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Abstract. Single and joint inclusion probabilities are generally available and known
for complex survey designs up to the point where survey weights are modified due to
nonresponse and population controls. Best practice by sophisticated survey practition-
ers generally includes weight modifications, first by calibration, ratio adjustment or
raking to correct for nonresponse, next by further steps to impose population survey
controls; and also, often, by final steps involving weight truncation or cell-collapsing
to constrain the modified weights, usually so that the largest and smallest weights
do not differ by more than a designated multiplicative factor. These adjustments are
sometimes made in successive stages, the order of which may differ from one survey to
another. In this article, generalized-raking calibration methodology is adapted to allow
all of these adjustments, and possibly additional nonlinear constraints, to be accom-
plished in a single stage, after which linearization-based large-sample variance formulas
are available.

This report is released to inform interested parties of ongoing research and to encourage
discussion. Any views expressed on statistical methodological issues are those of the
authors and not necessarily those of the U.S. Census Bureau.

Keywords. Consistency, inclusion probabilities, Lagrange multipliers, linearized vari-
ance, objective function, population controls, weight adjustment.

1 Introduction

Survey weights in large complex surveys are often modified from their designed values,
for at least three reasons: to correct for nonresponse, to compensate for frame deficien-
cies by enforcing population controls (often by demographic categories), and to prevent
the adjusted unit weights from being too different from one another. As a result of
these modifications, there are usually no meaningful joint inclusion probabilities when
complex survey results are analyzed.

Modifications to survey weights are generally applied in multiple stages, and
although each stage may be well motivated, it is fair to say that in practice, the
effect of propagating early-stage modifications through later adjustments is generally
poorly understood. Moreover, the later adjustments (particularly the final population
controls) are often repeated after trimming or compressing the most extreme weights
until controls and moderate weights are achieved simultaneously. Usually, only the
final population controls and weight-trimming criteria are imposed rigidly, with no
assurance that the criteria used to adjust at earlier stages hold at the final stage.
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This paper begins by summarizing the existing methods to correct survey data
both for nonresponse and population controls, while retaining overall bounds on the
weights. While some theoretically based methods do exist for enforcing two out of
the three of these types of weight constraints, there do not seem to be methods which
simultaneously incorporate all of them. A new framework is presented which handles all
of these desirable weight adjustments simultaneously in a single stage, in a way which
justifies linearized variance formulas for survey total estimates based on the adjusted
weights, and which allows a tuning parameter to place more or less weight on initial
nonresponse adjustment while strictly enforcing population controls.

1.1 Background Literature

There is a large body of literature on construction and modification of survey weights,
much of which has been absorbed into standard survey methodology texts, like that of
Särndal et al. (1992). A brief survey of the most important theoretical contributions
includes:

• nonresponse adjustment by cell-based ratios or raking, as in Oh and Scheuren
(1983), or by models fitted by model-assisted ‘pseudo-likelihood’ as in Kim and
Kim (2007);

• weight modification via calibration leading up to generalized raking in Deville and
Särndal (1992) and Deville, Särndal & Sautory (1993), papers which established
linearized variance formulas for weighted survey totals;

• linear regression-based approaches to nonresponse weight adjustment surveyed
in Fuller (2002), treated more fully in the monograph of Särndal and Lundström
(2005) which discusses both simultaneous and two-stage calibration to bench-
marks or controls along with nonresponse adjustment;

• (single-stage) methods combining weight-truncation with weight-adjusted cali-
bration as in Singh and Mohl (1996) and Théberge (2000);

• Lu and Gelman (2003), a paper which estimates variances via a delta method for
a survey in which weights are modified both by poststratification (an operation
which includes cell-based ratio adjustment for nonresponse) and raking;

• methods like those of Elliott and Little (2000) or Beaumont (2008), which modify
weights within a model-based framework, allowing use of auxiliary information
either in the spirit of calibration or of weight smoothing;

• methods for handling ‘informative’ nonresponse, including those of Pfefferman
and Sverchkov (2004) and Chang and Kott (2008), the latter treating weight
adjustment for nonresponse using an estimating equation based on a generalized-
linear response model;
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• and many references which discuss adjustment for nonresponse followed by a
separate calibration stage, e.g., Yung and Rao’s (2000) discussion of jackknife
variance estimation in such a setting.

1.2 Notation and Assumptions

Consider a sample survey with a frame U from which a probability sample S is drawn
according to a plan with known single and double inclusion probabilities πk, πkj, for
k, j ∈ U . Assume that the total Y = ty =

∑
k∈U yk of a scalar attribute is of primary

interest, and that (yk, xk, k ∈ S) is (potentially) observable, i.e., the sample data
include the auxiliary p-dimensional vector xk. This setting corresponds to the InfoS
sampling framework of Särndal and Lundström (2005), with auxiliary data available
at sample but not frame level.

Assume that each sampled individual in the survey decides independently whether
or not to respond. Without loss of generality, denote by rk for all k ∈ U the indicator
which is 1 or 0 respectively if the k’th individual would or would not have responded
if sampled, and assume that these random variables are independent of each other and
of the sample selection mechanism. (However, in some surveys this assumption could
be applied only with ‘individuals’ replaced by households.) The observable data are
now taken to be (yk · rk, rk, xk, k ∈ S). No restriction other than positivity is placed
on the probabilities

P (rk = 1) = Erk ≡ ρk

with which individual units respond. However, these quantities ρk must be estimated
in order to adjust weights for nonresponse, and this is typically done either by ratio-
adjustment and raking (Oh and Scheuren 1983) or by using a working generalized-linear
parametric model (Kim and Kim 2007)

1/ρk = κ(λ′xk) , k ∈ U

where λ is a p-dimensional parameter vector which is estimated from sample data
through the solution λ̂ to an estimating equation. The most important example of
such a working nonresponse model is the case treated in this paper,

1/ρk ≡ (Erk)−1 = κ(λ′xk) = 1 + λ′ xk (1)

This model motivates the estimation of ρi through λ̂ defined from a nonresponse-
adjustment constraint equation (Särndal and Lundström 2005) which requires that
modified weights wk ≡ rk wo

k/ρ̂k satisfy
∑

k∈S

rk wk xk =
∑

k∈S

wk xk = t∗x (2)

The constrained totals t∗x, which may not always be close to the true frame totals,
will generally arise in one of two ways. They may derive from a survey or census –
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possibly by some form of projection or updating – which is believed to be larger or
more accurate than the current survey. Alternatively, the x variables and totals may
be known only for the sampled units in the current survey, in which case

t∗x ≡ t̂x,π ≡
∑

k∈S

wo
k xk or t∗x ≡ N

∑
k∈S rk wo

k xk∑
k∈S rk wo

k

(3)

where wo
k = 1/πk denote the initial or design weights and N is the frame population

size, assumed known. The census source for xk totals corresponds to the infoU setting
of Särndal and Lundström (2005), while the source (3) — which is far more common
for nonresponse adjustment — corresponds to those authors’ infoS setting.)

The nonresponse-adjusted weights wk = rk wo
k/ρ̂k = rk wo

k (1 + λ̂′xk) are often
treated as a distinct weight-adjustment stage, and are used as input to further weight
modification stages. A special case of the linear-calibration weight adjustment is the
standard ratio adjustment corresponding to a set C1, . . . , CK of adjustment cells
partitioning the frame U , where the components of xk are defined by xk,j = I[k∈Cj ].

The results of surveys designed to estimate totals and ratios of totals are often
reported after controlling total numbers of units within designated population cells
to be equal to the totals found in a more comprehensive survey or (updated) census,
generally through constraints on final weights

∑

k∈S

rk ŵk zk = t∗z (4)

Here t∗z is a known vector approximating the frame total tz, for a vector zk =
(z1k, . . . , zqk) of survey variables defined for each unit k ∈ U . The constraint (4)
is imposed on any system of survey weights {ŵk}k∈S however obtained — by mod-
ifications for nonresponse, population controls, and weight compression or truncation
— starting from a designed system wo

k = 1/πk of inverse inclusion probabilities.
The final weights ŵk are ultimately used in estimating population totals of survey
variables yk, k ∈ U , by weighted totals

t̂y,adj =
∑

k∈S

rk ŵk yk (5)

2 A New Weight-Adjustment Framework

The objective of the present research is to accomplish nonresponse adjustment, popula-
tion-control calibration, and weight-truncation in a single step, with a linearization-
based formula for variance. The single step may require an iteratively calculated solu-
tion to estimating equations, but only a single objective function is being optimized.
The framework is similar to that of Deville and Särndal (1992) and Deville, Särndal
and Sautory (1993), where the magnitudes of weight modification are kept as small
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as possible through a loss function. As in those papers, the system of initial weights
wo

k = 1/πk arises from the design inclusion probabilities. The modification from design
weights to final weights is viewed notionally as {wo

k} 7→ {wk} 7→ {ŵk}, with only the
final weights appearing in the survey estimates (5), but now the two sets {wk}, {ŵk}
of survey weights are created simultaneously to obey respective constraints (4) and
(2), both contributing to an aggregated loss function. The auxiliary weight differ-
ences wk −wo

k can be interpreted as the component of the overall weight-modification
ŵk − wo

k that is due to nonresponse adjustment.

The three systems of weights {wo
k}k, {wk}k, {ŵk}k are related through the desire

to minimize simultaneously the losses
∑

k∈S
rk wo

k G1(wk/ wo
k − 1) and

∑

k∈S
rk wo

k G2((ŵk − wk)/wo
k)

where each of G1(z), G2(z) is a convex loss-function which is locally of the form
z2/2 plus a term of smaller order (like z3) near z = 0. The intermediate and final
modified weights w = {wk}k∈S and ŵ = {ŵk}k∈S are found together, subject to
the constraints (2) and (4), by the objective-function minimization

minw, ŵ

∑

k∈S

rk wo
k

{
G1(

wk

wo
k

− 1) + αG2(
ŵk − wk

wo
k

) + Q(
ŵk

wo
k

)
}

(6)

where α > 0 is a constant chosen by the statistician and Q is a convex and piecewise
smooth penalty term which is nonzero only for large or small weight ratios, and enters
this single optimization step to enforce weight-truncation or restricted weights as in
Singh and Mohl (1996) or Théberge (2000). The most important instances of (6)
will have G1(z) = G2(z) = z2/2, and Q a piecewise smooth function such that
Q(z) ≡ 0 on an interval [c1, c2], for fixed constants 0 < c1 < 1 < c2 < ∞, and
Q(z) large when max(c1 − z, z − c2) is positive and not very small.

Unlike the design weights, both sets of modified weights are positive only for in-
dices k ∈ S for which rk = 1. Both sets of weight changes wk − wo

k, ŵk − wk

might be meaningfully large, the first because of significant nonresponse and the second
because of important differences between the coverage of the current survey and the
(presumably more reliable) one to which it is being controlled. Since only the final
weights ŵk are ultimately used in survey estimation, these are the only weights that
are truncated, by penalizing weights outside a certain range of multiples of the base
weights wo

k. However, both sets of modified weights are restricted by the calibration
equation combining (2) and (4) into :

∑

k∈S
rk

(
wk xk

ŵk zk

)
=

(
t∗x
t∗z

)
(7)

The next two sub-sections compare limiting cases of the proposed adjustment (6) with
previously studied two-stage and calibration methods.

5



2.1 Special and Limiting Cases

In (6), the (strict) convexity of the objective-function implies that the weights w, ŵ
(restricted to the finitely many indices in S for which rk = 1) have a unique optimal
solution. In several special and limiting cases, the solution relates simply to existing
methods.

(Case 1. rk ≡ 1 and t∗x = t̂x,π). In this full-response case, the w weights are
unconstrained, and the minimization (6) becomes a pure ‘generalized raking’ problem
with penalized weights, as in Singh and Mohl (1996) and Théberge (2000), following
Deville and Särndal (1992). In the special sub-case where G1(z) ≡ G2(z) ≡ z2/2, it
is easy to check that wk − wo

k = α(ŵk − wo
k)/(1 + α), and that ŵk minimizes a

penalized-linear-calibration objective function

∑

k∈S

rk

( α

2(1 + α)
(ŵk − wo

k)2

wo
k

+ wo
k Q(

ŵk

wo
k

)
)

subject to the constraint (4). Within this sub-case, if Q ≡ 0, then the final weights
ŵk coincide with the calibrated ‘g’ weights arising in generalized regression (Särndal
et al. 1992, Deville and Särndal 1992) subject to (4).

(Case 2. Omission of constraints (4)) If the population-control constraints (4)
are omitted, or if it happens that ŵk = wk, then when G1(z) ≡ z2/2 and Q ≡ 0,
the weights ŵk are the same as the calibrated nonresponse-adjusted weights found as
in Särndal and Lundström (2005).

(Case 3. α → ∞) If the parameter α in (6) is taken to be very large, for fixed Q,
then Appendix D shows for the sub-case Gj(z) ≡ z2/2, j = 1, 2, and Q ≡ 0, that
the limiting systems w and ŵ of weights are identical, i.e., in the large-α limit,
ŵk ≡ wk for all k ∈ S such that rk = 1 (and ŵk = wk = 0 for all other indices
k ∈ U). A similar result can be expected to hold also in the case of general convex
loss-functions Gj, since large α makes the G1 loss term tiny compared to the G2

term in (6) .

Thus, when α is large, the weight optimization problem (6) approximates the
problem of finding {ŵk : k ∈ S, rk = 1}, subject to

∑

k∈S

rk ŵk

(
xk

zk

)
=

(
t∗x
t∗z

)
(8)

such that
min
ŵ

∑

k∈S

rk w0
k {α G1(

ŵk − wo
k

wo
k

) + Q(
ŵk

wo
k

)} (9)

Within this Case, with Gj(z) ≡ z2/2, Q ≡ 0, the problem is one of pure linear
calibration as in Särndal and Lundström (2005). Although those authors did not
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explicitly treat the problem of simultaneous nonresponse adjustment and population
controls in a calibration setting, that would have fallen easily within the framework of
their book, since they formulate nonresponse adjustment as a calibration problem in
their Chapter 6.

The simultaneous imposition of adjustment cell and population control constraints
in (8) could lead to numerical instabilities, especially when these constraints share
some variables for which the imposed totals do not agree closely. In that case, (8)–(9)
with Q taking large values at extreme weight ratios provides a more stable, smoothed
calibrated weight adjustment.

(Case 4. α → 0) In the limit as α → 0, the connection between wk and
ŵk apparently grows weaker and weaker. However, the explicit limits for Lagrange
multipliers and weights, found in Appendix E under the additional restriction Q ≡ 0,
shows that the population controls as well as the nonresponse adjustments play an
important role. This must be so, because the final weights identically satisfy the
calibration constraint (4), while (2) generally does not hold precisely with wk replaced
by ŵk. See equation (34) in the Appendix for the small-α limit of

∑
k∈S ŵk xk when

Q ≡ 0. This limit will be close in large superpopulation samples to t∗x when both
t∗x ≈ tx and t∗z ≈ tz. In other cases, this small-α limiting form of nonresponse-
adjustment constrained total may actually be preferable to t∗x since the limit can
be interpreted as an adjusted form of t∗x to achieve greater compatibilty with the
population-constrained t∗z totals.

(Case 5. Q ≡ 0) When there is no penalty Q for extreme weight-ratios ŵk/wo
k,

the optimal weights (16) found below resemble a ridge-regression form of linearly cal-
ibrated weights, in which the population control condition (4) holds precisely but (2)
does not. However, the particular form (16) together with (32)–(33) has not arisen
before.

2.2 Combined Nonresponse Adjustment and Calibration

Many large-scale complex surveys, such as the Census Bureau’s American Community
Survey (ACS) and Survey of Income and Program Participation (SIPP), are analyzed
by first adjusting for nonresponse by a cell-based ratio or raking method and then
later by imposing population controls. (In Census Bureau surveys, those controls
usually require that population totals in certain demographic and geographic cate-
gories match those of the demographically updated decennial census.) This two-step
approach is implicit in much of the survey sampling journal literature, and explicit
in some sources, such as Yung and Rao (2000) and Särndal and Lundström (2005,
Ch. 8 & Sec. 11.4 on the ‘Two-Step Method’ ŶW2A ), which treat variance esti-
mation at a realistic level of complexity. Lu and Gelman (2003) also provide vari-
ances of the two-step estimators based on Taylor linearization, in the setting where
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simple random sampling can be assumed within the intersections of strata and post-
strata, essentially by using a numerical perturbation finite-difference method to obtain
linearization coefficients.

The method of weight adjustment proposed here, in (6), seems not to have any
special or limiting cases which exactly reproduce the known two-step method. In
(6), the asymmetric role of the nonresponse adjustment contraints (2) and population
controls is made explicit through choice of the parameter α. In accord with current
practice, the population controls are required to hold exactly for the final weights
actually used in survey estimation. If (2) is to hold at least approximately for wk

replaced by ŵk, then α should be chosen large. When that is done, and there
is no penalty term Q in (6), Case 3 above showed that the proposed method is a
simultaneous calibration or generalized raking in the spirit of Särndal and Lundström
(2005) or Deville and Särndal (1992). Yet calibration to satisfy (8), i.e., both constraints
exactly, can exaggerate the dissimilarity among some design weights, resulting in large
variances for some survey totals. For that reason, the method proposed here relaxes
the x constraints in (8) and penalizes large and small weights through Q.

The remainder of this paper develops numerical algorithms and asymptotic prop-
erties of the adjusted weights, and of survey totals using them, for the case where
Gj(z) ≡ z2/2, which we refer to as the linear calibration case because, apart from
penalty terms involving Q, the equations (11)–(12) for survey weights are linear in
the weights and Lagrange multipliers, a helpful simplification. The superpopulation
conditions (A.0)-(A.4) of Appendix A are assumed from now on.

3 Numerical Solution in Linear Case

In the important particular case where G1(z) ≡ G2(z) = z2/2, the simultaneous
adjustment and calibration step described above is the minimization subject to (7)
over (λ, µ, w, ŵ) of

∑

k∈S

rk

[ (wk − wo
k)2

2 wo
k

+ α
(ŵk − wk)2

2 wo
k

+ wo
k Q(

ŵk

wo
k

) − ŵk µ′zk − wk λ′xk

]

+ µ′t∗z + λ′t∗x (10)

where λ ∈ Rp and µ ∈ Rq are Lagrange multiplier vectors. The solution is
determined by (7) together with the following equations obtained by equating to 0
the derivatives of (10) respectively with respect to wk and ŵk :

α ŵk = (1 + α) wk − wo
k − wo

k λ′xk (11)

αŵk + wo
k Q′(

ŵk

wo
k

) = α wk + wo
k µ′zk (12)
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for all k ∈ S such that rk = 1.

Then the solution equations become, for k ∈ S with rk = 1,

( wk

ŵk

)
= wo

k (1 + µ′zk + λ′xk)
( 1

1

)
+

wo
k

α

( 0
µ′zk

)
− wo

k

α
Q′(

ŵk

wo
k

)
( α

1 + α

)

first by subtracting (11) minus (12) and then by expressing ŵk − wk through (12).
The second of these equations can be rewritten in the form

ŵk +
1 + α

α
wo

k Q′(
ŵk

wo
k

) = wo
k

{
1 +

1 + α

α
µ′zk + λ′xk

}
(13)

Together with (7), the last equations imply
(

t∗x
t∗z

)
=

∑

k∈S

rk

(
wk xk

ŵk zk

)
=

∑

k∈S

rk wo
k

(
xk

zk

)
+

+
∑

k∈S

rk wo
k

(
x⊗2

k xk z′k
zkx′

k (1 + 1
α
) z⊗2

k

)(
λ

µ

)
−

∑

k∈S

rk wo
k Q′(

ŵk

wo
k

)
( xk

(1 + 1
α
) zk

)

where we adopt from now on the simplifying notation, for any column vector v, that
v⊗2 = v v′ and v′ denotes the transpose of v. Thus, with the definition

Mα =
∑

k∈S

rk wo
k

(
x⊗2

k xk z′k
zkx′

k (1 + α−1) z⊗2
k

)

the Lagrange multipliers are determined by
(

λ

µ

)
= (Mα)−1

{(
t∗x
t∗z

)
−

∑

k∈S

rk wo
k

(
xk

zk

)
+

∑

k∈S

rk wo
k Q′(

ŵk

wo
k

)
(

xk

(1 + 1
α
) zk

)}
(14)

Equation (14) would immediately yield (λ, µ) if the penalty function Q were
identically 0 on the range of weight ratios ŵk/wo

k, through the equation
(

λ

µ

)
= (Mα)−1

{(
t∗x
t∗z

)
−

∑

k∈S
rk w0

k

(
xk

zk

) }
(15)

and in this case, by the equation preceding (13), the weights have closed-form solutions

( wk

ŵk

)
= rk wo

k

{ ( 1
1

)
+

( xk zk

xk (1 + α−1)zk

)
M−1

α

( t∗x − t̂rx,π

t∗z − t̂rz,π

)}
(16)

We now describe, in the case with nonzero Q satisfying Q′(−∞) = −∞ and
Q′(∞) = ∞, an iterative algorithm for determining simultaneously the multipliers
(λ, µ) and the weights w, ŵ. The initial values (λ(0), µ(0)) are defined by the
right-hand side of (15). Next, since Q′ is increasing and has range (−∞, ∞), the
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function x + (α−1 + 1) Q′(x) is strictly increasing, with range the whole real line, and
its inverse function h is uniquely specified on the whole real line by the properties

h(u) +
1 + α

α
Q′(h(u)) ≡ u and h(1) = 1 (17)

In terms of the inverse function h, equation (13) is rewritten more handily as

ŵk = wo
k · h

(
1 +

1 + α

α
µ′zk + λ′xk

)
(13′)

while (14) becomes

1
N

Mα

( λ

µ

)
−

1
N

∑

k∈S
rk wo

k Q′ ◦ h(1 +
1 + α

α
µ′zk + λ′xk)

( xk

(1 + α−1)zk

)

=
1
N

{( t∗x
t∗z

)
−

∑

k∈S

rk wo
k

( xk

zk

)}
(14′)

Thus, the iterative calculation for (λ(j), µ(j)) and {w(j)
k , ŵ

(j)
k : k ∈ S} starting at

j = 0 with (15), is given for j ≥ 1 by

ŵ
(j)
k = wo

k · h(1 +
1 + α

α
z′k µ(j−1) + x′

k λ(j−1)) (18)

(
λ(j)

µ(j)

)
= (Mα)−1

{(
t∗x
t∗z

)
−

∑

k∈S

rk w0
k

(
xk

zk

)
+

∑

k∈S

rk wo
k Q′(

ŵ
(j)
k

wo
k

)
(

xk

(1 + 1
α ) zk

)}

(19)

The iteration (18)-(19) continues until ‖λ(j) − λ(j−1)‖ + ‖µ(j) − µ(j−1)‖ falls be-
low a pre-specified tolerance. In fact, the numerical properties of the iteration are
very good as long as the totals t∗x and t∗z are close enough to their respective
frame totals to produce moderate Lagrange multipliers (i.e., values λ, µ such that
Q′(1 + (1 + α−1)µ′zk + λ′xk) remain bounded). Theory supporting this assertion is
contained in Appendix F, and numerics in Section 5.

4 Asymptotic Theory for Solutions

Following the approach of Deville and Särndal (1992), we sketch the theory of large-
sample behavior of the solutions of the weight-equations just developed. Assume that
Q is a piecewise smooth and convex function on an interval (0, L), L ≤ ∞, with
Q(u) ≥ 0 and Q(u) ≡ 0 on an interval (c1, c2) containing 1, and that its derivative
Q′ ranges from −∞ to +∞ on (0, L). Assume in addition the regularity conditions
(A.0)-(A.4) of Appendix A.
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When the functions G1, G2, and Q are all convex, so is the objective function to
be minimized subject to a linear constraint, and there will be a unique set of minimizing
weights w, ŵ equating the gradient of the objective function to 0. For this reason,
the unique limit for any convergent subsequence along the iterative scheme (18)-(19)
yields a unique solution to (11)-(12) along with (7) under the regularity conditions of
Appendix A.

The left-hand side of equation (14′) is proved in Appendix B to be a nonsingular
function of (λ, µ), with Jacobian bounded above and below by positive-definite ma-
trices, in the positive-definite matrix ordering. The proof given by Deville and Särndal
(1992) to establish large-sample (design) consistency of the calibrated weights, works
in almost the same way in the present setting, as shown in Appendix C. However, the
reasoning here reflects the possible misspecification of the constrained totals t∗x, t∗z
with respect to the initial survey weights wo

k = 1/πk, as expressed in the possibly
non-zero limits in (A.4). The solutions (λ̂, µ̂) have finite in-probability limits, as do
the calibrated weights wk, ŵk, the latter being given by (13′) with (λ̂, µ̂) substituted
for (λ, µ).

The parameters (λ∗, µ∗) consistently estimated by (λ̂, µ̂) in large samples are
(

λ∗

µ∗

)
= φ−1

(
lim
N

N−1
∑

k∈U

(1 − ρk)
(
xk

zk

) )
(20)

where, as proved in Appendix C, the invertible mapping φ on Rp+q is the limit of
the mappings φs,N (λ, µ) defined in Appendix B and C as the left-hand side of (14′) :

φ(λ, µ) ≡ lim
N

N−1
∑

k∈U

ρk

{(
x⊗2

k xk z′k
zk x′

k (1 + α−1) z⊗2
k

) (
λ

µ

)

− Q′ ◦ h(1 +
1 + α

α
µ′zk + λ′xk)

(
xk

(1 + α−1)zk

)}

The estimator and limit definitions in (14′) and (20) imply
√

n
(
φs,N(λ̂, µ̂) − φ(λ∗, µ∗)

)
= (21)

√
n

{ 1
N

(
t∗x
t∗z

)
− 1

N

∑

k∈S

rk wo
k

(
xk

zk

)
− lim

N

1
N

∑

k∈U

(1 − ρk)
(
xk

zk

)}

which by (A.4) is equal to
(

kx

kz

)
−

√
n

N

∑

k∈U

(rk wo
k I[k∈S] − ρk)

(
xk

zk

)
+ oP (1) ≡

(
kx

kz

)
+ A1 (22)

The Mean Value Theorem implies that for (λ̃, µ̃) lying on the ray between (λ∗, µ∗)
and (λ̂, µ̂), (depending on the sample and on N ), expression (21) is equal to

Dφs,N (λ̃, µ̃)
√

n

(
λ̂ − λ∗

µ̂ − µ∗

)
+

√
n (φs,N (λ∗, µ∗) − φ(λ∗, µ∗)) (23)
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In the first of these two terms, the uniform convergence of Dφs,N to the uniformly
continuous function Dφ as established in Appendix C implies that Dφs,N (λ̃, µ̃) =
Dφ(λ∗, µ∗) + oP (1); while the second term differs by oP (1) from the asymptotically
normal variable

A2 ≡
√

n

N

∑

k∈U

(rk wo
k I[k∈S] − ρk)

[(
x⊗2

k xk z′k
zk x′

k (1 + α−1) z⊗2
k

) (
λ∗

µ∗

)

− Q′ ◦ h(1 +
1 + α

α
µ′
∗zk + λ′

∗xk)
(

xk

(1 + α−1)zk

) ]

Assembling terms (21), (22), and (23), and using Lemma 1 in Appendix B to re-express
Dφ(λ∗, µ∗), we have proved that

√
n

(
λ̂ − λ∗

µ̂ − µ∗

)
= D−1

∗

(
A1 − A2 +

(
kx

kz

))
+ oP (1) (24)

where (by Lemma 1 in Appendix B)

D∗ ≡ Dφ(λ∗, µ∗) = lim
N

1
N

∑

k∈U

ρk

[ 1
1 + α

(
xk

0

)⊗2

+

+
α

1 + α
h′(1 + λ′

∗xk +
1 + α

α
µ′
∗zk)

( xk

(1 + α−1)zk

)⊗2]

is a nonsingular matrix. After some algebraic simplifications resembling the steps in
Appendix B, it turns out that

A2 − A1 =
√

n

N

∑

k∈U

(rk wo
k I[k∈S] − ρk)

[ 1
1 + α

(1 + λ′
∗xk)

(
xk

0

)

+
α

1 + α
h(1 +

1 + α

α
µ′
∗zk + λ′

∗xk)
(

xk

(1 + α−1)zk

)]
(25)

an asymptotically normally distributed random (p + q)-vector with mean 0.

4.1 Variance of Survey Estimators

The purpose of these derivations is to find and develop estimators for the survey-
weighted totals (5), when the weights ŵk incorporate the estimated Lagrange multi-
pliers λ̂, µ̂ through (13′). Note that the Assumptions (A.0)-(A.4) of Appendix A
do not require the response indicators {rk}k∈S to be noninformative in the sense of
having expectations ρk without functional pattern or correlation with respect to the
attributes {yk}k∈S .

By (24) and (13′),

ŵk = rk wo
k h(1 +

1 + α

α
µ̂′zk + λ̂′xk) (26)
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These expressions are linearized by Taylor-expansion of h around the argument ob-
tained by replacing (λ̂, µ̂) by (λ∗, µ∗). To this end, define for all k ∈ U ,

u∗
k ≡ 1 +

1 + α

α
µ′
∗ zk + λ′

∗ xk , f∗
k ≡ h(u∗

k) (27)

where recall from Appendix F that h′(u) = 1/(1 + (1 + α−1)Q′′(h(u))) < 1. Then
(26) implies

√
n (ŵk − rk wo

k f∗
k ) = rk wo

k h′(u∗
k)

√
n

(
λ̂ − λ∗

µ̂ − µ∗

)′ (
xk

(1 + α−1)zk

)
+ oP (1)

and the discussion of Section 4 implies that this oP term, like the others appearing
below, is uniform in k ∈ S. Substituting from (24) in the last expression yields

rk wo
k

(
A1 − A2 +

(
kx

kz

))′
D−1

∗

(
xk

(1 + α−1)zk

)
+ oP (1)

Therefore,
√

n

N

( ∑

k∈S

ŵk yk −
∑

k∈U

ρk f∗
k yk

)
=

√
n

N

∑

k∈U

(rk w0
k I[k∈S] − ρk) f∗

k yk +

+
(
A1 − A2 +

(
kx

kz

))′
(N D∗)−1

∑

k∈S

rk wo
k

(
xk

(1 + α−1)zk

)
yk + oP (1)

As a result, we deduce via (25)

Proposition 1 Under the Assumptions (A.0)-(A.4), with notations (27),

√
n

N

[ ∑

k∈S

ŵk yk −
∑

k∈U

ρk f∗
k yk

]
=

(
kx

kz

)′

D−1
∗ b∗ +

√
n

N

∑

k∈U

(rk w0
k I[k∈S] − ρk) ·

·
[
f∗

k yk − b′∗D
−1
∗

(1 + λ′
∗xk

1 + α

(
xk

0

)
+

α f∗
k

1 + α

(
xk

(1 + α−1)zk

))]
+ oP (1) (28)

where D∗ is defined below (24) and b∗ is defined by

b∗ = lim
N

N−1
∑

k∈U

ρk yk

(
xk

(1 + α−1) zk

)
h′(u∗

k)

4.2 Consistency of Weighted Survey Totals

The consistency of survey-weighted totals in the present nonresponse and calibration
framework must be justified by one or both of two essentially model-based assumptions,
saying either that the weight terms ρk f∗

k in the centering constant of Prop. 1 are
almost uniformly close to 1 or that their differences from 1 are asymptotically

13



orthogonal to the vector(s) {yk}k∈U of survey attributes in the frame population.
This twofold path to consistency is a known instance of the concept of double robustness
(Kang and Schafer 2007). The underlying assumptions and result are specified in the
following Proposition.

Proposition 2 Assume (A.0)-(A.4), and in addition one of the following:

(i). There is a subset U1 ⊂ U and λ ∈ Rp such that for all k ∈ U1,
ρk ≡ (1 + λ′xk)−1, and the interval (c1, c2) on which Q ≡ 0 contains
[mink∈U1 (1 + λ′xk), maxk∈U1 (1 + λ′xk)], and also

∑

k∈U\U1

(|yk| + ‖zk‖2 + ‖xk‖2) = o(N/
√

n)

(ii). Assume that Q ≡ 0 and for some β ∈ Rq,

lim
N→∞

(
√

n/N )
∑

k∈U

ρk zk (yk − β′zk) = 0

Then the left-hand side of the equality in Proposition 1 is equal to

(
√

n/N ) (
∑

k∈S

ŵk yk − ty) + oP (1)

Assumption (i) says that the ‘working’ quasi-randomization model is correct, while
(ii) is a slight generalization (as long as n is much smaller than N ) of the requirement
that for some β ∈ Rq, the vector of weighted residuals ρk (yk−β′zk) is asymptotically
orthogonal to the columns of entries of the predictor variables zk. The second of
these assumptions is the technical sense in which response should be noninformative
for yk. Other authors, such as Fuller (2002), prove consistency in superpopulation
models by assuming that the residuals are independent mean-0 errors uncorrelated with
the calibration variables zk. See Appendix G for a proof of Proposition 2, and for
discussion of a generalization of Prop. 2.(i) in which the calibration terms involving
µ′
∗zk could possibly correct for a frame deficiency.

4.3 Consequences of Propositions 1 & 2

The two Propositions of the previous subsection have several important statistical
implications. The first, already mentioned in connection with the assumptions (i),
(ii) of Proposition 2, is that the consistency of the survey-weighted total estimators
depends strongly on unverifiable model assumptions about the ‘stochastic’ mechanisms
of unit nonresponse and omission from survey frames. A second implication is that even
relatively slight (order of 1/

√
n) discrepancies between the assumed calibration totals

t∗x, t∗z and the respective totals tx, tz they are intended to approximate, unavoidably
and irreparably have the effect in Proposition 1 (the first term on the right-hand side of

14



the equality) of biasing the centering of confidence intervals based on survey estimates
(5). Finally, the clear positive consequence of the new single-stage approach is a readily
computable estimator for the linearized variance formula for t̂y,adj under each of a
number of possible origins for the totals t∗x.

There are three distinct scenarios under which totals t∗x are known: first, t∗x
might be nonrandom (e.g., from an updated census) even if incorrect, subject to (A.4);
second, these totals could have been generated as estimates from a previous or parallel
survey with identical frame and comparable size; but the third and most common
way to obtain these totals is by estimating them as Horvitz-Thompson totals from the
current survey, as in (3), using information available on sampled units whether or not
they respond . In both the second and third cases, the term t∗x has its own O(N/

√
n)

standard error. In all three scenarios, t∗z is still viewed as a nonrandom constant.

First case. In terms of the natural design-consistent estimators f̂k, b̂, and D̂ for the
respective quantities f∗

k , b∗, D∗, and of the (ratio-adjustment or calibration based)
estimator ρ̂k for ρk, the variance estimator V̂ (

√
n t̂y,adj/N ) in this case is

n

N2

[ ∑

k,l∈S

(wo
k wo

l − 1
πkl

) R̂k R̂l rk rl +
∑

k∈S

rk wo
k R̂2

k (1 − ρ̂k)
]

(29)

where

R̂k ≡ f̂k yk − b̂′ D̂−1
(1 + λ̂′xk

1 + α

(
xk

0

)
+

f̂k α

1 + α

(
xk

(1 + α−1)zk

))

The formula (29) for variance follows immediately by calculating

Var(·) = E( Var( · | {rj}U) ) + Var(E( · | {rj}U ) )

applied to the sum statistic
∑

k∈U (rkwo
kI[k∈S] − ρk) Rk, where Rk is the final

square-bracketed summand on the right-hand side of (28) in Prop. 1.

Second case. Here the totals t∗x are themselves survey-based estimators, for which we
must assume that we have a design-consistent survey estimator V̂x of Var(

√
n t∗x/N )

which is approximately equal in distribution to a random variable (usually normally
distributed) not depending on n or N . In that case, kx should be regarded as
a random variable independent of the current survey, with variance-covariance matrix
approximately V̂x. Then a design-consistent estimator for Var(

√
n t̂y,adj/N ) is given

by formula (29) plus the additional term (D̂−1 b̂)′x V̂x (D̂−1 b̂)x, where (D̂−1 b̂)x

denotes the sub-vector of the first p components of the (p + q)-vector D̂−1 b̂.

Third case. Finally, we have a setting where t∗x is given by (3), and for definiteness,
we assume the second equality in (3). Moreover, in order that the top-order behavior
of kx be entirely due to sampling rather than bias, we assume that

∑

k∈U

ρk xk

/ ∑

k∈U

ρk − x̄U = o(1/
√

n)
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where x̄U ≡ tx/N . Then by Proposition 1,

kx = (
√

n/N )(t∗x − tx) = (
√

n/
∑

U

ρk)
∑

k∈U

(rkwo
kI[k∈S] − ρk) (xk − x̄U ) + oP (1)

and Var(
√

n t̂y,adj/N ) is approximately the same as the variance of
√

n

N

∑

k∈U

{
(rk w0

k I[k∈S] − ρk)
(
Rk +

N∑
k∈U ρk

b′∗D
−1
∗

(
xk − x̄U

0

))}

A variance formula is derived as in in the first case, following (29), and the design-
consistent asymptotic variance estimation formula extending (29) takes exactly the
same form as in (29) with R̂k replaced by T̂k, where

T̂k = R̂k +
N∑

j∈S rj wo
j

b̂′ D̂−1

(
xk − x̄S

0

)
, x̄S ≡

∑
j∈S rj wo

j xj∑
j∈S rj wo

j

5 Implementation on Simulated and Real Data

In this Section, the performance of the new single-stage weight adjustment algorithms
is illustrated for G1(z) ≡ G2(z) ≡ z2/2, first for a simulated sampled-superpopulation
dataset, and then for the Survey of Income and Program Participation (SIPP) 1996
Panel Wave 1 data. The objective is to compare properties of adjusted weights and
estimates for different choices of α and parameters used to specify Q. In both com-
puted examples, the weight-penalty functions Q were defined on the interval (0, 10),
identically 0 on an interior interval (c1, c2) containing 1, and elsewhere

Q(u) = a1
(c1 − u)b1

+

uκ1
+ a2

(u − c2)b2
+

(10 − u)κ2
(30)

where (x)+ ≡ max(x, 0). Computations in this Section were done in R.

First, we simulated a superpopulation sample (n = 1000, N = 500, 000) from the
following design. Four independent nonconstant latent variables Vi,j, 1 ≤ j ≤ 4,
were simulated (two Binom(1, 1

2
) and two standard normal) independently, and iid

across ‘sampled’ individuals i. The weights for the sample were taken from a stratified
design, with 5 strata of size 200 each corresponding to true frame stratum sizes of
85000, 125000,100000,90000, and 100000. The response-indicators {ri}1000

i=1 were
simulated independently given V = {Vij} from the logistic regression model

P (ri = 1 |V) = (1 + exp(−1.50− 0.24 Vi,1 + 0.36 Vi,2 − 0.18 Vi,3 − 0.27 Vi,4))−1

The calibration variables for nonresponse adjustment were taken to be p = 12 dummy
variables xi,k, 1 ≤ k ≤ 12, constructed by the 2×2×3 levels of (Vi,1, Vi,2, I[Vi,3>−1]+
I[Vi,3>1]). The calibration vectors zi were taken to be of dimension 5, consisting of 4
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independent Expon(1) variables (independent of V) together with the variable Vi,4.
Finally, the control totals t∗x were taken to be exactly the values 500

∑1000
i=1 xi which

would have been obtained as stratified sample estimates with complete observations
of xi, while the totals t∗z/105 which should have been percentagewise close to
(5, 5, 5, 5, 0) were fixed at (5, 5, 5.3, 4.7, 0) . Overall, this example conforms well
to the assumptions (A.0)-(A.4) except possibly for (A.4), since the third and fourth
components of

√
n (t∗z−tz)/N have magnitude 0.3

√
1000 = 9.5, while the components

of
√

n (t∗x − tx)/N range from − 4 to 4.

In this Example, with α = 1 (and with c1 = .6, c2 = 1.6, a1 = a2 = 10, b1 = b2 =
4, κ1 = 4, κ2 = 2 in (30)), the iterative algorithm (18)-(19) converged quickly because
the fitted weight-factors 1+2µ̂′zi+λ̂′xi ranged only on the interval (.65, 1.86), barely
larger than the interval on which Q ≡ 0. However, the new single-stage calibrated
weights for the responding sample units are correlated only 0.558 with the two-stage
weights obtained by first performing ratio adjustment on the xi defined cells and
then calibrating these weights to the t∗z totals. Both sets of calibrated weights solve
the t∗z constraints (4) almost exactly, but not (2): the relative discrepancies between
the left- and right-hand sides of (2 are quite similar for the (α = 1) single- and two-
stage calibrated weights. However, a scatterplot and a 99% correlation shows that the
α = 100 single-stage calibrated weights are nearly identical to those with α = 1, yet
the former solve (2) with relative errors less than .001.

Further numerical experiments, with other simulated superpopulation samples and
varying degrees of conformity to (A.4), indicate that the new single-stage calibrated
weights with large α (e.g., α = 100) and Q functions rising sharply outside (.6, 2.5),
successfully compress the modified weights into ranges usually no wider than (.4, 4)
while accurately solving both the constraints (8).

As a second example, single-stage calibrated weights were fitted to the 1996 Wave 1
data from the SIPP survey, a large stratified complex longitudinal survey conducted by
the U.S. Census Bureau. As described in Slud and Bailey (2010), SIPP nonresponse
adjustment was based on poststratified ratio-adjustment using a system of p = 149
cells (involving demographics and some indicators of assets and of income compared
with the poverty level), and SIPP population controls involved raking to census-based
totals of race by family structure, race by age interval, and of Hispanic-origin persons
by (coarser) age groups. The SIPP population-control constraints can be expressed in
q = 126 linearly independent equations of the type (4). The weights wo

k used in the
SIPP file of 94444 individuals sampled and responding in 1996 Wave 1 are the base
weights GBASEWT before nonresponse adjustment. The t∗x constrained totals in (2) are
the values N

∑
S xk wo

k/
∑

S wo
k estimated with the base weights, and the population

N and control totals t∗z were, as in SIPP production estimates, derived from the 1990
census demographically updated to 1996.
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Table 1: Estimated Totals and Std. Dev.’s in Thousands. ‘Two-Stage’ method and
EHG standard deviation described in text; totals and standard deviations for t̂y,adj

based on (9) with α = 1, 100, with variables xk, zk and function Q described in text.

Item 2stage t̂α=1 t̂α=100 EHG.sd SDα=1 SDα=100

FOODST 27541 27454 26930 687.0 317.7 300.8
AFDC 14123 14089 13800 450.5 298.3 287.6
MDCD 28468 28399 27895 573.8 403.7 351.1
SOCSEC 36994 37071 37240 469.6 156.9 156.8
HEINS 194216 194475 195030 1625.1 438.8 422.6
POV 41951 41978 41475 747.3 360.1 357.1
EMP 190871 190733 190097 1477.3 254.8 239.8
UNEMP 6403 6379 6295 163.1 144.5 143.2
NILF 66979 67354 67864 626.7 231.4 216.7
MAR 111440 114457 114347 1088.1 159.1 157.7
DIV 18534 18542 18591 253.4 194.9 194.9

In the SIPP example, the single-stage calibrated weights were fitted with α = 1
and 100, using Q as above except for the changes c1 = .6, c2 = 3, a1 = a2 = .2, b1 =
b2 = 3 (but c1 = .8, c2 = 2.5 and a1 = a2 = .5 when α = 100). The fitted weight
ratios ŵk/wo

k fell in the range (.55, 3.86) for α = 1, and in (.62, 4.08) for α = 100.
The 126 fitted Lagrange multiplier components of µ̂ had range (−1.13, 0.72) for
α = 1, and (−0.86, 1.77) for α = 100. Both sets of single-stage modified weights
satisfied (4) accurately; the modified weights with α = 1 already satisfied (2) to within
several percent, while those with α = 100 satisfied (2) to within a few tenths of a
percent. In addition, we experimented with values of α as small as 0.1. However, the
weights were much more difficult to make converge with small α, and the estimated
totals and standard deviations were very similar to and did not offer any improvement
over those with α = 1, so we do not present results for them here.

As an indication of the similarity of estimated results t̂y,adj with the α = 100
estimated weights from (9), with α = 1 or 100, to those obtained in SIPP 1996 by what
amounted to two-stage weight adjustment (with raking rather than linear calibration
in the second population-control stage), we give in Table 1 the estimated totals (in
thousands) for eleven of the important SIPP surveyed attributes. The labelling for the
survey attributes is as in Slud and Bailey (2010) where further details can be found.
Differences among the estimators based on the three sets of weights are quite small
compared with the standard deviations of the two-stage estimated totals, given in the
Table as the EHG (Ernst, Huggins and Grill 1986) estimated standard deviation, a
slightly upwardly biased estimator of standard deviation which the VPLX Fay-method
standard deviation estimator approximates).
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Table 2: Estimated standard deviations in thousands for several different calibrated
and nonresponse adjusted estimators in SIPP 96. EHG or VPLX standard deviation
as in Table 1; SDfix

α indicates standard deviation with t∗x regarded as fixed, as in (29);
SDest

α indicates standard deviation with t∗x regarded as estimated in (3) and Case 3.

Item EHG.sd SDfix
1 SDfix

100 SDest
1 SDest

100

FOODST 687.0 317.7 300.8 429.3 427.6
AFDC 450.5 298.3 287.6 317.7 308.3
MDCD 573.8 403.7 351.1 496.3 468.8
SOCSEC 469.6 156.9 156.8 169.5 176.2
HEINS 1625.1 438.8 422.6 580.7 586.2
POV 747.3 360.1 357.1 462.9 474.2
EMP 1477.3 254.8 239.8 343.5 390.0
UNEMP 163.1 144.5 143.2 146.0 145.0
NILF 626.7 231.4 216.7 320.0 369.1
MAR 1088.1 159.1 157.7 160.0 158.6
DIV 253.4 194.9 194.9 197.7 200.4

The VPLX variances calculated for Table 1 account for nonresponse adjustment
only by scaling up the GBASEWT base weights so that their total is the known population
size N . The Table also displays variances as calculated from formula (29), using α = 1
or 100 and Q as specified above. Strikingly ,these estimated variances are much smaller
than the VPLX variances, highlighting the fact that the variance formula (29) treats all
calibration totals t∗x, t∗z as though they were known from the outset and nonrandom.
In fact, the values t∗x were, unavoidably for SIPP 1996, in fact derived from sample
estimates from the same SIPP 1996 survey as in the rightmost equality in (3). The last
two columns of Table 2 give the standard deviations for the eleven survey attributes as
estimated in Case 3, respectively with α = 1 and α = 100. The variances obtained
as in Case 3 are notably larger than those with totals fixed as in Case 1, only for
those survey items (FOODST, MDCD, HEINS, POV) which relate to programs applicable
to entire households.

6 Discussion and Future Research

This paper has developed asymptotic theory and computational tools for a new, single-
stage approach to the adjustment of weights in large complex surveys for nonresponse,
population-controls, and weight-trimming. Numerical experiments using functions cre-
ated in the R statistical programming language (2008) show that the single-stage mod-
ified weights are readily computable iteratively, and are generally similar, although
not always extremely highly correlated among responders, with the two-stage weights
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obtained first by nonresponse-adjustment and then by population controls and trim-
ming. The single-stage calibrated weights with large α (of order 100) penalized via
function Q to lie in intervals such as (.4, 3) seem particularly satisfactory.

Linearized variance estimators for survey estimates based on the new weights have
been developed here, both for the ideal case where nonresponse adjustments are based
on externally derived adjustment totals t∗x and for the more usual case where these
totals are instead based on estimates derived from the same survey to which the new
weights will be applied. These latter types of weights are roughly similar across a broad
range of α smoothing-parameter values, at least in the SIPP 1996 data example studied
here. The comparison begun here between bias and variance properties of estimators
based on the new weights will be elaborated in future research, using data from other
surveys and external checks on those surveys’ estimates. In addition, future research
will extend the theory and algorithms to the case of nonlinear G′

j(z) = z log z − z + 1,
the so-called ‘multiplicative’ form of the adjustment-discrepancy loss-function which
leads to classical raking in the absence of weight-penalization.
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A Superpopulation Regularity Conditions

Although less stringent assumptions may be sufficient for the validity of the asymp-
totic theory we present, we follow the pattern of assumptions of Deville and Särndal
(1992, p. 379) concerning the superpopulation weights and variables, and these assump-
tions must be augmented in the present context by assumptions involving the response
probabilities E(ri) = ρi.

(A.0) The frame population U indexed by its population size N is one of a
larger and larger system of (‘super’-) populations, with N → ∞, and for large N

the design (joint) inclusion probabilities {πi}i∈U , {πi,j}i,j∈U are such that the sample
size n = |S| also gets large, with n/N ≤ c < 1 for some constant c not depending
upon N . Recall that the initial weights wo

i of the paper are assumed defined as
wo

i = 1/πi.
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(A.1) The response indicators ri, i ∈ U , are independent {0, 1}-valued random
variables with P (ri = 1) = ρi such that infN,i ρi > 0.

(A.2) Let the attributes ui be given by any linear combinations of the components
of xi, zi, z⊗2

i , x⊗2
i , yi (1, x′

i, z
′
i), or f(1 + µ′

∗zi + λ′
∗xi), where (λ, µ) is fixed but

arbitrary and f is one of h, h′,, or h′′ and where h is defined in (17) and (λ∗, µ∗)
in (20). Then for vi defined either by ui or ui ρi, the following conditions hold:

(i) limN N−1 tv ≡ limN N−1
∑

i∈U vi exists = tv/N + o(n−1/2), and

(ii) with tv,π ≡
∑

i∈S vi/πi, the scaled and centered weighted survey totals
n1/2 N−1 (t̂v,π − tv) converges in distribution as N, n → ∞ to a normal random
variable with mean 0 and finite variance σ2

v.

In several places where we make use of auxiliary calibration variables xi and zi,
we must also assume one of the following two conditions:

(A.3) The limits of N−1
∑

i∈U x⊗2
i and N−1

∑
i∈U z⊗2

i are positive definite.

(A.3′) The limit of N−1
∑

i∈U
(
xi

zi

)⊗2 is positive definite.

Finally, to accomodate the possible incorrectness of the population total t∗z to
which we control our weighted total estimates of zk attributes, we assume

(A.4) The population-total constraints t∗z, t∗x satisfy as N → ∞ :

lim
N

n1/2

N

(
t∗x − tx
t∗z − tz

)
=

(
kx

kz

)
exists , kz ∈ Rq , kx ∈ Rp

B Nonsingular Dependence on (λ, µ) in (14′)

The left-hand side of (14′) is a function of (λ, µ) given by

φs,N (λ, µ) =
1
N

∑

k∈S

rk wo
k

[ (
x⊗2

k xk z′k
zkx′

k (1 + α−1) z⊗2
k

) ( λ

µ

)

−Q′ ◦ h(1 +
1 + α

α
µ′zk + λ′xk)

( xk

(1 + α−1)zk

)]

The bracketed summand in this expression is equal, by definition of h and the identity
h(u) + (1 + α−1)Q′(h(u)) ≡ u, to

[ (
x⊗2

k xk z′k
zkx′

k (1 + α−1) z⊗2
k

)
− α

1 + α

( xk

(1 + α−1)zk

)⊗2] ( λ

µ

)
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+
α

1 + α

(
h(1 +

1 + α

α
µ′zk + λ′xk) − 1

)( xk

(1 + α−1)zk

)

By algebraic reduction of the first term, we find that the differential in (λ, µ) of the
last displayed expression is

1
1 + α

(
x⊗2

k 0
0 0

)
+

α

1 + α
h′(1 + λ′xk +

1 + α

α
µ′zk)

( xk

(1 + α−1)zk

)⊗2

Our assumption on asymptotic positive definiteness of N−1
∑

l∈S rkwo
k ((x′

k, z′k)′)⊗2

now implies asymptotic positive definiteness of the sum over k ∈ S of N−1 rk wo
k

times the last expression. This completes the proof that differential in (λ, µ) of the
left-hand side of (14′) is everywhere a positive definite matrix. In passing, we have
proved

Lemma 1 The mapping φs,N (·) of (λ, µ) defined by the left-hand side of (14′) has
the equivalent expression

φs,N(λ, µ) =
1
N

∑

k∈S
rk wo

k

[ 1
1 + α

(λ′xk)
(
xk

0

)
+

+
α

1 + α

(
h(1 +

1 + α

α
µ′zk + λ′xk) − 1

)( xk

(1 + α−1)zk

)]

with differential

Dφs,N (λ, µ) =
1
N

∑

k∈S

rk wo
k

[ 1
1 + α

(
xk

0

)⊗2

+

+
α

1 + α
h′(1 + λ′xk +

1 + α

α
µ′zk)

( xk

(1 + α−1)zk

)⊗2]

C Random Inverse Functions defining (λ̂, µ̂)

As in Deville and Särndal (1992) [from now on cited as DS92], we determine the
Lagrange multipliers (λ, µ) implicitly by appealing to a theorem extending the Inverse
Function Theorem to a series of convergent superpopulation-based random functions.
Following DS92, define φs,N as the the function of (λ, µ) ∈ Rp+q given by the
left-hand side of (14′), and we rely on our superpopulation assumptions to ensure that

φs,N(λ, µ) P−→ φ(λ, µ) , Dφs,N (λ, µ) P−→ Dφ(λ, µ) (31)

pointwise and uniformly on compact sets in Rp+q , where φ is continuously
differentiable with everywhere symmetric positive-definite differential Dφ(λ, µ) =
B(λ, µ) = B.
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We now elaborate the extension of the essential argument of (DS92, App. 1) in a
series of steps.

1o. The continuously differentiable limiting function φ is everywhere defined and
one-to-one onto its range.

Since the domain of φ is convex, the positive-definiteness of its differential together
with the Mean Value Theorem immediately implies that it is one-to-one. (If φ(u2) =
φ(u1) then for some u∗ on the ray from u1 to u2, 0 = φ(u2)−φ(u1) = B(u∗)(u2 −
u1), from which it follows that u2 = u1.)

2o. The range of φ is open.

For each point φ(u0) ∈ range(φ), the Inverse Function Theorem implies by local
nonsingularity of φ near u0 that there exists an open neighborhood Au0 of φ(u0)
on which the inverse map φ−1 is well-defined and continuously differentiable with
uniformly bounded ‖Dφ−1‖ where ‖ ·‖ is any matrix norm. It follows that the range
of φ contains a neighborhood around each of its elements, and therefore is open.

3o. On each compact subset C ⊂ range(φ), with probability approaching 1 as the
superpopulation size N gets large, φs,N is invertible on C.

For all v ∈ C ⊂ range(φ) there is a convex open ball B = Bε(v) about v

which also lies within range(φ). By the mean value theorem, for all w ∈ Bε(u) (with
probability 1) there exists ṽ ∈ Bε(u) on the ray from v to w for which

‖φs,N(v) − φs,N (w)‖ = ‖Dφ(ṽ)(v − w) + D(φs,N − φ)(ṽ)(v − w)‖

≥ inf
v∈C

‖Dφ(v)‖ · ‖v − w‖ − sup
v∈C

‖D(φs,N − φ)(v)‖ · ‖v − w‖

which with probability converging to 1 as N gets large, is bounded below by a
positive constant times ‖v −w‖. After covering C with finitely many open sets B

found in this way, on each of which ‖Dφs,N‖ is bounded away from 0 with probability
approaching 1 as N → ∞, we conclude that P (infv∈C ‖Dφs,N (v)‖ > δ) → 1 for
all sufficiently small δ > 0. As a consequence, φs,N is invertible on all of C with
probability converging to 1.

D Large α Limit in (6)

In this and the next Section, assume only (A.3), not (A.3′), since there can often be
redundant variables among the combined coordinates of xk, zk. Throughout, let

M = M∞ =
∑

k∈S

rk wo
k

(
xk

zk

)⊗2

≡
(

M11 M12

M21 M22

)

where M11 is p × p and M21 = M ′
12, and we will replace all matrix inverses by

notations A− to cover the case where they are generalized inverses.
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Since the calculations in these Sections are done with Q ≡ 0, (15) can be re-
expressed using standard partitioned matrix identities to say

λ =
(
M11 −

α

1 + α
M12M

−
22M21

)− (
t∗x − t̂rx,π − α

1 + α
M12M

−
22(t

∗
z − t̂rz,π

)
(32)

µ =
(
(1 + α−1) M22 − M21M

−
11M12

)− (
t∗z − t̂rz,π − M21M

−
11(t

∗
x − t̂rx,π

)
(33)

In the setting of the present Section, with α large, these equations lead to
(

λ

µ

)
= M−

α

(
t∗x − t̂rx,π

t∗z − t̂rz,π

)
= M−

∞

(
t∗x − t̂rx,π

t∗z − t̂rz,π

)
+ O(

1
α

)

and, since xk, wo
k are uniformly bounded, (11) implies

wk =
α

1 + α
ŵk +

1
α

wo
k (1 + λ′xk) = ŵk + O(

1
α

)

and ŵk differs by O(1/α) (uniformly in k) from the calibrated weights

rk wo
k

(
1 +

(
xk

zk

)′

M−
∞

(
t∗x − t̂rx,π

t∗z − t̂rz,π

) )

E Small α Limit in (6)

Now start from equations (32) and (33) in the asymptotic setting with
α → 0, finding (again under the restriction Q ≡ 0)

λ = M−
11 (t∗x−t̂rx,π) + O(α) , µ = α M−

22

(
t∗z−t̂rz,π −M21M

−
11 (t∗x−t̂rx,π)

)
+ O(α2)

Then (13) gives (uniformly in k)

ŵk = rk wo
k

(
1 + x′

kM−
11 (t∗x − t̂rx,π) + z′kM−

22 ((t∗z − t̂rz,π − M21M
−
11(t

∗
x − t̂rx,π))

)

and the definitions of the blocks in matrix M , together with some algebra, give

lim
α→0

∑

k∈S

ŵk zk = t̂rz,π + M21M
−
11(t

∗
x − t̂rx,π) +

(
t∗z − t̂rz,π − M21M

−
11(t

∗
x − t̂rx,π))

)

which is precisely equal to t∗z, and this must be so because the conditions of minimiza-
tion which led to (13) required that the calibration constraint (4) be satisfied exactly
for each α. However, similar algebraic simplification shows that the nonresponse ad-
justment condition (2), which holds precisely only for the auxiliary weights wk, leads
to the final-weight totals

lim
α→0

∑

k∈S

ŵk xk = t∗x + M12 M−
22

(
t∗z − t̂rz,π − M21M

−
11(t

∗
x − t̂rx,π)

)
(34)
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F Contraction Property of (18)-(19) in (λ, µ)

Substitute the identity Q′(h(u)) = (α/(1+α)) (u−h(u)) into equation (19) and apply
the Mean Value Theorem to the function h to find that for some values u

(j)
k between

ŵ
(j+1)
k /wo

k and ŵ
(j)
k /wo

k,

(
λ(j+1) − λ(j)

µ(j+1) − µ(j)

)
=

α

1 + α
M−1

α

∑

k∈S

rk wo
k · (35)

(1 − h′(u(j)
k ))

(
xk

(1 + α−1)zk

)⊗2 (
λ(j) − λ(j−1)

µ(j) − µ(j−1)

)

Next observe by (17) that for all u,

0 < h′(u) =
(
1 +

1 + α

α
Q′′(h(u))

)−1

< 1

Then the definition of Mα immediately shows that the norm of
((λ(j) − λ(j−1))′, (µ(j) − µ(j−1))′)′ is a decreasing function of j ≥ 1, and in fact
decreases by at least the constant factor infu∈B (1− h′(u)) as long as the quantities
h(1 + (1 + α−1)µ(j)′zk + λ(j)′xk) and h(1 + (1 + α−1)µ(j−1)′zk + λ(j−1)′xk) both lie
within a bounded interval B.

G Proof & Discussion of Proposition 2

Assume the hypotheses of Proposition 2, first with condition (i) but not (ii). Note that
(λ∗, µ∗) ∈ Rp+q has been shown to be uniquely determined satisfying (20). On the
other hand, (i) implies the same limiting equation holds with (λ∗, µ∗) replaced by
(λ, 0), as we now show. First, by the assumption that (i) imposes on indices k ∈ U1,

∑

k∈U1

ρk

(
x⊗2

k xk z′k
zk x′

k (1 + α−1) z⊗2
k

) (
λ

0

)
=

∑

k∈U1

(1 − ρk)
(
xk

zk

)

and Q′ ◦ h(1 + λ′x) ≡ 0, while (i) together with the boundedness of Q′ ◦ h implies
by (17) that

∑

k∈U\U1

(
ρk

(
x⊗2

k xk z′k
zk x′

k (1 + α−1) z⊗2
k

) (
λ

0

)
− ρk Q′(h(1 + λ′xk))

(
xk

(1 + α−1)zk

))

=
∑

k∈U\U1

(1 − ρk)
(
xk

zk

)
+ O(

N√
n

)

Putting these displayed lines together shows that (20) holds with λ∗ = λ and µ∗ = 0,
so that (λ∗, µ∗) = (λ, 0). Again using the properties assumed for indices in U1, it
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follows that
∑

k∈U1

(ρk f∗
k − 1) yk = 0 ,

∑

k∈U\U1

(ρk f∗
k + 1) |yk| = o(

N√
n

)

from which the assertion
∑

U ρk f∗
k yk = ty + o(N/

√
n) follows immediately.

Next assume (ii) but not (i). The displayed limit in (ii) implies that β is uniquely
determined as the limiting least squares coefficient vector for a regression over U of
yk on zk with weights ρk, i.e.,

β = lim
N

( ∑

k∈U

ρk z⊗2
k

)−1 ∑

k∈U

ρk yk zk

and then, since Q′ ≡ 0 implies f∗
k = 1 + (1 + α−1) µ′

∗zk + λ′
∗xk

∑

k∈U

ρk f∗
k yk =

∑

k∈U

ρk yk +
∑

k∈U

ρk

(
xk

(1 + α−1)zk

)′(
λ∗

µ∗

)
(yk − β′zk + β′zk)

=
∑

k∈U

ρk yk + β′
∑

k∈U

ρk

(
zk x′

k

(1 + α−1)z⊗2
k

)′(
λ∗

µ∗

)
+ o(

N√
n

)

Now the (last q components in) identity (20), together with (A.2) saying that the limits
in (20) and the definition of φ are attained with order of convergence o(1/

√
n), imply

that the last expression is

∑

k∈U

ρk yk +
∑

k∈U

(1 − ρk) β′ zk + o(
N√
n

)

Appealing again to the displayed assumption (ii) shows the last expression is

∑

k∈U

ρk yk +
∑

k∈U

(1 − ρk) yk + o(
N√
n

) = ty + o(
N√
n

)

as asserted. 2

Remark 1 In the preceding proof, exactly the same steps could be followed but with
regression of yk on zk replaced by regression on (x′

k, z′k)′, if α = ∞. The point
here is that the full equation (20) can be used, and not simply the last q components,
when the matrix arising in the summation term of φ(λ, µ) is (x′

k, z′k)⊗2, which is true
only if α = ∞.

G.1 Discussion of Population Controls with µ∗ 6= 0

Population controls are often imposed in order to remove frame deficiencies, e.g., when
a survey collects useful information but would estimate population counts smaller than
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those available from a larger survey or census. How might superpopulation consistency
theory be reformulated to cover this situation ?

The most straightforward reformulation is to regard the sample as being drawn
with inclusion probabilities πk from a frame U0 ⊂ U about which one can assume a
working model something like

∑

k∈U

vk (I[k∈U0 ] (1 + µ′zk) − 1) = o(
N√
n

) (36)

for vk equal to any components of yk,xk, zk, yk (x′
k, z′k), or (x′

k, z′k)⊗2. Although
it would usually make little sense to view frame-inclusion indicators I[k∈U0] as inde-
pendent binary random variables like the response indicators in the Oh and Scheuren
(1983) quasi-randomization model, the assumption (36) has much the same effect. With
full response, it is not hard to see that this model assumption would ensure that the
population-control calibration on zk consistently corrects for the difference between
frames U0 and U , although the limiting Lagrange multipliers µ∗ would generally
be different from 0. In the presence both of nonresponse and deficient frame U0,
assuming (36) together with (A.0)-(A.4), it is also possible to check that the two-
stage method (first calibrating weights wk via xk to correct for nonresponse within
U0 and then starting from wk, calibrating to population totals via zk) would be
consistent. It is not clear whether the new single-step generalized calibration methods
of this paper would also be consistent, or whether that is particularly worrisome. The
path to consistency via assumption (ii) in Proposition 2, including the more general
version mentioned in Remark 1, would still be available.
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