ)Dj,t,

for ᾱ = 1
7

∑7
j=1 αj . The value ᾱ

∑7
j=1Dj,t corresponds to a length of month effect. The length of

month effect is handled in two ways. For non-February months the effect is automatically absorbed

into the seasonal component of the decomposition of the series because these months have constant
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month-lengths. For February, the length of month effect is handled in preadjustments of the data or

with a leap year regressor. Therefore, we can ignore the length of month effect, and we are then left

with
∑7

j=1 (αj − ᾱ)Dj,t. This is the sum of the number of weekdays of a month times the particular

weekday’s deviation from the average daily effect ᾱ. Let us now define βj by βj = (αj−ᾱ). Noticing

that
∑7

j=1 βj = 0, we can further state that β7 = −
∑6

j=1 βj . This gives us the following result

7∑
j=1

(αj − ᾱ)Dj,t =
7∑

j=1

βjDj,t =
6∑

j=1

βjDj,t + β7D7,t

=
6∑

j=1

βjDj,t −
6∑

j=1

βjD7,t =
6∑

j=1

βj(Dj,t −D7,t).

The values (Dj,t − D7,t) for j = 1, . . . , 6 are the six regressors defined in (1), with coefficients βj

corresponding to the deviation of the daily contribution of weekday j from the average daily effect

ᾱ. Thus, the coefficients calculated in the X-12-ARIMA program are the βjs, where negative values

correspond to weekdays with a smaller than average contribution and positive values correspond

to weekdays with a larger than average contribution.

In addition to addressing trading day effects, X-12-ARIMA is capable of handling moving

holiday effects through the inclusion of regressors for Easter Sunday, Labor Day, and Thanksgiving

Day. These holidays are considered moving holidays because their effects on series have the potential

to affect more than one month. The regressors each assume that the fundamental structure of the

time series changes for a fixed number of days before each of these three holidays. Beginning on

Easter Sunday and Labor Day, the nature of the time series returns to normal. For Thanksgiving

Day, the fundamental structure of the time series remains altered until December 24th. Regressors

for Labor Day and Thanksgiving Day are occasionally needed in the regARIMA model because of

the effect these holidays frequently have on retail sales data and other economic series for a number

of days that extends into a second month. Additionally, a regressor for Easter is often necessary

because the date of Easter Sunday occurs anywhere from March 22nd to April 25th in a given

calendar year. The effects of other holidays, such as Martin Luther King, Jr. Day and Christmas

Day, are believed to be absorbed by the seasonal component of the series because they are fixed (or

stationary) on a particular date or a particular day of a given month and do not typically affect

other months. Owing to their fixed nature, there is no need to include regressors for these holidays

in a regARIMA model because they will be handled in the seasonal ARIMA component.

X-12-ARIMA also uses another, more parsimonious, model which was originally suggested by

TRAMO (Gómez and Maravall, 1996). This approach reduces the number of trading day regressors

from six to one by assuming the daily effect of weekdays (Monday through Friday) is the same, and

the daily effect of weekend days (Saturday and Sunday) is the same. Thus, the number of weekend

days is subtracted from the number of weekdays, providing a single regressor; this regressor can be
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expressed as follows

TD1t =
5∑

j=1

Dj,t −
5

2

7∑
j=6

Dj,t. (2)

This regressor is derived in a similar fashion as the regressors from (1) with the constraints α1 =

. . . = α5 and α6 = α7. While this constrained model has fewer regressors, it is potentially less

precise due to its fundamental assumption that weekdays have the same effect, and Saturdays and

Sundays have the same effect. For a dataset such as monthly ticket sales at movie theaters, it is

reasonable to conjecture that this one-regressor model would not be as effective in adjusting for

trading day effects because it would assume that ticket sales on Mondays would be no different

than ticket sales on Fridays.

Another approach to adjusting for trading day effects that has been considered by Eurostat (the

Statistical Office of the European Communities) does not make the assumption that fixed holidays

are absorbed by the seasonal component. Instead, their method constructs a nominal count of

days that accounts for fixed holidays. Although the Demetra 2.0 User Manual Release Version

2.0 (Statistical Office of the European Communities, 2002) contains details regarding software

implementation for the Eurostat method, no published study or description of the Eurostat method

exists. In this direction, this paper provides an explicit description of the method along with an

extensive empirical study investigating its performance relative to U.S. Census Bureau’s X-12-

ARIMA method.

Specifically, the regressors for the Eurostat methodology are composed by adding the number

of holidays that fall on a specific day of the week (Monday, etc.) in a given month to the number

of Sundays in the above mentioned regressors for X-12-ARIMA. We applied this European holiday

count method to U.S. holidays. For example, in January of 2008 there are four Mondays. However,

since Martin Luther King, Jr. Day falls on Monday, January 21st of 2008, the nominal number of

Mondays is three. The Monday of Martin Luther King, Jr. Day is then added to the number of

Sundays in the month. It is important to point out that Easter Sunday would not be taken into

account by these regressors because it is already a Sunday. Furthermore, the effect that Easter

has on the days preceding Easter Sunday is handled with its own moving holiday regressor. The

fixed holidays that are accounted for in these modified trading day regressors are typically country

specific and are used to adjust economic data produced in that particular country. Therefore, dif-

ferent countries with different holiday calendars will formulate regressors with different values. The

motivation behind using such a method is that the various European countries have very different

holiday calendars, making it difficult to compare economic data across countries when country

specific holidays are not properly accounted for. These country specific trading day regressors,

corrected for fixed holidays, can be expressed as

EUj,t = (Dj,t −Hj,t) − (D7,t +Hj,t), (3)
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where Hj,t is the number of fixed holidays that fall on days j = 1, . . . , 6. For these regressors, a

holiday falling on a jth day of the week would be accounted for in the Sunday component of the

regressor only for that particular jth day regressor. For the example of January 2008, we would

have EU1,t = (4 − 1) − (4 + 1) = −2, which is in essence three Mondays minus 5 Sundays. On the

other hand, for Wednesdays we would have EU3,t = (5 − 0) − (4 − 0) = +1, which is the same as

TD3,t = 5 − 4 = +1 for the Census Bureau regressors since there are no Wednesday holidays in

January 2008.

Just as a simplified model was described for the U.S. Census Bureau procedure, a similar model

can be described for the Eurostat procedure. This particular model modifies the regressor from (2)

by considering holidays falling from Monday to Friday as Saturdays/Sundays. The regressor for

this model can be expressed as follows

EU1t =
5∑

j=1

(Dj,t −Hj,t) −
5

2

 7∑
j=6

(Dj,t) +
5∑

j=1

(Hj,t)

 . (4)

A natural question that arises when considering the different methods that are used when sea-

sonally adjusting monthly flow data is “Which method is better for a particular series, or even for

a group of series?” In the context of this paper the question becomes “Does the method currently

employed by the U.S. Census Bureau do a better or worse job of seasonally adjusting monthly

economic flow data when compared to the Eurostat method?” Soukup and Findley (2000) describe

three methods that can be used to compare the effectiveness of different models in properly ac-

counting for trading day and holiday effects when seasonally adjusting monthly data. The methods,

which will be discussed later, are spectral analysis, comparison of modified AIC values, and the

analysis of out-of-sample forecast errors. These methods are employed here, using a collection

of economic time series from the Census Bureau, to compare the Census Bureau’s X-12-ARIMA

method of handling trading day and holiday effects with the Eurostat inspired method of using

country specific regressors. The primary means of examining the effectiveness of these two ap-

proaches will come from the methods of analysis described in Soukup and Findley (2000) and

briefly described in Section 2. After comparing these two different methodologies, we determine

which of the two methods is more effective in adjusting for calendar effects in three separate groups

of monthly economic flow series. Specifically, the series considered here are manufacturing series,

retail series, and housing starts.

In Section 2 we detail the methods of analysis used on the collection of economic time series. In

Section 3 we describe the specific nature of our analyses, including a description of our data, how

we structured our models, and how the models were fit to our data. Section 4 contains a discussion

on the implementation of our analyses and a summary of the results. Finally, Section 5 contains

concluding remarks.
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2 Methods of Analysis

As mentioned, the three methods of analysis used to determine which approach is better at

adjusting for trading day and holiday effects are checking for visually significant trading day peaks

in various spectra, comparing modified AIC values, and comparing out-of-sample forecast errors

(OSFEs). The simplest method of analysis is done by examining three spectral plots for each

model. The first spectrum is of the differenced, transformed, and seasonally adjusted series. The

other two spectra are of the irregular series (also identified as the “final Henderson trend”-adjusted

seasonally-adjusted series in X-12-ARIMA) and the residuals of the fitted series. Analysis of these

spectra involves the identification of a significant spectral peak at a point along the spectrum that

corresponds to trading day effects. For a spectrum f(λ), 0 ≤ λ ≤ .5, the two points that have been

identified as those corresponding to trading day effects for monthly data are .348 and .432. The

value .348 cycles/month comes from the number of weekly cycles that will occur in a month that has

an average length. Due to leap year and the seven day weekly cycle, we can think of the Gregorian

calendar as having a 28 year cycle. The average year is 365.25 days long, making the average month

length 365.25/12=30.4375 days. Thus, a week cycles through an average month 30.4375/7=4.348

times, giving the fractional value of .348 when ignoring the ones unit to the left of the decimal point.

Examining this particular peak has proven to be worthwhile in trading day adjustments (Soukup

and Findley, 1999). The other value, .432, was found to be important in detecting trading day

effects by Cleveland and Devlin (1980). For a more comprehensive discussion regarding trading

day frequencies, see Cleveland and Devlin (1980). Within X-12-ARIMA, a warning message is

produced for any spectrum that has a “visually significant” peak at either of the two critical

peaks associated with trading day effects (Findley, Monsell, Bell, Otto, and Chen, 1998). The

determination of a visually significant peak is done within X-12-ARIMA, but it is important to

note that X-12-ARIMA currently has no method of testing a hypothesis for visual significance that

is capable of producing a p-value associated with statistical significance.

An evaluation of two differing models using the spectral method of visual significance results

can be done in two ways: seeing which of the models being tested does not produce a visually

significant peak on either of the spectra for a given series, or testing the models on a large number

of series and seeing which model produces the least number of warning messages. Examples of

spectral plots are given in Figure 1. Specifically, Figure 1(a) provides an example of a series that

contains no visually significant trading day peaks after adjustments, whereas Figure 1(b) illustrates

a spectrum of a series where trading day adjustment methods were unable to completely account

for trading day effects, leaving visually significant peaks at important trading day values in the

spectrum. For examples of spectral comparison plots (spectra of two models plotted together) see

Figure 2. Obvious problems arise from this method of analysis, particularly that it does not allow

for clear model selection when either both models produce warning messages or neither model
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produces warning messages. Additionally, because the spectra are assessed for visually significant

peaks on an individual basis, this method of analysis contains no definable hypothesis test that can

conclude a particular model to be superior to another with any statistical significance.

To further facilitate the analysis of two separately proposed models for a particular series or a

group of series, sample-size corrected Akaike Information Criterion (AICC) values are compared.

AICC, proposed by Hurvich and Tsai (1989), is defined as

AICCN = −2LN + 2p

(
1

1 − p−1
N

)
, (5)

where N is the number of observations, LN is the maximized log-likelihood of an estimated reg-

ARIMA model fit to the N observations, and p is the number of parameters that are estimated in

the model.

For some series, X-12-ARIMA detects additive outliers, level shifts, and temporary changes.

These outlier types are, respectively, individual outliers at a single data point, shifts that increase

or decrease all observations from a particular time point onward by a constant factor and abrupt

changes in the level of the series that return to previous levels at an exponential rate. After AICC

values are computed, the model that does a better job of adjusting for calendar effects is determined

by which one produces the lower AICC value. However, two steps must be made in taken for AICC

values to be relevant when comparing two models applied to a series. The first is to make sure that

both models use the same transformation and perform the same differencing operator on the series.

The second is to have both models include the same outlier regressors. When an outlier is included

in a particular model, it has a tendency to substantially increase the maximized log-likelihood,

thereby lowering the observed AICC value. Thus, identified outliers can become a relatively large

factor in model selection, as opposed to the more important data properties. In order to remedy

this potential problem and to allow for an informative comparison of AICC values, it is necessary to

make sure that both models include the same outlier regressors (X-12-ARIMA Reference Manual,

U.S. Census Bureau, 2007). Additionally, the magnitude of difference between the two AICC

values must be greater than 1.0 in order to consider one model superior to the other. Differences

less than 1.0 in magnitude are considered to be inconclusive. For a further discussion, see Burnham

and Anderson (2004). AICC comparisons are commonly the primary method of analysis used in

selecting a preferred model for individual series.

The third criterion used for model selection is to compare OSFEs. Out-of-sample forecasts are

calculated for each model on a given series and have a particular lag associated with them. The two

most common lags are 1 and 12, which respectively correspond to monthly differences and yearly

differences. Calculation of out-of-sample forecasts is done using an iterative process. Specifically, a

regARIMA model is fit to a sequence of data values contained within the series (perhaps the first

72 observations of a series that contains 96 total observations) and then a k-step-ahead forecast is
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made outside of the sequence. Subsequently, a regARIMA model is fit to a sequence of data values

that are composed of the previous sequence with the addition of the next available data value. For

example, monthly values from January 1995 to December 2003 are used to fit a regARIMA model

and a forecast is made for January 2004. Then, the model is refit so that it accounts for values

from January 1995 until January 2004, and a forecast is made for February 2004. This process

would continue until forecasts were developed from January 2004 until the last month that had

available data for the series. This particular example is of a 1-step-ahead forecast procedure; a

similar procedure can be implemented for 12-step-ahead forecasts and would have given the first

forecast for December 2004, the second for January 2005, and so on.

After this process is completed, OSFEs can be calculated by subtracting the observed values

in the series from the forecasts. A special diagnostic can be created from these OSFEs that is able

to compare exactly two separate models. This diagnostic uses accumulated sum of squared OSFEs

for each model, and then combines them in a normalized format to create a set of diagnostic values

that can be plotted (e.g., Figure 3). A clearly visible upward or downward trend on this plot will

reveal if the first or second model is more adequate. For a complete discussion, see Findley et al.,

(1998).

3 Data and Models

The data used for our analysis, provided by the U.S. Census Bureau, are monthly economic

time series of manufacturing data, retail information, and housing starts. Information on the source

and reliability for these series can be found at www.census.gov/cgi-bin/briefroom/BriefRm. The

starting date for each series is either January or February of 1992; the ending date is November

2006 for all manufacturing series, December 2006 for all housing starts series, and December 2007

for all retail series. We conducted analyses on a total of 93 datasets; 54 were manufacturing series,

27 were retail series, and 12 were housing starts series. Using these three groups of series, we

compared the effectiveness of the Census Bureau procedure to the Eurostat procedure of using

country specific regressors.

For the remainder, the four models of concern will be referenced by the designation of their

respective regressors in formulas (1) through (4). Specifically they are models TD, EU , TD1,

and EU1, where TD and TD1 are the U.S. Census Bureau models whereas EU and EU1 are

the Eurostat-inspired models whose trading day regressors include a country specific fixed holiday

correction. The regressors for the Eurostat-inspired models were created by accounting for the ten

U.S. federally recognized holidays (excluding the quadrennial Inauguration Day). The ten federally

recognized holidays are New Year’s Day, Martin Luther King, Jr. Day, Washington’s Birthday,

Memorial Day, Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving Day,

and Christmas Day. The effect of the movement of Easter from year to year was handled with
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a separate regressor that was included in the models when it was found to be important through

an AIC test within X-12-ARIMA. Just as Easter Sunday is not considered in the construction of

the Eurostat regressors because it already is treated as a Sunday, any holidays with a fixed date

(New Year’s Day, Independence Day, Veterans Day, and Christmas Day) that happened to fall on a

Sunday for a particular year were likewise not directly used in constructing the Eurostat regressors.

For our analysis we first compared the two Census Bureau models, TD and TD1, to determine

whether a 6-regressor or 1-regressor model was more appropriate for each of the 93 series. This

was done by first establishing whether or not a leap year adjustment was necessary for each series

using the 6-regressor Census Bureau approach. The significance of leap year effects was determined

within the X-12-ARIMA program using AIC-based selection criterion. The models TD and TD1

were then compared using AICC values to determine the more effective of the two. For this specific

comparison, it is important to note that model TD1 is a nested case of TD. AICC differences are

asymptotically equivalent to AIC differences and, thus for large enough series, vary approximately

as a chi-square variate with degrees of freedom corresponding to the difference in the number of

parameters for the two models TD and TD1. For a more detailed discussion, see the X-13A-S

Reference Manual (U.S. Census Bureau, 2008). After deciding whether six trading day regressors

or a single trading day regressor should be used for each series, we compared the preferred Census

Bureau model with its Eurostat-inspired counterpart. Thus, for each series either models TD and

EU were compared, or models TD1 and EU1 were compared.

The datasets were analyzed in X-12-ARIMA, with a separate analysis being conducted for each

of the two models chosen for every dataset (a Census Bureau model and its Eurostat counterpart

for the primary analysis). A log transformation and differencing was carried out in each instance

and leap year effects were taken into account when necessary. A multiplicative decomposition was

assumed for all series. Specifically, we assumed

Xt = Tt ∗ St ∗ It ∗ TDt ∗Ht, (6)

for a series of observed values Xt with typical trend, seasonal, and irregular components Tt, St, and

It, respectively. TDt and Ht are the trading day and moving holiday components of the series. Note

that for Eurostat methods TDt would refer to the trading day regressors with the country specific

adjustments of the fixed holidays. Estimates for all components of the series were made through

the log-transformed and differenced series. The trading day and moving holiday elements were

handled using regression techniques and errors of this regression fit were considered to be seasonal

errors, which were modeled with a seasonal ARIMA (SARIMA) component. Again, the estimation

is conducted within the X-12-ARIMA program using the automdl specification to automatically

determine the proper (p, d, q) × (P,D,Q)12 SARIMA model for the monthly time series. Specif-

ically, this amounts to using iterative generalized least squares (IGLS), with iteration occurring

between the regression and ARMA parameters, (Otto et al., 1987; Bell 2004). Further, maximum
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order limitation of 3 and 2 were used on the regular ARMA and seasonal ARMA polynomials, re-

spectively. For a complete discussion regarding SARIMA models, see Shumway and Stoffer (2006).

Additionally, three different types of outliers were automatically detected: additive outliers, level

shifts, and temporary change outliers. The overall goal is to properly adjust series for seasonality as

well as trading day and holiday effects by estimating their respective components and then dividing

them out of the decomposition so that the adjusted series only contains trend and irregular (error)

components.

For all series, an Easter holiday regressor was considered for each model and would correspond

to Ht in (6). According to the X-12-ARIMA Reference Manual (U.S. Census Bureau, 2007), this

regressor assumes that w days before Easter the “level of activity changes . . . and remains at the

new level until the day before [Easter Sunday].” The general form of this regressor is called easter[w]

in X-12-ARIMA, where w references the number of days before Easter that the shift occurs. The

most commonly used values for w are 1, 8, and 15. For our analysis, easter[8] was used. We

selected 8 because of its strength in accounting for more than simply the Saturday before Easter

Sunday and because it has been shown to be more often preferred in previous studies (Findley

and Soukup, 2000). An AIC test was conducted within X-12-ARIMA to determine whether or not

the easter[8] holiday regressor was necessary in the models. For more information on how Easter

effects are handled in the X-12-ARIMA program, see the X-12-ARIMA Reference Manual (2007).

If for a specific series one particular model required the easter[8] regressor but the other model did

not, the regressor was included in both models. The series was then re-run through X-12-ARIMA

for each method. This was done for reasons similar to combining outlier sets, specifically that the

interest of our investigation is in how well two different types of regressors can handle trading day

adjustments, and not how effective the two procedures are in identifying outliers or Easter effects.

It should be noted that easter[8] might not be the most appropriate Easter regressor for every

series used in our study. However, the use of a single value for w was done primarily to simplify

generalized comparisons. Finally, it may be the case that the concept of Easter is inappropriate for

some of the series being investigated. Therefore, as previously discussed, we rely on an AIC test to

determine whether inclusion of an Easter regressor is warranted.

A number of diagnostics were gathered in order to compare the U.S. Census Bureau and

Eurostat-inspired procedures. The first of these was the visually significant peaks in various spec-

tra, as described above. In order to create OSFE plots comparing the two methodologies, evolving

(or accumulated) sum of squared out-of-sample forecast errors were computed for 1-step-ahead and

12-step-ahead forecasts. For each of the two k-step-ahead procedures, the forecasting capabilities

of the two models being compared was addressed by creating a standardized difference of the errors

at each time point. In order to properly use AICC values for comparisons, outlier adjustments had

to be made. If the outliers identified for the two models being compared were not all the same, then

the dataset was run through X-12-ARIMA again for each of the two models with the complete list
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of combined outliers included with outlier regressors. The original SARIMA (p, d, q) × (P,D,Q)12

components from the initial X-12-ARIMA runs for each model were then used for the second run

(the automdl specification was not used). This was done to ensure that AICC values could be

properly compared and so the newly introduced outlier regressors would not be able to influence

an automdl procedure from choosing a different SARIMA component.

To develop the diagnostics for OSFE comparisons of k-step-ahead forecasts of a particular time

series Xt, for k ≥ 1, we take interest in a regARIMA model of the transformed series xt = f(Xt).

For the N data points of the series, we let N0 be an integer less than N −k that is large enough for

the data xt to assume reasonable estimates of the model’s coefficients for 1 ≤ t ≤ N0. Establishing

N0 in such a way will ensure that the forecasts are derived from a reasonable model. Then, for

each t in N0 ≤ t ≤ N − k, let xt+k|t denote the forecast of xt+k conditioned on the estimated

regARIMA model using the data xt′ , 1 ≤ t
′ ≤ t. The out-of-sample k-step-ahead forecast of

Xt+k will be Xt+k|t = f−1(xt+k|t). The out-of-sample forecast error for time t + k is defined as

et+k|t = Xt+k − Xt+k|t. The accumulated (or evolving) sums of squared out-of-sample forecast

errors, as reported in X-12-ARIMA, are

SSk,M =

M∑
t=N0

e2t+k|t, M = N0, . . . , N − k.

In order to compare two separate models with forecast errors e
(1)
t+k|t and e

(2)
t+k|t and with sums

of squared errors SS
(1)
k,M and SS

(2)
k,M , we compute a normalized (standardized) diagnostic of the

differences of SS
(1)
k,M and SS

(2)
k,M . This diagnostic is defined as

SS1,2
k,M =

SS
(1)
k,M − SS

(2)
k,M

SS
(2)
k,N−k/(N − k −N0)

, (7)

for N0 ≤M ≤ N − k. The recursion formula for (7),

SS1,2
k,M+1 = SS1,2

k,M +
(e

(1)
k+M+1|M+1)

2 − (e
(2)
k+M+1|M+1)

2

SS
(2)
k,N−k/(N − k −N0)

,

shows that a plot of this diagnostic, as a function of M + k, will reveal a possible preference of

either Model 1 or Model 2 in terms of their forecasting abilities, depending on the direction of

the plotted diagnostic. A consistently downward trend will indicate Model 1 is superior while an

upward trend will indicate Model 2 is superior. A plot without a directional trend will indicate that

neither model’s forecasting capability is dominant. Examples of OSFE plots are shown in Figure

3. In particular, Figure 3(a) shows a typical example of a clear preference for Model 1, which in

this case is the Census Bureau’s X-12-ARIMA model TD, whereas Figure 3(b) illustrates a typical

example of a plot that shows no preference for Model 1 or Model 2, in this case being TD and EU ,

respectively. Additional examples of OSFE plots can be seen in Figure 4.
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When attempting to determine which method was generally preferred by OSFE diagnostics,

there was an issue concerning the possibility that for a particular series a plot of one lag may favor

one model while a plot of the other lag may favor the other model (or no model at all). When this

situation occurred, a particular model was considered to be superior to another if the lag 12 plot

favored the model and the lag 1 plot either favored the model or was unable to favor either of the

two models. Whenever the directional trend of the two lags differed, the results were considered

to be inconclusive. The superiority of lag 12 over lag 1 in determining forecasting capabilities was

chosen based on considerations for X-11 seasonal adjustment.

Finally, these three diagnostics – visually significant peak counts, AICC values, and OSFE

plots – were then analyzed and used to determine which methodology was preferred in adjusting for

trading day and holiday effects for the three collections of series – manufacturing, retail, and housing

starts. The information gathered was also used to determine a preferred model for individual series.

When comparing the two models, a great deal of weight was placed upon the AICC comparisons

and the OSFE diagnostics received slightly less weight in the decision-making process. Since the

process of comparing visually significant peaks is not as rigorous as the other diagnostics, its role

was less emphasized.

4 Implementation and Results

For the analysis of the manufacturing series 54 datasets were used. The datasets that were run

through the X-12-ARIMA program revealed that neither methodology was shown to be completely

preferential across all of the datasets, though an argument could be made in favor of the Census

Bureau models. Of the 54 series, 13 were analyzed using the 6-regressor models and 41 were

analyzed using the constrained single regressor models. As displayed in Table 1, a total of 13 series

for the Census models and 10 series for the Eurostat models had visually significant trading day

peaks in either of the three spectra analyzed. More specifically, models TD and TD1 left four and

nine series with trading day peaks and models EU and EU1 left three and seven series with trading

day peaks. If anything, the Eurostat methodology reveals a very slight advantage over the Census

Bureau models, but the difference between the two is small enough that no definitive preference

can be established for the entire group of series on the basis of this analysis alone.

Whereas the visually significant peak counts revealed no preference, the AICC comparisons for

the manufacturing series – made after appropriate outlier adjustments – point towards the Census

method being the more appropriate way to adjust for trading day and holiday effects. A total of

28 series favored the Census models, whereas 15 series favored the Eurostat models with country

specific holiday correction regressors (see Table 2). Furthermore 11 of the 54 series yielded AICC

values that were too close to determine a preferred model, that is, their magnitude of difference was

less than 1.0. Additionally, only five of the 43 conclusive series had AICC differences greater than
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10.0 in magnitude. Nevertheless, it appears that AICC comparisons reveal a moderate preference for

the Census Bureau procedure over the Eurostat procedure for the manufacturing series considered

in our analysis. Although it may be possible to conclude “overall” preference for one specific

method, in practice one would want to use whichever method is best for a particular series.

With the more subjective OSFE comparisons, the analysis revealed no clear preference for either

of the two methodologies for the manufacturing series. As outlined in Table 3, two series favored

the Census Bureau models and four series favored the Eurostat models, leaving 48 series with no

conclusive results. Though the Eurostat method was slightly favored by OSFE comparisons over

the Census method, we find that an overwhelming number of series produced OSFE plots that

had no clear directional trend. Nevertheless, it is worth noting that when referring only to lag 1

performance, Census models were favored by 11 series and Eurostat models were favored by only

3 series.

Concerning the set of monthly economic series of manufacturing data, it is not possible from

our analysis to definitively establish which of the two methodologies, the U.S. Census Bureau or the

Eurostat, is more effective in adjusting for trading day and holiday effects across the entire group

of series. However, a comparison of AICC values reveals a preference for Census Bureau proce-

dures, while plots of sums of squared out-of-sample forecast errors depict no general preference. In

addition, counts of visually significant trading day peaks in seasonally adjusted, modified irregular,

and residuals spectra points towards inconclusiveness. This inconclusiveness further illustrates the

importance of using whichever method is best for a particular series in practice.

Since 15 of the 54 manufacturing series preferred a Eurostat model with regard to AICC values,

it seems that it would be beneficial to individually examine these series to see whether or not the

other methods of analysis supported this conclusion. Taking the AICC results to be the primary

deciding factor in selecting a preferred model, we examined the OSFE plots and spectral plots

on an individual basis to determine if these methods of analysis presented any reason to refute

the AICC results. In only one of the 15 series was there any evidence to contradict the AICC

comparisons. In this particular case, a lag 1 OSFE plot clearly depicted a preference for the Census

Bureau’s model. The three spectra contributed no conclusive evidence one way or the other. Thus,

considering AICC values to be the primary benchmark in selecting model preferences for individual

series, there is evidence that 14 of the manufacturing series preferred the Eurostat methodology

over the Census Bureau methodology in adjusting for trading day and holiday effects. A similar

examination of individual series where AICC comparisons favored models TD and TD1 revealed

that 26 series preferred the Census models. Thus, for manufacturing series, being examined on an

individual basis, 26 preferred Census models, 14 preferred Eurostat models, and 14 comparisons

proved inconclusive.

The retail series were entirely preferential towards the current method employed in the U.S.

Census Bureau’s X-12-ARIMA program. Of the 27 series examined, 25 were compared using models
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TD and EU , and two were compared using models TD1 and EU1. The overwhelming preference

for the 6-regressor models is to be expected due to the large influence of weekly cycles in retail sales.

The counts of visually significant trading day peaks reveal that both methods produced roughly

the same number of warning messages. The Census Bureau models produced 12 and the Eurostat

models produced 10. A closer inspection of the AICC values significantly helps strengthen the

case for superiority of models TD and TD1 over EU and EU1. Table 2 reveals an overwhelming

preference for the current X-12-ARIMA method of handling trading day effects in retail series. The

comparisons favored Census Bureau models for 20 of the 27 series, only three series favored the

Eurostat models, and four series produced AICC values with differences less than 1.0 in magnitude.

This evidence definitively indicated the superiority of the Census Bureau’s methodology over the

Eurostat methodology when it comes to the U.S. retail series examined here.

Observing the sums of squared residual plots produced from out-of-sample forecasting provides

additional evidence for models TD and TD1. As shown in Table 4, only three of the 27 comparisons

showed a distinct preference for the Eurostat methodology, while seven comparisons revealed a

preference for the Census Bureau models, particularly the 6-regressor model. Even though the

OSFE plots produced 17 of 27 inconclusives, the Census Bureau’s current X-12-ARIMA models

were superior to their Eurostat-inspired counterparts in terms of out-of-sample forecasting by a

margin of more than 2 to 1. Additionally, when looking at only lag 1 OSFE plots it is clear that

the Census Bureau models are preferred, with 11 series favoring models TD and TD1 and only one

series favoring the Eurostat models.

Overall, the three methods of counting visually significant trading day peaks, comparing AICC

values, and examining OSFE diagnostics revealed a strong preference for models TD and TD1

over their respective Eurostat counterparts when applied to U.S. retail sales data. Though visually

significant peak counts did not favor one methodology over the other, examining the AICC com-

parisons indicated that the majority of the retail series produce smaller AICC values for the Census

Bureau procedures than those produced under the Eurostat models. In addition, even though the

OSFE plots were not as definitive as the AICC comparisons, they still indicate superiority of the

U.S. Census Bureau’s methodology. Upon examining the 27 retail series on an individual basis, we

found that there was not a single series where OSFE plots and spectral plots called into question

the model selected by way of AICC comparisons. Thus, 3 of the retail series were preferential

towards the Eurostat models whereas 20 series favored a Census Bureau model, with four series

yielding inconclusive results.

Analysis of the 12 housing starts series revealed support for using the current Census Bureau

models. For these series, three were examined using models TD and EU , while nine were examined

with 1-regressor models. Visually significant trading day peaks were found in five of the 12 series

when model EU and EU1 were applied; the Census Bureau models produced a total of two series

with visually significant trading day peaks.
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AICC comparisons yielded a similar preference for the methodology currently used by Census.

Models TD and TD1 were favored in 11 of the 12 series, with the remaining series favoring a

Eurostat-inspired model. OSFE plots were entirely inconclusive (see Table 5). Only one series

revealed a distinct preference for a particular model, and that was for a Census model. Both lag 1

and lag 12 OSFE plots for this series were conclusive. The lag 1 plots of two other series revealed

a preference for the Census Bureau method, but lag 12 plots were inconclusive in each case.

Overall, analysis of the housing starts series indicates a preference for the Census Bureau

methodology. However, the overwhelming indifference when examining forecasting capabilities

is something that should not be overlooked. If a model’s ability to accurately predict future occur-

rences is considered to be an important quality, then it would be hard to firmly declare that models

TD and TD1 were more effective in handling trading day and holiday effects than their Eurostat

counterparts. On the other hand, if a lower AICC value is the primary focus in model selection,

then there is sufficient evidence supporting the use of current Census Bureau models on housing

starts series. Using AICC results as the criterion for model selection on the 12 series individually,

and examining OSFE and spectral plots as a means to support or refute AICC results, we end up

with 11 series preferring the Census models and 1 series preferring the Eurostat models. The only

series preferring country specific regressors exhibited an AICC reduction of only 1.49 in comparison

to the competing Census Bureau model.

There is one very important observation to note regarding AICC comparisons for all of the

series. The results of the comparisons presented here were done in such a way that the SARIMA

components of the models determined with the automdl specification in X-12-ARIMA were used,

then combined outlier sets were included and the SARIMA model was not allowed to change. This

was done in order to prevent additional outliers from potentially distorting the seasonal ARIMA

components. When SARIMA components were left up to automdl during the inclusion of combined

outlier sets, there was a substantial alteration in the AICC comparisons, as shown in Table 6.

Particularly, a sizeable number of series produced AICC values that were very close for both

Census and Eurostat models. Overall, the number of inconclusive series (AICC differences being

less than 1.0 in magnitude) went from 15 to 38 for the 93 series examined. Moreover, AICC

comparisons for housing starts series were no longer able to conclusively indicate preference toward

the Census methodology as being more appropriate, and the number of inconclusive comparisons for

the manufacturing series increased to 27 of 54 total series. Alterations in visually significant peak

counts and OSFE plots were minimal. The sensitivity of the AICC values to the additional inclusion

of outliers and the revision of the SARIMA component (through the automdl specification) seems to

indicate that the two methodologies, overall, have a very similar effect on trading day adjustments

of economic flow series. Clearly there are some series that definitively prefer one method over the

other, but there are also a significant number of series for which comparisons can be considered

inconclusive.
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When examining the preferences of the series, an interesting question arises concerning the clear

preference of the Census Bureau models by the retail series. Considering that manufacturing and

housing starts series did not indicate as strong of a preference for either methodology and that

both sets of series overwhelmingly favored the single regressor models, was the definitive preference

seen in the retail series a result of the frequent use of the 6-regressor models? Considering the way

in which the regressors for the Eurostat models augment the regressors currently used in X-12-

ARIMA, it is plausible that a misspecification in the nature of fixed holidays would be more easily

detected in models containing six regressors as opposed to those with a constrained single regressor.

If all holidays do not act as Sundays – as is assumed in the Eurostat-inspired models with country

specific trading day regressors – then this misclassification could potentially affect all 6 regressors

and their estimated coefficients. In order to rectify this potentially hazardous problem, it would be

necessary to individually consider the nature of every holiday and determine whether it should be

classified as a Sunday, or perhaps as a Friday instead. The uniqueness of individual series would

require a subjective assessment of this issue for each series on an individual basis. An accurate

reallocation of holidays could possibly improve the model’s ability to adjust for trading day and

holiday effects, making it more effective than the current Census Bureau procedure for a wide range

of series. However, a technique of this sort is obviously prohibitively time consuming. Nevertheless,

evidence has shown that a number of series examined here exhibit improvements over the current

Census Bureau procedures in adjusting for trading day effects when the use of country specific

fixed holiday corrections are employed. It is entirely plausible that a revised treatment of fixed

holidays for some individual series could improve AICC values and possibly even OSFE diagnostics

by enough of a margin so as to consider the Eurostat-inspired models capable of outperforming

current Census Bureau models. As the country specific regressors currently stand, however, only

17 of the 93 series have been shown to prefer this particular method over the current Census

Bureau method of assuming the effect of fixed holidays to be entirely contained within the seasonal

component of the series.

5 Concluding Remarks

We have reviewed and provided a detailed comparison of two differing approaches to adjusting

for trading day and holiday effects in monthly economic time series. The first approach was the

current Census Bureau procedure of creating trading day regressors in X-12-ARIMA, which assumes

that the effect of fixed (stationary) holidays are absorbed by a seasonal component. The second

approach was inspired by Eurostat, wherein fixed holiday effects are not assumed to be absorbed

by a seasonal component and are instead accounted for by including fixed holiday counts in the

calculation of X-12-ARIMA trading day regressors and treating holidays as Sundays. The methods

used to compare these two approaches were a spectral analysis where visually significant trading
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day peaks were documented and compared, a comparison of AICC values after outlier adjustments,

and an analysis of out-of-sample forecasting capabilities through plots of a standardized diagnostic

of the differences of sums of squared out-of-sample forecast errors.

We have seen that counts of visually significant trading day peaks in the seasonally adjusted,

modified irregular, and residuals spectra were roughly the same for each of the Census Bureau

and Eurostat-inspired methods for each of the three groups of series analyzed. AICC comparisons

revealed a preference towards the Census approach for all three groups of series. Box plots of AICC

values by models used are displayed in Figure 5. However, an alternate examination of AICC

values significantly increased the number of inconclusive comparisons for all three groups of series,

particularly the manufacturing series. OSFE plots tended to favor the Census Bureau models over

their Eurostat-inspired counterparts, though an overwhelming number of plots did not favor either

approach. There is evidence that specific groups of series may definitively prefer one approach over

the other, such as the clear preference towards the current X-12-ARIMA approach for the retail

series.

Additionally, the subjective nature of the Eurostat regressors is interesting in that it is impos-

sible to know for sure which holidays should be accounted for and whether or not they should be

treated as Sundays. While it is certainly possible that properly defined holiday correction regres-

sors could outperform traditional trading day regressors for individual series, the subjective and

individualistic nature of developing such constructions would be prohibitive. Thus, a reasonable

conclusion that can be made from our analysis of 93 monthly economic flow series is that there

is no indication that the method of providing a country specific holiday correction to trading day

regressors, by way of treating holidays as Sundays, is capable of outperforming the current X-12-

ARIMA method in adjusting for trading day and holiday effects across a wide range of monthly

economic flow series. However, it does appear that the Eurostat-inspired method of adjusting for

trading day is capable of outperforming the current Census Bureau method for a limited number

of series, and the results presented here clearly warrant further investigation.
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(a)

(b)

Figure 1: Examples of spectral plots with identified trading day values.
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Figure 2: Spectral comparison plots for trading day peaks. (a) has no peaks for either model.
(b) has visually significant peaks for both models. (c) has peaks for both models, but only one is
visually significant.



(a) (b)

Figure 3: Examples of evolving sums of squared out-of-sample forecast error plots.

(a) (b)

Figure 4: OSFE comparison plots: (a) depicts a clear preference for the Census Bureau model on
both lags. (b) preference is inconclusive.



Figure 5: Box plots of AICC values by model for 78 series with AICC differences greater than 1.0
in magnitude. There were six series for EU, 13 for EU1, 30 for TD, and 29 for TD1.



Trading Day Peaks

Source of Warnings Series and Models

Manufacturing Retail Housing Starts

Census Eurostat Census Eurostat Census Eurostat

IRR or SA, and Residual Spectra 2 1 2 4 0 1

IRR or SA Spectra only 11 6 6 2 2 2

Residual Spectrum only 0 3 4 4 0 2

Totals 13 10 12 10 2 5

Table 1: Numbers of series with visually significant trading day peaks in the plots of the default
(IRR and SA) and residuals spectra before outlier adjustments.

AICC Preferences

Census Eurostat Indifferent

Manufacturing Series 28 15 11

Retail Series 20 3 4

Housing Starts Series 11 1 0

Table 2: Number of series favored when comparing TD with EU, and when comparing TD1 with
EU1. SARIMA components were hardcoded before outlier sets were joined together.



Manufacturing Series

OSFE Model Preference Census Eurostat

Lag 1 Preference 11 3

Lag 12 Preference 2 5

General Preference 2 4

Table 3: Number of Manufacturing series favored by OSFE plots.

Retail Series

OSFE Model Preference Census Eurostat

Lag 1 Preference 11 1

Lag 12 Preference 7 6

General Preference 7 3

Table 4: Number of Retail series favored by OSFE plots.

Housing Starts Series

OSFE Model Preference Census Eurostat

Lag 1 Preference 3 0

Lag 12 Preference 1 0

General Preference 1 0

Table 5: Number of Housing Starts series favored by OSFE plots.

AICC Preferences

Census Eurostat Indifferent

Manufacturing Series 9 18 27

Retail Series 16 5 6

Housing Starts Series 4 3 5

Table 6: Number of series favored when comparing TD with EU, and when comparing TD1 with
EU1. SARIMA components were decided by automdl after outlier sets were joined together.



Model Preferences

Series Model Series Model Series Model

U11AVS EU1 or TD1 UCDGVS EU1 or TD1 s0b44410 TD

U22AVS TD UCMSNO TD1 sls44500 TD

U22BVS EU1 UCMSVS TD1 sls44510 TD

U22SVS TD1 UCOGNO TD1 sls44530 TD

U25AVS EU or TD UCOGVS TD1 sls44600 TD

U25BVS TD1 UCRPVS EU1 or TD1 sls44611 TD

U25CVS EU1 UDAPVS EU or TD sls44700 TD

U25SVS TD UDXDNO EU1 sls44800 TD

U26SVS TD1 UDXDVS EU1 sls44811 TD

U27SVS TD1 UDXTNO EU1 sls44812 EU or TD

U31ANO EU1 or TD1 UMDMNO TD sls44820 TD

U31AVS TD1 UMDMVS EU1 sls45100 TD

U31CVS EU1 UMNMNO TD sls45200 TD

U31SVS EU1 or TD1 UMNMVS TD sls45210 TD

U32SNO EU1 UMTMNO TD sls45291 EU

U32SVS EU1 UMTMVS EU1 or TD1 sls45299 EU

U33HNO TD1 UMVPNO TD1 sls45300 TD

U33SNO TD1 UMVPVS EU1 or TD1 sls45400 TD1

U34CVS EU1 or TD1 UMXDNO TD1 sls72200 TD

U34HVS EU UMXDVS EU1 or TD1 MW1FAM TD1

U35BVS TD1 UMXTNO TD1 MWTOT TD

U36AVS EU1 or TD1 UODGNO TD1 NE1FAM TD1

U36BVS TD1 UODGVS TD1 NETOT TD1

U36SNO TD sls44000 TD S 1FAM TD1

U36SVS EU1 sls44100 EU or TD S TOT TD

U37SVS EU sls44130 TD US1FAM TD1

U39SVS EU or TD sls441x0 EU or TD US2 4 TD1

UANMVS EU1 sls44200 EU or TD US5P EU1 or TD1

UBTPNO EU or TD sls44300 EU USTOT TD

UBTPVS EU1 sls44312 TD W 1FAM TD1

UCDGNO TD1 sls44400 TD1 W TOT TD1

Table 7: Model preferences for 93 series. Series with two models chosen means analyses could not
determine which of the two was superior. First 54 (beginning with “U”) are Manufacturing, 27
beginning with “sls” are Retail, and remaining 12 are Housing Starts.




