
 
Report Issued: January 28, 2010 
 
Disclaimer: This report is released to inform interested parties of research and to encourage discussion.  
The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau 
 

 
 
 
 
 
 
 

RESEARCH REPORT SERIES 
(Statistics #2010-02) 

 
General Discrete-data Modeling Methods  

for Producing Synthetic Data with Reduced  
Re-identification Risk that Preserve Analytic Properties 

 
William E. Winkler  

 
 
 
 
 
 

 

 
 
 
 
 

Statistical Research Division 
U.S. Census Bureau 

Washington, D.C. 20233 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 



 General Discrete-data Modeling Methods for Producing Synthetic Data 
with Reduced Re-identification Risk that Preserve Analytic Properties 

 
William E. Winkler1, william.e.winkler@census.gov   2008Nov12d 

U.S. Census Bureau, Statistical Research Division, Washington, DC 20233-9100 
 

 
Abstract 
General modeling methods for representing and improving the quality of discrete data 
(Winkler 2003, 2008) extend and connect the editing methods of Fellegi and Holt (1976) 
and the imputation ideas of Little and Rubin (2002).  This paper describes a modeling 
framework to produce synthetic microdata that better corresponds to external benchmark 
constraints on certain aggregates (such as margins) and on which certain cell probabilities 
are bounded both below and above to reduce re-identification risk.  Rather than use linear 
constraints (Meng and Rubin 1993), the modeling methods use convex constraints 
(Winkler 1990, 1993) in an extended MCECM procedure.  Although the produced 
microdata are not epsilon-private (Dwork 2006, Dwork and Yekhanin 2008), surrogate 
original microdata would be exceptionally difficult (or impossible) to construct using the 
standard lp programming procedures of epsilon-privacy. 
 
1.  Introduction 
This paper describes modeling methods for discrete data.  The methods are closely 
related to general modeling/edit/imputation methods (Winkler 2008) in which models can 
easily be created using very fast, parameter-driven software.  The methods and 
generalized software are suitable for a wide range of discrete data.  The models are used 
in generalized production edit/imputation software that assure that the ‘corrected’ data 
satisfy both edit restraints and preserve joint distributions in a principled manner.  
Furthermore, the modeling methods use convex constraints (Winkler 1993, 1990) in an 
EMH algorithm that generalize the linear constraints of the MCECM algorithm of Meng 
and Rubin (1993).  An advantage of the new modeling methods is that the microdata 
created via the methods can have aggregates that are adjusted to certain benchmark totals. 
   General convex constraints provide great flexibility in creating models that 
approximately preserve analytic properties and reduce the re-identification risk in 
synthetic microdata that are created from the models.  Convex constraints allow putting 
lower and upper bounds on individual cells or on groups of cells.  In earlier work, 
Winkler (2007) showed how to use more elementary methods to reduce re-identification 
risk by putting lower and upper bounds on both small cells and sampling zeros while still 
approximately preserving most aggregates needed for loglinear modeling and important 
joint and conditional probabilities.  At that time, Winkler (2007) felt that the risk of re-
identification via record linkage experiments was greatly reduced in comparison to data 
from some previous synthetic-data-generation methods.   
   Epsilon-privacy represents a gold standard in terms of preventing leakage of 
information and in preserving privacy.  Much research is needed to justify analytic 
properties of epsilon-private data.  Dwork, McSherry, and Talwar (2007b, first two 
paragraphs of section 5) provide an example from ‘census’ data  in which the amount of 
noise added to a table having on the order of 1,000,000 cells must be on the order to 



1,000,000 (plus or minus) in each cell.  In this situation and most others where rigorous 
epsilon-privacy has been applied, it is not clear that the resultant ‘protected’ microdata 
will meet analytic standards acceptable to most economists and statisticians.  
Additionally, Xaio and Tao (2008) raise serious concerns by demonstrating that it is 
impractical to verify epsilon-privacy in most situations.  Specifically, they prove that L1-
sensitivity of functions (Dwork et al. 2006) is NP-Hard computationally.  Dwork et al. 
(2006) showed that computing the L1-sensitivity of functions was needed to verify 
epsilon-privacy in most situations. 
  The notable exception to the lack of suitable analytic properties is work by 
Machanavajjhala et al. (2008) that preserves an extended type of epsilon-delta privacy in 
a very narrowly analytically focused ‘on-the-map’ application.  Machanavajjhala et al. 
applied clever theoretical techniques and introduced exceptionally complex 
computational methods that may not be suitable for most general situations. 
   In this paper, we slightly extend the methods of Winkler (2008, 2007) in a manner that 
creates a model with a desired set of properties.  To do this we place a few pairs of upper 
and lower bounds on key aggregates needed for the loglinear modeling while placing 
upper bounds and lower bounds on a very large set of small cells and sampling zeros.  
The idea is to target preservation of analytic properties in the creation of the model.  To 
produce synthetic data, we merely randomly draw from the model in the appropriate 
fashion.  Typically, this means almost exactly preserving the probabilities associated with 
originally larger cells.  Most small cells in the original data are replaced by sets of 
sampling zeros that have positive probability in the model and that approximately 
preserve the key aggregates needed for loglinear modeling. 
   There are several key points of the new methods.  First, any direct re-identification 
experiment will only match originally small cells with sampling zeros that have very 
small positive probability in the models.  Second, because we target preservation of a few 
analytic properties, we are not creating all of the key aggregates (functions) in a manner 
where each function satisfies epsilon-privacy.  We do create an alternative to a type of 
epsilon-delta-privacy that we believe would make it exceptionally difficult to reconstruct 
the original private data in manners suggested by Dwork (2006), Barak et al. (2007), 
Dwork et al. (2007a) and Dwork and Yekhanin (2008) 
   Although the computational algorithms needed for creating the models are sufficiently 
fast for the largest edit/imputation applications, the algorithms need speeding up for even 
moderate size (50 million cells) modeling situations needed for producing synthetic data.  
   In the second section of this paper, we give cursory background on edit/imputation and 
some of the basic computational algorithms.  We also describe how a re-identification 
experiment is performed that assures that private data cannot be easily re-identified but 
may not satisfy reasonable epsilon-privacy or epsilon-delta privacy.  We describe how 
the models are created.  In the third section, we provide empirical results on ‘census’ data 
that has be downloaded from the UCI machine learning repository and used in some 
confidentiality research.  Although any synthetic data produced from the model can 
prevent most re-identification using record linkage and satisfies a condition that can be 
considered an alternative to very weakened type of epsilon-delta-type of privacy, the 
synthetic data do not satisfy rigorous epsilon-delta privacy.  An interesting experiment 
(beyond the scope of the present paper) would be for a cryptographer to apply some of 
the constructive methods (e.g., Dwork 2006, Barak et al. 2007, Dwork et al. (2007a), 



Dwork and Yekhanin 2008) to the synthetic data to reconstruct a reasonable 
approximation of the original private data.  The final sections consist of brief discussion 
and concluding remarks.  This experiment would be needed regardless of the type of 
auxiliary information (Ganta et al. 2008) that might be available to an adversary. 
 
2.  Background 
In this section we provide background on modeling/edit/imputation, need for 
computational speed, re-identification using record linkage, and the general iterative 
fitting algorithm for creating the model. 
 
2.1  Modeling/Edit/Imputation 
Modern methods for edit/imputation began with the seminal paper of Fellegi and Holt 
(1976, hereafter FH).  With discrete data, an edit might be that a child of less than 16 
could not be married.  Their paper provided three principles: (1) The minimum number of 
fields in each edit-failing record r0 should be changed to create an edit-passing record r1 
(error localization), (2) Imputation rules should be derived automatically from edit rules, 
and (3) When imputation is necessary, it should maintain marginal and joint distributions 
of fields.   
   The FH paper was the first to provide a method that assured that an edit-failing record 
r0 could be changed into an edit-passing record r1.  To assure correct error localization, 
FH showed that implicit edits were needed.  Implicit edits are those that can be logically 
derived from explicitly defined edits.  Winkler (1997) provided set-covering algorithms 
that delineated the implicit edits, the set of which can be considered structural zeros for 
loglinear modeling.  Although a number of statistical agencies have implemented 
generalized FH production systems that assure the edit-failing records can be ‘corrected’ 
to edit-passing records, none have provided FH methods that assure that the records also 
satisfy joint distributional characteristics from a model.  The FH suggestion that hot-deck 
could be used for (2) and (3) is not possible due to serious deficiencies in hot-deck that 
were not understood when the FH paper was written (Winkler 2008). 
   Winkler (2003) provided the theory connecting the edits of FH with the generalized 
imputation of Little and Rubin (2002).  An initial routine (Winkler 1997) finds the set of 
implicit edits (structural zeros) in a manner that is 100 times as fast as the previous fastest 
algorithms of Garfinkel, Kunnathur, and Liepins (1986) used by IBM in creating a large 
system for ISTAT (Barcaroli and Venturi. 1997).  A second routine (Winkler 2008) does 
standard loglinear modeling under a combination of linear and convex constraints in the 
presence of structural zeros.  In the edit setting, the iterative fitting algorithm is a type of 
EM algorithm as in Little and Rubin (2002).  The key aspect of the second routine is 
having computational algorithms that are sufficiently fast for all of the survey data 
situations in the statistical agencies.  The final routine does the error localization 
(Winkler 1997) using either branch-and-bound or a greedy algorithm and then fills in 
missing or ‘to-be-changed’ values according to the model (contingency table) determined 
by the second routine.  All records are guaranteed to satisfy edits and the overall set of 
records preserve the probability distributions of the model.   
 
2.2  The EMH algorithm 



    The general iterative fitting algorithm is extended to an EMH algorithm (Winkler 
1993, 1990) for convex constraints that allow putting upper bounds on cells or convex 
combinations of cells.  Because the set of probabilities must add to one, lower bounds can 
also be put on cell probabilities or simple sums of cell probabilities that might correspond 
to a marginal constraint.  The general EMH algorithm has been used for unsupervised 
learning of optimal record linkage parameters (Winkler 1993) in which certain 
probabilities are estimated within restricted ranges based on a priori knowledge.  The 
general EMH algorithm has also been used in statistical matching to create microdata that 
better corresponds to (external) benchmark constraints (D’Orazio et al. 2006). 
   In the application of this paper, we apply the EMH algorithm with several constraints.  
First, we perform standard loglinear modeling to determine the set of interactions needed 
to get suitably close-fitting model.  The model is the final set of probabilities associated 
with the cells corresponding to the entire set of data patterns.  Second, we take the set of 
counts associated with the small cells (here either 1 or 2) and disperse all of the counts 
across the entire set of small cells and the entire set of sampling zeros.  The intent is to 
assure positive probability of sampling zeros in a manner that preserves most of the 
characteristics of the best-fitting set of interactions under purely linear constraints.  Third, 
we place upper bounds (say 0.000004) on the probabilities associated with the originally 
small cells that assure that the final fitted probabilities are zero to five decimal places.  
Fourth, if necessary, we can place upper and lower bounds on a few of the marginal 
probabilities in the final fitted contingency table that deviate substantially from the 
marginal probabilities in the original, private data.   
    To create the synthetic data, we randomly draw from the contingency table probability 
proportional to size.  If necessary, we can create multiple copies of the synthetic data.  
 
2.3  Re-identification via Record Linkage 
   After modeling and creation of synthetic data Y from the original data X, we can 
perform re-identification experiments.  To do this we merely match data Y directly 
against data X.  The re-identification experiment is conservative in the sense that any 
intruder would likely have data Y1 that is more difficult to match against X than Y.  In a 
real-world situation, the intruder would have names and other identifying information 
associated with individual records in data Y1.  Based on the worst-case re-identifications, 
it is possible to extrapolate downward explicit re-identifications of individual records or 
of overall re-identification rates.  The downward extrapolation can be based on assumed 
typographical error rates or the record linkage metrics that are used to compare individual 
fields.  With discrete data, we might only do exact comparison of individual fields and 
use an EM-latent class algorithm for estimating the best record linkage parameters.  Kim 
and Winkler (1995) and Winkler (1998) used the EM algorithm and different field-
comparison metrics for re-identification with continuous data.  For convenience, we 
assume that we are using entire populations so that we need not extrapolate for different 
sampling scenarios.  If we use an entire population, matching is much easier and an upper 
bound on re-identification risk is more easily computed. 
   Any record corresponding to a small cell in the data Y that can be associated via record 
linkage with the correct corresponding cell in X with high matching probability can be 
considered a re-identification.  With continuous data scenarios, both Fuller (1993) and 
Winkler (1998) showed how to perform the matching to get explicit re-identification.  



Discrete-data re-identification is much more straightforward under the complete 
population scenario of this paper.  Typically, if we randomly draw synthetic data from the 
model of section 2.2, we will not get any re-identification using record linkage.  The key 
issue with the synthetic data is whether the synthetic data preserves a few analytic 
constraints so that someone using the synthetic data Y would approximately reproduce 
results that could be obtained from the original data X. 
   With epsilon-privacy (e.g., Dwork 2006), individuals make similar assumptions about 
the best possible data Y1 ( or Y) that might be matched against data X.  Epsilon-privacy 
goes further in that it assures almost no leakage of information that prevents re-
identification but does not presently preserve analytic properties in any clearly 
established manner.  Ganta et al. (2008) explicitly bring in the use of auxiliary 
information in demonstrating that epsilon-privacy prevents any type of re-identification. 
 
2.4  The Empirical Data and Restraints Used for Modeling 
Data are from the University of California at Irvine machine learning respository.  The 
specific data set is ‘Adult’.  The variables (fields) downloaded were age, WorkClass (8 
values), Education (16 values), MaritalStatus (7 values), Occupation (14 values), Race (5 
values), Sex (2 values), and Country (41 values).  For initial testing purposes, we used 
WorkClass (7 values), MaritalStatus (7 values), Race (5 values), and Sex (2 values) that 
yielded 490 (7  7  5  2) data patterns.  There are 45221 data records and there are no 
missing fields within data records.  WorkClass is reduced to 7 values because one of its 
values (NoWork) never occurs in the data set. 
   The data have 80 small cells having count 1 or 2, 191 cells that are sampling zeros, and 
290 cells having count above 2.  The total count associated with the small cells is 103.  
We determine that the all 3-way interaction model gives good fits with linear constraints 
only.  We use an EM fitting procedure in which we disperse the total count of 103 
associated with the small cells across all 271 (80 + 191) cells having small or zero counts.  
The starting value is 103/271 in each cell and the expected E-values are based on the 
current set of the parameters from the M-step.  The counts of the larger cells are not 
varied in the modeling because we are assuming that we will not be able to effectively re-
identify individual large cells in synthetic data Y randomly drawn from the model with 
the individual large cells in data X.  After the initial fitting under linear restraints, we 
repeat the fitting where we place additional convex constraints (upper bounds of 
0.000004) on the small cells.  The synthetic data is created reproducing the counts of the 
non-small cells and randomly sampling from the remaining cells (both small and 
sampling zeros) with a probability proportional to size procedure until we achieve 
synthetic data Y of size 45221. 
   In earlier work, Winkler (2007) showed that the fitting and modeling methods had great 
flexibility in a small situation representing 48 (4  3  4) cells where nearly half of the 
cells were structural zeros.  In more recent work, Winkler (2008) showed that the 
modeling methods had somewhat greater flexibility in a situation with 96 (4  3  4 2) 
cells.  The point is that, with the smallest situations, we have very little flexibility in the 
modeling to preserve the analytic properties.  With more cells (490 data patterns), we 
have considerably greater flexibility in preserving analytic properties.  With an even 
greater number of cells (580,160 = 74  7  7  16  5  2), we have even greater 



flexibility in preserving analytic properties but may encounter computational issues (10 
minutes for the general fitting procedure to converge).   
 
3.   Results 
The results presented in this section are intended to represent a small situation (490 cells 
or data patterns) that is still quite cumbersome to present because of the large size of the 
tables.  We present the 490-cell situation because we believe that it is adequate for 
illustrating how analytic properties are preserved while significantly reducing re-
identification risk. 
   Fitting the 3-way interaction model M1 (with linear but no convex constraints), we 
have that the maximum possible likelihood is -3.234682 and that the likelihood that we 
achieve is -3.234982.  The maximum deviation allowed by the fitting software is 
0.0000000000100.  If we fit with the same interaction restraints and an additional 
restraint with an upper bound of 0.000004 on each originally small cell (model M2), we 
get the likelihood of -3.241030 that indicates a reasonably good overall fit.  As our fitting 
uses all 3-way interactions, we need to examine how closely the 3-way margins from the 
limiting solution under model M2 agree with the 3-way margins from the original data.  
In indexing cells, we use a lexicographic ordering in which (0,0,0,0)=0, (0.0,0,1)=1, …, 
(6,6,4,1)=489.  We obtain this with the mapping (a1, a2, a3, 4)=a1*24+a2*8+a3*2+a4*1.  
If Xi, 1i4, is the ith variable, then {X1=i1, X2=i2, X3=i3, X4=i4} = (i1, i2, i3, i4).  
   Table 1 represents original and fitted probabilities associated with a few selected 
individual cells.  It is an excerpt from the full Table A.1 given in the Appendix.  A cell 
with a count of 1 has probability 0.00002 and a cell with count of 2 has probability 
0.00004.  All of the probabilities in the table are rounded to five digits.  Cells 0000-0007 
show that the individual cell probabilities are reasonably close to each other.  Cells 0020, 
0021, and 0301 have the largest deviations.  Cell 0107 is an original cell with count 1 that 
is given a fitted probability above zero and below 0.000004.  Cells 0485-0489 are 
sampling zeros that are given a positive probability of approximately 0.00001.  When we 
randomly sample from Table A.1, we have positive probability of sampling each cell but 
originally small cells will seldom appear in the set of synthetic records.  All of the 
greatest deviations are associated with cells that have total probability of less than 0.003.  
The greatest multiplicative deviation in the remaining cells is well less than 1.0.  The key 
issue is how well the margins are preserved. 
 
 
Table 1.  Original and Fitted Probabilities  
               for Selected Cells 
_____________________ 
Cell                Original  Fitted_ 
0000 0 0 0 0   0.02859  0.02876  
0001 0 0 0 1   0.25344  0.25328  
0002 0 0 1 0   0.00172  0.00163  
0003 0 0 1 1   0.00781  0.00790  
0004 0 0 2 0   0.00031  0.00037  
0005 0 0 2 1   0.00181  0.00175  
0006 0 0 3 0   0.00042  0.00042  
0007 0 0 3 1   0.00210  0.00210  
0020 0 2 0 0   0.09670  0.09636  



0021 0 2 0 1   0.12426  0.12460 
0107 1 3 3 1   0.00002  0.00000  
0301 4 2 0 1   0.00637  0.00610  
0485 6 6 2 1   0.00000  0.00001  
0486 6 6 3 0   0.00000  0.00001  
0487 6 6 3 1   0.00000  0.00001  
0488 6 6 4 0   0.00000  0.00001  
0489 6 6 4 1   0.00000  0.00001  
 
 
Table 2 contains a few selected marginal probabilities for variables 1, 3, and 4.  The 
largest deviations 0.000210, 0.00105, and 0.000100 occurred at marginal cells 0067, 
0014, and 0054, respectively.  No other specific marginal probabilities for the other 
interaction patterns were this large.  We also give the first eight marginal probabilities.  
Examination of table A.2 indicates that most marginal probabilities from the fitted data 
are very close to the marginal probabilities from the original data.  The closeness of the 
marginal probabilities indicates that association-rule mining and other elementary 
analyses of the joint and conditional probabilities should yield results from synthetic data 
created from Table A.1 that agree somewhat with comparable results from the original 
confidential data.   
 
 
Table 2.  Original and Fitted 3-way Margins 
                 for Selected Marginal Cells 
___________________ 
Pattern = 3, Variables 1,3,4 
 00000  0.205988  0.205988  
 00001  0.427102  0.427102  
 00002  0.007607  0.007589  
 00003  0.013511  0.013518  
 00004  0.002211  0.002223  
 00005  0.003936  0.003925  
 00006  0.002410  0.002423  
 00007  0.004179  0.004146  
 00014  0.000133  0.000028  
 00054  0.000199  0.000099  
 00067  0.000000  0.000210  
 
 
4.  Discussion 
   Re-identification experiments may not be effective in proving the privacy of synthetic 
data produced according to the methods of this paper.  The synthetic data do not appear 
to satisfy any rigorous type of epsilon- or epsilon-delta privacy.  If a cryptographer were 
to reconstruct a moderate subset of the originally-private microdata from the synthetic 
data, then the reconstruction should prove that re-identification experiments are not valid 
in verifying the privacy of synthetic microdata in most situations.   
   Any reconstruction of the original data from the synthetic data would be 
computationally challenging in moderate size situations.  In the 6-variable scenario, there 
are 588,160 data patterns, 9447 cells having counts of 1 or 2, and 3098 cells having 
counts of greater than 2.  The total from all the cells is 45221.  Because there are so many 



sampling zeros (~98% of 588,160 possible cells), we have great flexibility in assigning 
positive probabilities to the sampling zero cells in a manner in which analytic properties 
are approximately preserved (much better than with the 490-cell example of this paper).  
After the random sampling, we have a synthetic data set (or multiple synthetic data sets)  
in which the small counts from 9447 cells in the original private data are placed in a 
suitable set of sampling zero cells. 
   More research needs to be done on what it means to preserve analytic properties.  In 
particular, there needs to be more agreement among researchers on what it means to 
preserve analytic properties.  This paper merely shows that the overall fit of the data and 
almost all of the 3-way margins having larger probability agree quite closely between the 
fitted and original data. 
   The computational algorithms need to be speeded up and altered.  In testing on the 
larger data (588,160 cells), the fitting with both linear and a very simplified set of convex 
constraints needed 10 minutes CPU time.  With a very large set of convex constraints and 
a variant of the current set of algorithms for the convex constraints, the fitting takes 10-
100 times as long.   
 
5.  Concluding Remarks 
This paper provides methods for modeling discrete data that generalize standard loglinear 
modeling to methods that also include convex constraints.  When properly applied, the 
convex constraints allow significantly reduced chance of re-identification using record 
linkage methods.  The synthetic data randomly drawn from the models approximately 
(but very closely) preserve a few analytic characteristics whereas epsilon-privacy 
methods (Dwork et al. 2007b, first two paragraphs of section 5) have not been 
demonstrated to preserve analytic properties.  The synthetic data created by the methods 
of this paper do not necessarily satisfy epsilon-privacy or epsilon-delta-privacy 
(Machanavajjhala et al. 2008) but might be exceptionally difficult to re-identify using 
cryptographic protocols and exceptionally large amounts of computation. 
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