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Abstract

Typically, model misspecification is addressed by statistics relying on model-residuals, i.e., on

one-step ahead forecasting errors. In practice, however, users are often also interested in prob-

lems involving multi-step ahead forecasting performances, which are not explicitly addressed

by traditional diagnostics. In this article, we consider the topic of misspecification from the

perspective of signal extraction. More precisely, we emphasize the connection between models

and real-time (concurrent) filter performances by analyzing revision errors instead of one-step

ahead forecasting errors. In applications, real-time filters are important for computing trends,

for performing seasonal adjustment or for inferring turning-points towards the current boundary

of time series. Since revision errors of real-time filters generally rely on particular linear combi-

nations of one- and multi-step ahead forecasts, we here address a generalization of traditional

diagnostics. Formally, a hypothesis testing paradigm for the empirical revision measure is devel-

oped through theoretical calculations of the asymptotic distribution under the null hypothesis,

and the method is assessed through real data studies as well as simulations. In particular, we

analyze the effect of model misspecification with respect to unit roots, which are likely to de-

termine multi-step ahead forecasting performances. We also show that this framework can be

extended to general forecasting problems by defining suitable artificial signals.

Keywords. Model-diagnostics; Nonstationary time series; Real-time filtering; Seasonality; Signal

extraction.

Disclaimer This report is released to inform interested parties of research and to encourage

discussion. The views expressed on statistical issues are those of the authors and not necessarily

those of the U.S. Census Bureau.

1 Introduction

Generally speaking, time series models of economic data are misspecified, since in essence models

are simplified portraits of underlying stochastic dynamics. The task of model diagnostics is then

to identify mismatches pertinent to the goals of a particular analysis, so that faulty models can

be improved accordingly. Not all such mismatches are desiderata, but rather only those that are
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relevant for a particular analysis; diagnostic tools should account for the purpose of a particular

application by emphasizing model failures that are likely to adversely affect results. Traditional

diagnostics in time series analysis focus on one-step ahead forecasting errors. Typical examples

are (partial) autocorrelation functions of model residuals, as well as Ljung-Box (Ljung and Box,

1978) and Box-Pierce statistics. If the purpose of a particular application is short term one-step

ahead forecasting, then these tools are appropriate. Yet sometimes there is interest in forecasting a

time series over a longer horizon, and therefore the performance of a model over multiple forecast

leads is more important than the modeling of short-term behavior. Model-based signal extraction,

which implicitly utilizes multi-step ahead forecasting, is also more concerned with the long-term

forecasting behavior of putative models.

Signal extraction is concerned with the definition and estimation of interesting components of

a time series. In practice signal estimation for the concurrent time period, i.e., filtering or real-

time estimation, are important because of the need for timely information (Findley, Bell, Monsell,

Otto, and Chen, 1998). Unfortunately, symmetric filters cannot be used directly because future

data hasn’t been observed yet. Traditional methods overcome this difficulty by expanding series

on both ends of the sample by backcasts and forecasts generated by a time series model – typically

an AutoRegressive Integrated Moving Average (ARIMA) model – so that the symmetric filter can

be used. If the coefficients of the symmetric filter decay slowly, then forecasts of longer horizons

are emphasized. Therefore it is desirable – towards the end of producing acceptable concurrent

signal extraction estimates – for a model to perform well with respect to all forecasting horizons

simultaneously. The following example illustrates a challenging modeling problem for traditional

diagnostics such as the Ljung-Box (LB) statistics1.

Wildi (2008) compares the real-time – or concurrent – performance of several different signal

extraction procedures, in a context where the general goal of analysis is to produce useful leading

indicators. The so-called KOF Economic Barometer2 is a monthly time series that combines several

economic indicators related to banking, production, and housing, and is used as a leading indicator

of Swiss GDP. Many of its constituent indicators are time series that are bounded by construction

in the interval [−100, 100]. For purposes of illustration, we examine the series “Industry total:

expected production” from the KOF data-base; this series measures projected industrial production,

and is sometimes used as a proxy for Swiss Gross Domestic Product. Referring to this as Series 31
1Letting ρ̂j denote the sample autocorrelation function of the prediction residuals obtained from a fitted model,

the LB statistic is then defined via the formula Qh = n(n + 2)
∑h

j=1 ρ̂2
j/(n − j), where n is the sample size of the

time series (Brockwell and Davis, 1991).
2Konjunkturforschungsstelle der ETH, or Institute of Business Cycle Research; see www.kof.ethz.ch.
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– displayed in Figure 1 with a solid line, TRAMO3 selects the following Airline model

(1−B)(1−B12)Xt = (1− 0.662B)(1− 0.824B12)εt, (1)

after adjustments for outliers and calendar effects. Here we utilize the notation B for the back-

shift operator, with Xt representing the time series under consideration, while εt is a white noise

sequence. The Airline model is defined in Box and Jenkins (1976), and calendar effects and other

pre-adjustment aspects of time series analysis are discussed at length in Findley, Bell, Monsell,

Otto, and Chen (1998).
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Figure 1: Series 31, a leading indicator that is incorporated in the KOF Economic Barometer, is

displayed as a solid line against Time in months. The dotted lines represent a simulation from the

model that was fitted to Series 31 by using TSW.

TRAMO represents a fairly conventional, state-of-the-art approach to time series modeling,

including the estimation of fixed regression effects (e.g., additive outliers, level shifts, holiday re-

gressors, trading day effects, etc.) as well as unit-root testing and Seasonal ARIMA (SARIMA)

model identification procedures. We are mainly interested in this latter aspect of TRAMO, which is

an automated model-selection procedure (although the user can intervene) that is discussed further

in Maravall and Caporello (2004). Typical output of TRAMO includes model diagnostics such as

the LB statistics; the results of such diagnostics for Series 31 can be seen in Figure 2. Standard

model assumptions are met; neither the autocorrelation nor the partial autocorrelation function nor
3The TRAMO-SEATS for Windows (TSW) package is a widely-used software program for the seasonal adjustment

of economic time series, and can be downloaded from the Bank of Spain (http://www.bde.es/servicio /software

/econome). Maravall and Caparello (2004) is the most current documentation of both the program TSW and the

seasonal adjustment method utilized therein.
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Figure 2: Model Diagnostic plots for Series 31, a leading indicator that is incorporated in the KOF

Economic Barometer, generated by using TSW for the fitted Airline model. The top panel gives

the time plot of the standardized model residuals, while the second panel gives the autocorrelation

plot of such. The third panel is the partial autocorrelation plot of the model residuals, and finally

the bottom panel has the p-values for the LB statistic (utilizing the asymptotic χ2 distribution)

at various lags h. The first three plots also have 95% confidence bands displayed as dotted lines,

computed under the null hypothesis that the displayed series is white noise (i.e., the model is

correctly specified), while the last plot has a dotted line at the 5% level – values above this indicate

failure to reject the null hypothesis of uncorrelated model residuals.

the LB statistics suggest significant departures from the null hypothesis4 that the Airline model is

correctly specified. However, a simulation of the process defined by (1), plotted as the dotted line

in Figure 1, highlights the fairly simple observation that Series 31 does not appear to be nonsta-

tionary. Indeed, the real series lacks the strong trend component that is typical of twice-integrated

processes such as the Airline process.

Because Series 31 is bounded – as are many important economic time series (e.g., unemployment

rates) – we expect a stationary model to be selected for Series 31 by TRAMO. This expectation

is further bolstered upon surveying its sample Autocorrelation Function (ACF) plot (Figure 3),

which shows no indications of either trend or seasonal nonstationarity behavior. Therefore the

model adequacy indicated by TRAMO is quite disappointing5.
4TRAMO provides additional diagnostic tools – such as heteroscedasticity and model stability tests – that did

not either lead to a rejection of the specified model.
5This is not intended as a criticism of TRAMO, which utilizes the most recent advances in unit-root testing; similar

results are also obtained with the automatic model selection procedure of X-12 ARIMA, the seasonal adjustment
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Figure 3: Sample ACF plot for Series 31, with lag displayed on the x-axis. The dotted lines

represent 95% confidence bands under the assumption that the series is not serially correlated.

The failure of conventional model diagnostics to reject the Airline model for Series 31 (with

similar results for 35 other indicators that make up the KOF Economic Barometer) forms the

central motivation of this paper. Now from a one-step ahead forecasting perspective the above

model (1) performs well, thus confirming the usefulness of traditional diagnostics for short-term

projections. But for the application of real-time signal extraction, the multi-step ahead forecasting

performance of a model is highly pertinent, and therefore one needs model diagnostics that can

make identification discernments across a longer future horizon. We argue that specific diagnostics

are needed that match the real-time signal extraction problem.

We propose to use signal extraction revision variances to assess the performance of a model

over a long forecasting horizon, since signal extraction formulas implicitly utilize multi-step ahead

forecasts. Signal extraction revisions and their variances have been studied for quite some time

– see Pierce (1980), Maravall (1986), and Maravall and Caparello (2004) – but usually from the

perspective that a semi-infinite sample of data extending into the infinitely remote past is available.

The revision variance will tend to be unusually large when signal estimates are generated from

faulty models, because abnormally large revisions will tend to occur in this case. Exact revision

variances can be generated through model-based calculations, as described at length in McElroy

program of the U.S. Census Bureau (see Findley et al. (1998)).
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and Gagnon (2008); these revision variances should coincide asymptotically with empirical revision

sample variances if the model is correct. Therefore, a diagnostic test based on a comparison of

revision variances should match the signal extraction problem. Note that such a test involves

one- and multi-step ahead model forecast performance. The main contribution of the paper is the

proposal of a new test statistic, denoted by RV, that matches the signal extraction problem and a

derivation of its distribution under the hypothesis that the model fits the Data Generating Process

(DGP).

Note that better models could of course be developed for bounded series such as the KOF –

for one thing, transformations such as the logistic or tangent could be used to handle the bound-

edness (although some distortion would presumably be involved). While acknowledging this, our

main thesis is that conventional models deemed adequate by diagnostics based on one-step ahead

forecasting criteria should be wrong on a priori grounds, since their unit root structure fails to

allow for long-term mean reversion (i.e., turning points). Surely better models exist (and should

be used when practicable), but our point is that the classical diagnostics – unit root tests together

with acceptable LB statistics – are telling us that an I(2) specification for Series 31 is adequate.

By emphasizing multi-step ahead forecasting in the diagnostic phase, we may be able to obtain

statistically significant rejections of such over-specified models6.

In Section 2 we discuss some of the background theory needed for a finite sample approach to

signal extraction in a model-based context. We define the goodness-of-fit test statistic RV, and

discuss its important finite sample and asymptotic properties under the null hypothesis that the

given model is correct. Section 3 gives some of the details on implementing our testing procedure,

with a discussion of the decomposition, structural, and direct approaches to defining a signal.

In Section 4 we apply these concepts to several real series where there is a suspicion of model

misspecification on a priori grounds; the series include sectoral leading indices used in the KOF

Economic Barometer, as well as manufacturing data. Section 5 concludes, and mathematical proofs

are in the Appendix.

2 Theory

We begin with a background discussion on model-based signal extraction in a finite-sample context;

then we discuss signal extraction revisions for such estimates, and their autocovariance structure

is provided in Proposition 1. We then define our goodness-of-fit test statistic RV and determine its

statistical properties. Section 2.1 below consists of background material taken wholly from McElroy

(2008a); Sections 2.2 and 2.3 present new material, defining the proposed revision variance statistic
6Over-specification of nonstationarity has a precise definition: if the differencing polynomial δ(B) is sufficient to

reduce a series to stationarity, then specifying δ(B)τ(B) as the differencing polynomial – where τ(B) is a polynomial

of degree greater than one with all roots located on the unit circle – is a case of over-specification.
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RV, as well as giving its basic properties.

2.1 Background on Signal Extraction

We consider the additive decomposition of our data vector Y = (Y1, Y2, · · · , Yn)′ into signal S and

noise N , via Y = S + N. The signal might be the trend component, while the noise includes the

seasonal and irregular components. Following Bell (1984), we let Yt be an integrated process such

that Wt = δ(B)Yt is stationary, where B is the backshift operator and δ(z) is a polynomial with

all roots located on the unit circle of the complex plane. (Also, δ(0) = 1 by convention.) This

δ(z) is referred to as the differencing operator of the series, and we assume it can be factored into

relatively prime polynomials δS(z) and δN (z) (i.e., polynomials with no common zeroes), such that

the series

Ut = δS(B)St Vt = δN (B)Nt (2)

are mean zero stationary time series that are uncorrelated with one another. Note that δS = 1

and/or δN = 1 are included as special cases (in these cases either the signal or the noise or both

are stationary). We let d be the order of δ, and dS and dN are the orders of δS and δN ; since the

latter operators are relatively prime, δ = δS · δN and d = dS + dN .

As in Bell and Hillmer (1988), we assume Assumption A of Bell (1984) holds for the component

decomposition, and we treat the case of a finite sample with t = 1, 2, · · · , n with n > d. Assumption

A states that the initial d values of Yt, i.e., the variables Y∗ = (Y1, Y2, · · · , Yd), are independent of

{Ut} and {Vt}. For a discussion of the implications of this assumption, see Bell (1984) and Bell

and Hillmer (1988).

Now we can write (2) in a matrix form, as follows. Let ∆ be a (n− d)× n matrix with entries

given by ∆ij = δi−j+d (the convention being that δk = 0 if k < 0 or k > d).

∆ =




δd · · · δ1 1 0 0 · · ·
0 δd · · · δ1 1 0 · · ·
...

. . . . . . . . . . . . . . .
...

0 · · · 0 δd · · · δ1 1




The matrices ∆S and ∆N have entries given by the coefficients of δS(z) and δN (z), but are (n −
dS) × n and (n − dN ) × n dimensional respectively. This means that each row of these matrices

consists of the coefficients of the corresponding differencing polynomial, horizontally shifted in an

appropriate fashion. Hence

W = ∆Y U = ∆SS V = ∆NN

where W , U , V , S, and N are column vectors of appropriate dimension. Then it is possible to

write the mean square linear optimal estimate Ŝ as a linear matrix operating on Y , i.e., Ŝ = FY .
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The error covariance matrix, i.e., the covariance matrix of Ŝ − S, is denoted by M . The formulas

for F and M are given by:

F =
(
∆′

SΣ−1
U ∆S + ∆′

NΣ−1
V ∆N

)−1∆′
NΣ−1

V ∆N (3)

M =
(
∆′

SΣ−1
U ∆S + ∆′

NΣ−1
V ∆N

)−1 (4)

where ΣX denote the covariance matrix for any random vector X.

Now these basic notions are generalized slightly for the development needed below. We will be

considering samples of varying dimension; denote the signal extraction matrix of dimension m by

F (m), and the MSE matrix by M (m). Also em denotes the mth unit vector in Rl, where the dimen-

sion l ≥ m will be apparent from the context. We introduce a general notation for signal extraction

estimates: Ŝt|ms . This is an estimate of St, which is a linear function of the data Ys, Ys+1, · · · , Ym

such that the associated error Ŝt|ms − St is uncorrelated with the data Ys, Ys+1, · · · , Ym under As-

sumption A. Such a signal extraction estimate has minimum Mean Squared Error (MSE) among

all estimates that are linear in the data. Note that Assumption A has to do with the initial values

Y1, · · · , Yd, which may not even be a part of the sample Ys, · · · , Ym (e.g., say s > d). The actual

initial values in this sample are Ys, · · · , Ys+d−1, but these can be expressed as a linear combination

of the initial values Y∗. Therefore Assumption A does indeed guarantee the validity of all the signal

extraction formulas for samples computed at subsequent time periods.

We make a final distinction. Any model-based signal extraction matrix will have the form F

given by (3), though we allow that the model may be misspecified. That is, any of δS , δN , ΣU , or

ΣV may be in error. If we wish to denote the “true” specifications of these quantities, we place

a tilde over it, e.g., Σ̃U is the true autocovariance matrix of Ut, whereas ΣU denotes the matrix

implied by our model. Misspecifying δS and δN is a worse error than the misspecification of ΣU

and ΣV (see the discussion at the end of Section 2).

2.2 Revisions

The main concept in revision calculations is to consider a “window-sample” of size n; this is a

sample Yt+1, Yt+2, · · · , Yt+n for some t = 0, 1, · · · , N − 1, where N denotes the number of windows

that we consider (not to be confused with the noise vector N). We focus on the concurrent signal

extraction estimate, where we are interested in the signal at time t + n; simple extensions of our

method can deal with the signal considered at other time points within the sample. Hence we

consider signal extraction estimates Ŝt+n|t+n
t+1

, and are interested in the revision error that occurs

if our sample was increased by a further h > 0 data points; the revised estimate would then be

Ŝt+n|t+n+h
t+1

. Using the convention that the revision is “new minus old,” the revision equals

εt = Ŝt+n|t+n+h
t+1

− Ŝt+n|t+n
t+1

.
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Of course the revision εt depends on n and h as well as t, but these will be held fixed throughout our

analysis, so they don’t enter the notation for the revision. If the nonstationary operators δS and

δN have been correctly specified, then εt will be a stationary sequence; this is because Ŝt+n|t+n+h
t+1

and Ŝt+n|t+n
t+1

will have no noise nonstationarity, and will both contain signal nonstationarity in such

a manner that their difference is in fact stationary. The following proposition describes some of

the important statistical properties of these revisions. Let en denote the nth unit vector in Rn+h,

whereas en denotes the nth unit vector in Rn.

Proposition 1 Assume that the signal extraction conditions of Section 2 hold, and in particular

that δS and δN are correctly specified (though ΣU and ΣV need not be). Then the sequence of

revisions εt is weakly stationary with mean zero and autocovariance sequence

γε(k) =
(
e′nM (n+h)∆′

SΣ−1
U [1n+h−dS

0k]− e′nM (n)∆′
SΣ−1

U [1n−dS
0k+h]

)
Σ̃U

(
[0k 1n+h−dS

]′Σ−1
U ∆SM (n+h)en − [0k 1n−dS

0h]′Σ−1
U ∆SM (n)en

)

+
(
e′nM (n+h)∆′

NΣ−1
V [1n+h−dN

0k]− e′nM (n)∆′
NΣ−1

V [1n−dN
0k+h]

)
Σ̃V

(
[0k 1n+h−dN

]′Σ−1
V ∆NM (n+h)en − [0k 1n−dN

0h]′Σ−1
V ∆NM (n)en

)
.

The dimension of the M matrices is indicated by the superscript, and the 1 refers to an identity

matrix of indicated dimension. The subscript on the 0 then indicates the number of zero columns.

The other matrices, such as ΣU , ∆S, etc., have dimensions implied by the other matrices that

multiply them.

Proposition 1 will be useful for determining the statistical properties of our goodness-of-fit statistic.

Our null hypothesis (stated below) states that the model used actually describes the true process,

so that ΣU = Σ̃U and ΣV = Σ̃V . Hence for implementation, one needs to compute γε(k) under

this type of assumption, for a sufficient number of lags k. Below, we discuss the test statistic RV

in more detail.

2.3 Goodness-of-Fit Test Statistic

Now we want to use the empirical within-sample revision error as a measure of goodness-of-fit. We

suppose that unit root tests and model identification procedures have already been utilized (e.g.,

using TRAMO), and furthermore the identified models have been fitted, obtaining the parameter

estimates via maximum likelihood or another consistent procedure. Having completed these stages

of analysis, we are now interested in ascertaining the goodness of model fit by using the RV statistic

as a diagnostic tool. Treatments of unit root testing, time series model identification, and parameter

estimation can be found in the following references: Dickey and Fuller (1979), Findley et al. (1998),

Maravall and Caporello (2004), Peña, Tiao, Tsay (2000), and Taniguchi and Kakizawa (2000).

9



Since the theoretical mean of the revisions is zero, we can compute an estimate of their variance

via 1
N

∑N−1
t=0 ε2t . More generally, let our Revision Variance statistic be defined as

RV (B) =
1
N

ε′Bε,

where B is a square matrix and ε = (ε0, ε1, · · · , εN−1)
′. Clearly, taking B equal to the identity

matrix yields the sample second moment of the revisions, but other choices of B will grant better

size and power properties. This RV (B) has mean

ERV (B) =
1
N

tr(B Σ̃ε),

where Σ̃ε is the (true) covariance matrix of ε. Hence taking B = Σ−1
ε based on our model speci-

fication (using Proposition 1), the mean of the revision statistic will be equal to 1 under the null

hypothesis. Moreover, if the data is Gaussian, the variance will be equal to 2/N .

The goodness-of-fit statistic studied in this paper is defined as RV (Σ−1
ε ), or just RV for short.

The normalized test statistic is then √
N

RV − 1√
2

. (5)

Note that if the data is Gaussian, ε′Σ−1
ε ε has a χ2

N distribution. Suppose that we specify δS and δN

correctly, so that by Proposition 1 the revision process is stationary; let fε be the spectral density

corresponding to the given autocovariance sequence. If ΣU = Σ̃U and ΣV = Σ̃V , then the model

is correctly specified with correct parameter values as well. The corresponding spectral density is

the true spectrum for the revision process, and is denoted by f̃ε. Likewise, let Σε and Σ̃ε be the

associated covariance matrices. Then the statistical properties of RV follow from Theorem 1 of

McElroy (2008b): the mean of RV is tr(Σ−1
ε Σ̃ε)/N , and if the third and fourth cumulants are zero

the variance is 2tr([Σ−1
ε Σ̃ε]

2
)/N2. If f̃ε and 1/fε are continuously differentiable, then

ERV → 1
2π

∫ π

−π

f̃ε(λ)
fε(λ)

dλ

N V arRV → 2
2π

∫ π

−π

f̃2
ε (λ)

f2
ε (λ)

dλ

as N →∞. Some mild conditions on the data are required for the asymptotic theory; we follow the

material in Taniguchi and Kakizawa (2000, Section 3.1.1). Condition (B), due to Brillinger (1981),

states that the process is strictly stationary and condition (B1) of Taniguchi and Kakizawa (2000,

p. 55) holds. Condition (HT), due to Hosoya and Taniguchi (1982), states that the process has a

linear representation, and conditions (H1) through (H6) of Taniguchi and Kakizawa (2000, pp. 55

– 56) hold. If the revision process satisfies either condition (B) or (HT), then as N →∞
RV − ERV√

V arRV

L=⇒ N (0, 1).
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We note that the computations required for the variance of the empirical revision measure RV are

considerable, since we must consider up to N + h different MSE matrices of various dimensions.

There is no straight-forward way to obtain the required quantities using a State Space smoother –

one must use the direct matrix approach of McElroy (2008a).

Our null hypothesis is that the model is correctly specified with correct covariance structure for

the components as well, i.e.,

H0 : δN = δ̃N , δS = δ̃S , ΣU = Σ̃U , ΣV = Σ̃V .

The alternative hypothesis is that the model is incorrectly specified, which includes not only the case

that the proposed differencing operators may be incorrect, but also that the models for Ut and/or

Vt may be incorrect. Not only may the parameter values be faulty, but the model specifications for

these components may be wrong as well. In general we may speak of over- and under-specification

of differencing operators. This refers to assigning too many or too few unit root differencing factors

in δ (which are then allocated among the signal and the noise). For example, if the true process

is I(1) and we use an I(2) model, this corresponds to over-specification, whereas using an I(0)

model corresponds to under-specification. Generally speaking, our test is much more powerful for

detection of under-specification, because in this case the revision process is nonstationary and the

RV statistic explodes asymptotically. But with over-specification, the revision process will still be

stationary; only now the variance normalization will be incorrect, leading us to reject H0. There

are many other interesting cases that arise, for example: δ̃(z) = 1 − z12 is the true differencing

operator, but our model specifies δ(z) = 1 − z instead; this is under-specification, because the

operator 1 + z + · · ·+ z11 has been omitted.

In practice, since the DGP is not known, the parameter values are obtained by using MLEs

(or other parameter estimates), pretending that these are fixed and non-random. One could base

these estimates either on the whole span of data, or only on the first window of size n. Since the

null hypothesis is so broad, it is difficult to determine which part of the model is wrong when a

significant RV statistic is obtained. From empirical studies we know that RV is much more sensitive

to misspecification (i.e., a wrong polynomial for δN or δS , or a wrong specification of the models

for Ut and Vt) than to parameter error (i.e., parameter values that differ from those of the DGP).

Note that when unit roots are misspecifed, the resulting component models are also misspecified

and therefore the signal extraction filters are faulty, resulting in a signal extraction revision process

that does not, in general, have the properties of Proposition 1; this should lead to rejection of the

null hypothesis, as desired. Our focus in this paper is on unit root identification; with a significant

RV, the practitioner should first seek to adjust the unit root specification (if multi-step ahead

forecasting performance is important to the application), and then afterwards see to the modeling

of the stationary aspects of the data.
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3 Implementation

The previous section discussed the theoretical properties of the revision diagnostic RV, given that

we compute signal extraction estimates using (3). We now discuss the details of implementing these

ideas. In order to construct the signal extraction matrix F , we must specify the matrices ΣU and

ΣV (as well as δS and δN ) – or equivalently, their spectral densities fU and fV . For notation, let

fU , fV , and fW denote spectral densities for the differenced signal, noise, and data processes Ut,

Vt, and Wt discussed in Section 2.1, which we assume to be stationary processes. This assumption

involves no loss of generality, since we only need to implement RV under the null hypothesis, which

stipulates that the model (including unit roots) is correctly specified.

Thus under H0 we have an explicit form for fW . Typically fU and fV are in turn determined

from fW in a variety of ways: (1) decomposition, (2) structural, (3) direct. The first two techniques

are widely used in the econometrics community, whereas the third requires more exposition due

to its relative obscurity. We here briefly review these approaches to obtaining component models,

providing references and a short example.

If fW is the spectral density of an ARIMA or SARIMA process, it may be possible to mathe-

matically solve for the spectra fU and fV using the canonical decomposition approach of Hillmer

and Tiao (1982). No a priori restrictions are placed on the form of fW ; fairly simple algebra is

utilized to obtain fU and fV , although the solution is not guaranteed to exist, and is typically

not unique. This is the procedure adopted in SEATS, the seasonal adjustment portion of program

TSW of the Bank of Spain; further details can be found in Maravall and Caporello (2004). Also

see the extended discussion in McElroy (2008a).

In contrast, the structural approach first specifies models for fU and fV , from which an implied

spectral density fW is obtained by summation, referred to in the literature as the reduced form of

the data model. Then the model parameters of fU and fV enter into the likelihood for fW through

the formula

fW (λ) = |δN (e−iλ)|2fU (λ) + |δS(e−iλ)|2fV (λ). (6)

This follows at once from (2) and the other definitions in Section 2.1. The structural approach was

first developed by Gersch and Kitagawa (1983), and later was popularized in Harvey (1989). This

latter work develops the structural approach with so-called structural models, which are parameter-

restricted ARIMA models that are convenient for state space calculations, thereby facilitating

efficient Gaussian maximum likelihood estimation. One drawback of the structural approach is that

the pre-specified model form of fU and fV restrains fW from attaining a model deemed optimal

according to standard identification techniques, such as unit-root testing and model specification

methods.

The direct approach is similar to the decomposition method, in that it starts with the specified

form of fW dictated by prior unit-root tests and model specification techniques. However, the
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spectra fU and fV are given as a fixed function of fW , where this mapping does not at all depend

on model parameters – in this sense it is direct. It is easiest to describe through the pseudo-

spectra, which are given by fS(λ) = fU (λ)|δS(e−iλ)|−2, fN (λ) = fV (λ)|δN (e−iλ)|−2, and fY (λ) =

fW (λ)|δ(e−iλ)|−2
, corresponding to signal St, noise Nt, and data Yt respectively. Then the direct

approach relates signal and noise pseudo-spectra to the data pseudo-spectrum via multiplication

by a fixed function g as follows:

fS(λ) = g(λ)fY (λ) fN (λ) = (1− g(λ))fY (λ). (7)

Here g : [−π, π] → [0, 1] is a user-defined function. An intuitive example is given by g(λ) = 1 if and

only if |λ| ≤ π/60, and zero otherwise; this defines the signal to consist of only those frequencies

of the data spectrum lying in the low frequency range [−π/60, π/60], while the noise contains all

other frequencies. This direct approach is formally developed and utilized in Kaiser and Maravall

(2005), where the idea is that g is the frequency response function of the Hodrick Prescott filter,

thereby defining the signal to be a cycle.

Because the structural approach interferes with a direct diagnosis of model misspecification of

the data, we will focus on the decomposition and direct approaches in the rest of the paper. Now of

course the decomposition approach can be conceived in terms of a function g in (7), but in this case

g depends on the parameters of fW and takes its general form from the data model; in contrast, the

direct approach utilizes a user-determined g that is dependent upon neither the selected model nor

the parameters. The choice of g dictates the form of signal and noise, and thus can be defined to

correspond with the analyst’s particular interests. The basic conditions on g are that g|δN (e−i·)|−2

and (1− g)|δS(e−i·)|−2 are bounded functions. (These conditions ensure that fS and fN only have

poles at the appropriate signal and noise frequencies.) We next provide a more detailed illustration,

which shall be used in Section 4.

Suppose that δS(z) = 1− z and δN (z) = 1+ z + · · ·+ z11, which correspond to trend signal and

seasonal noise processes respectively. Note that this implicitly defines an I(1) model for the data,

in contrast with the Airline model discussed in Section 1. Let g(λ) = |δN (e−iλ)|2/144; this choice

is the simplest form for g such that g|δN (e−i·)|−2 is bounded (the scaling factor of 144 ensures that

the range of g is contained in [0, 1]). Then it follows that

1− g(λ)

|δS(e−iλ)|2
= |h(e−iλ)|2/144,

where h(z) = 10.787+8.570z +6.672z2 +5.070z3 +3.738z4 +2.652z5 +1.788z6 +1.123z7 + .634z8 +

.297z9+.093z10. Hence we have that (1−g)|δS(e−iλ)|−2 is also a bounded function. This choice of g

is therefore a very simple and natural candidate, and also satisfies the basic stipulated requirements.

We easily obtain that

fU (λ) = fW (λ)/144 fV (λ) = |h(e−iλ)|2 fW (λ)/144.

13



These equations represent a very direct and clear relationship between fW and fU , fV ; this rela-

tionship only depends on the properties of the data through fW . For more guidance in general on

the selection of g for other problems, see Kaiser and Maravall (2005).

So given the component spectra fU and fV – obtained via either through the decomposition or

direct approaches – we can immediately compute ΣU and ΣV , their associated covariance matrices.

The general procedure for computing RV is the following:

1. Begin with a proposed model fY , which consists of signal and noise differencing operators δS

and δN , and the spectrum of the differenced process fW .

2. Obtain fU and fV from fW . In the decomposition approach there are algorithms for com-

puting fU and fV from fW , whereas in the direct approach we use (7).

3. Construct the filter matrix F via (3) and the revision process ε by applying the appropriate

rows of F to the data.

4. Obtain the covariance matrix of ε under the null hypothesis (by using Proposition 1). Com-

pute the normalized RV via (5) and get the p-value using the χ2
N distribution.

In the context of model-based seasonal adjustment or trend estimation of economic data, typ-

ically steps 1 and 2 (and part of 3) are already performed by the analyst. The implementation

challenge lies in the correct construction of Σε based on Proposition 1; this formula is compli-

cated, but the algebraic operations are all standard. Also, as noted in the previous section, the

computation of RV requires a choice of revision lead h and window size n. We have written our im-

plementation (of the decomposition and direct approaches) in Ox (Doornik, 2006), utilizing SsfPack

routines (Koopman, Shephard, and Doornik, 1999).

4 Empirical Studies

In this section, we focus on the finite-sample statistical properties of the empirical revision measure

RV, considering both the decomposition and direct approaches (for the direct approach, we take g

as defined in Section 3). In 4.1 we summarize various size and power studies, and in 4.2 we examine

the method on several series from the KOF Economic Barometer, as well as some unemployment

and manufacturing series.

4.1 Simulations

The DGPs considered in this section were chosen such that they correspond with the KOF empirical

studies of Section 4.2. The series we consider are of length 322, so we take three window sizes

n = 120, 150, 180 – hence the number of windows is N = 202 − h, 172 − h, 142 − h, where h is
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the revision lead. We consider several values of h, up to five years out (the data is monthly):

h = 12, 24, 36, 48, 60. For our first study, we employ the decomposition approach applied to the

Box-Jenkins Airline model. Our second study employs the direct approach, but in this case the

model is only I(1) plus seasonal. Details on these two approaches are provided below.

In the decomposition study (Study 1), there are three components: trend, seasonal, and irreg-

ular. The Airline model is given by the SARIMA equation

(1−B)(1−B12)Xt = (1− θB)(1−ΘB12)εt, (8)

where Xt is the time series, εt is white noise of variance σ2, and θ and Θ are the parameters. Both

the trend and seasonal are typically nonstationary in economic data, and thus are the components

of greatest interest for our purposes. Here the trend differencing operator is (1−B)2, whereas the

seasonal differencing operator is U(B) = 1 + B + · · · + B11. Hence we will consider either the

trend or the seasonal as the signal of interest – note that the revision process for the associated

noise is always that of the signal multiplied by −1. So the RV for the seasonal component and the

seasonally adjusted component will be identical. We consider a null hypothesis of a Box-Jenkins

Airline model with various specifications of the parameters θ, Θ. Given the specification of a null

model via a choice θ, Θ, we can determine RV for either the trend or seasonal components as

discussed in Section 3.

In the direct approach (Study 2), there are two components: the seasonal and the nonseasonal.

The spectra of these components are defined through g(λ) = |U(e−iλ)|2/144, as discussed in Section

3. In that section, St is nonseasonal and Nt is seasonal; note that if we swap roles and let the seasonal

be the signal instead, the revision measure RV will yield identical results (again, since the revision

process for noise is related to the revision process of signal via multiplication by −1). So, we only

report results for the nonseasonal. The model for the data process is

(1−B12)Xt = (1−ΘB12)εt, (9)

which can be viewed as a subset model of the Airline model when θ = 1 (after cancelation).

These clearly do not reflect a comprehensive study, but nevertheless will reveal some useful

observations. First, Airline models form a fairly basic trend-seasonal model, and thus are a good

starting place. The window sizes are chosen to reflect common data lengths – typically monthly

seasonal time series at many statistical agencies are between 10 and 15 years long. Of course, the

number of revisions N is much larger than it would be in practice, though in our case the length of

the KOF series facilitates a large N . The asymptotics discussed in Section 2.3 are with respect to

increasing N , so decreasing n and h should provide a RV that is more normally distributed. The

revision leads h are fairly typical – in practice the revisions from model-based seasonal adjustments

(e.g., using SEATS) are usually negligible after 5 years.
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In order to investigate the power of the diagnostic tests in both studies, we consider the following

alternative models:

(1− φB)(1− ΦB12)Xt = (1− .6B)(1− .6B12)εt

with φ,Φ = .6, .9, 1. Therefore, taking all possible combinations and making cancelations where

appropriate, we obtain the following 9 DGPs: φ = Φ = 1 (DGP 0, SARIMA(011)(011)); φ = .9,

Φ = 1 (DGP 1, SARIMA(101)(011)); φ = .6, Φ = 1 (DGP 2, SARIMA(101)(011)); φ = 1, Φ = .9

(DGP 3, SARIMA(011)(101)); φ = 1, Φ = .6 (DGP 4, SARIMA(011)(101)); φ = .9 = Φ (DGP

5, SARIMA(101)(101)); φ = .9, Φ = .6 (DGP 6, SARIMA(101)(101)); φ = .6, Φ = .9 (DGP 7,

SARIMA(101)(101)); φ = .6 = Φ (DGP 8, SARIMA(101)(101)).

These alternative DGPs have different unit root structures. In the empirical studies we simu-

lated Gaussian data from the nine models but applied the signal extraction filters associated with

the null model, which for Study 1 was an Airline model with parameters θ = .6, Θ = .6 in (8) –

this is DGP 0; we consider both the trend and seasonal signals. For Study 2 (the direct approach),

the null model corresponds to the choice Θ = .6 in the data process (9), which is actually DGP 2.

In Study 1 all 8 alternative DGPs (i.e., DGPs 1 through 8) correspond to over-specification of the

order of nonstationarity. However, in Study 2 under-specification occurs with DGP 0, and DGPs

3 through 8 correspond to over-specification (i.e., the null model over-differences these processes).

The results are reported in Table 1 below. In Study 1 the power is below 50% for DGPs 1, 3,

and 5, which most closely resemble the null model. DGPs 2 and 4 have power exceeding 50% in

some cases (i.e., smaller h and n), whereas power is higher for DGPs 6, 7, and 8. These latter three

models are stationary, not having the unit root structure of the null model, so it is reasonable to

expect higher power in these cases. Results are similar for the trend and seasonal signals. In Study

2, DGP 0 produces 100% power – in this case the normalized RV statistic was explosive, taking on

values in the thousands; this is an expected outcome of the under-specification case. DGP 2 just

provides the size. Power was at or close to 100% for DGPs 3 and 4, which have no nonstationary

seasonality. DGPs 1, 5 and 6 provide power exceeding 70%. Power for DGP 7 does not exceed 10%

and DGP 8 has power around the 50% level.

In order to provide a reference frame for these results, we also discuss LB statistics applied to

fits of the Airline model to the same DGPs. As with the RV study, we keep the parameters in the

fitted model fixed at .6, .6. We do this, rather than using the MLEs in each simulation, in order

that comparisons with the RV statistic – which uses fixed parameters – will be meaningful. Table

2 summarizes the results; we consider the LB at lags 12, 24, and 36, since these are multiples of the

seasonal lag. Although there are some problems with the size (DGP 0 for Study 1 and DGP 2 for

Study 2), the power exceeds 50% in most cases. In terms of comparing the RV and LB methods,

we note that for Study 1 our RV statistic is slightly more powerful for DGPs 4, 5, and 6 (note that

we can maximize power by taking h and n smaller, but there is no a priori reason to consider one
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of the lags 12, 24, or 36 as preferable to the others in the LB statistics), but the LB statistics are

superior in the other cases. In Study 2, only DGP 8 provides greater power than the LB statistics.

Therefore, according to the simulation studies the RV statistic is not superior to LB, but has similar

overall performance.

In summary, we note that the RV procedure is flexible, as any combination of unit roots can

be specified in the null hypothesis, and tested against an alternative where some or all of the roots

no longer lie on the unit circle. The size is at the nominal level, and the power exceeds 50% in

many cases. Generally speaking, the power for RV is lower than that of LB, although the LB is

slightly over-sized. We observe that our statistic emphasizes signal extraction problems so that

it cannot detect misspecifications that do not affect real-time filter performances. In terms of a

recommendation for the choice of h and n, it is noted that smaller values effectively increase the

sample size N used in the RV statistic, and thus increase the power; therefore, these should be

taken as small as practicable.

4.2 Revisions of the KOF, Unemployment, and Manufacturing Data

We next applied these diagnostic tests to the KOF series mentioned in the Introduction. To focus

the discussion, we concentrated on four series that were all identified by X-12-ARIMA as having

seasonality and an I(2) trend. Based on a priori beliefs of boundedness for these series, it would

seem that an I(2) trend is a misspecification – and this is confirmed by sample ACF plots. So

we expected our diagnostic tests to reject these models. We applied both revision diagnostic tests

discussed above – namely the one based on the decomposition approach (Study 1) and the one based

on the direct approach (Study 2); the first was used to show that the I(2) trend was over-specified,

and the second showed that the I(1) trend was under-specified. Now when utilizing the automatic

modeling procedure of X-12-ARIMA, the four series KOF9, KOF25, KOF27, and KOF29 were

specified with Airline models (8). Values of the standardized RV statistic are reported in Table 3.

All of the RV statistics were computed with the null model given by the maximum likelihood

parameter estimates, for each given model specification, when fitted to the entire data set. Recall

from the introduction that LB statistics were generally not significant for all of the KOF series; in

particular, at lag 12 the LB statistics are above the 5% level for all four series, though KOF9 and

KOF29 have a few significant LB statistics at other lags. (Some rejections due to pure chance are

to be expected due to multiple testing.) For KOF9 the Airline model was over-specified, which is

apparent from the negative RV statistics at leads 48 and 60; results were more extreme for Trend

signal than Seasonal signal. However, the positive values under St2 corresponding to (9) indicate

some evidence that this I(1) process is under-specified. This may indicate that a nonstationary

long memory model with order of integration between 1 and 2 would be more suitable. Results for

KOF25, KOF27, and KOF29 indicate that the Airline model is not unsuitable; conversely, there
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are fairly strong indications that model (9) is under-specified.

Next, we considered three manufacturing series from Great Britain (PPIPFU01, PRMNVE02,

PRMNVE03) of length 577, 571, and 571 respectively. These series have the titles “GBR PPI

Manufacturing input fuel,” “GBR Production of commercial vehicles,” and “GBR Production of

passenger cars.” For these series an Airline model was selected by the automatic modeling procedure

of X-12-ARIMA, with significant LB statistics at lag 17 for PRMNVE02 and at lags 14, 15, and

16 for PPIPFU01, both of which required a log transformation. Since these monthly series are

not bounded, we have no a priori grounds to disbelieve an I(2) unit root hypothesis. The results

in Table 4 indicate that the Airline model is actually under-specified for PPIPFU01, so that one

may want to consider an I(3) model. The large RV statistics for (9) for this series indicate an

explosive revision process corresponding to a severe under-specification of the unit root structure.

For PRMNVE02 and PRMNVE03 the Airline model seems to be adequate, whereas model (9) is

under-specified for the former series.

We also looked at three series of unemployment rates for Hungary, Brazil, and Japan (HUN.UNRTSUTT,

BRA.UNRTSUTT, JPN.UNRTSUTT) of length 95, 325, and 577 respectively. Since these series

are bounded by construction (unemployment cannot exceed 100%), we were sceptical about the

correctness of an I(2) specification. Airline models were fitted to all three monthly series, with a

log transformation needed for Brazil and Hungary. While there were no LB problems with Brazil,

Hungary had one significant LB at lag 4, while Japan had several at lags 3, 23, 24, 25, 26, and 27.

Table 5 reveals that the Airline model was adequate for Hungary and Japan, with explosive RV

statistics obtained for the (9) model. For Brazil, there is evidence of over-specification of the Air-

line model at shorter revision leads; interestingly, the evidence of over-specification is even stronger

with the I(1) model! This is admittedly a puzzling result, but shows up some potential problems

with both models.

Finally, we examined four shorter manufacturing series from the U.S. Census Bureau (X3,

X3020, X3022, X10140) of length 155. These are monthly series for which the Airline model was

again selected by X-12-ARIMA (a log transformation was needed for X10140). Like the GBR series

we have no prior grounds for rejecting an I(2) specification; in contrast to those series, these ones

are much shorter. For this reason the window sizes were taken as n = 60, 72, 84. Results are

reported in Table 6, and indicate that the Airline model is generally suitable, although there is

evidence for over-specification for X10140 and under-specification for X3022. Explosive revisions

were present for X3 and X3022 for model (9), indicating that I(1) is under-specified; X3020 also

had some large RV statistics.

To summarize, we find that RV was effective at identifying under-specifications (e.g., model

(9)), and was able to reject I(2) models for some of the KOF series even when the LB statistics

were satisfactory. The performance on shorter series (like the Manufacturing series and Hungarian

unemployment) was adequate, although the revision lead h and window size n had to be adjusted
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downwards. Likewise, the results on longer series (like the Great Britain series and Japanese

unemployment) were as expected; it is surprising that the RV did not detect over-specification for

Japanese unemployment, given the great length, but this may be due to the choice of parameters.

For purposes of comparison we kept h and n the same across series (except for the shorter series,

where this was impossible), but noted that over-specification for the KOF series tended to increase

with h > 60.

Given that the RV diagnostics indicate rejection of a given model, what is to be done next? If

one-step ahead forecasting is the practitioner’s goal, then nothing should be done. If the purpose is

real-time signal extraction, then one should either change the model to one that allows for mean-

reversion by removing unit roots (in the case of over-specification) or dispense with model-based

approaches altogether (e.g., one could implement the Direct Filter Approach to real-time signal

extraction developed in Wildi (2004, 2008)). For the case of under-specification (e.g., an explosive

revisions process), one should add more unit roots to fix the model.

5 Conclusion

It is well-known that models that pass traditional one-step ahead diagnostic tests may perform

rather poorly in a multi-step ahead perspective – recall the discussion in Section 1. It is there-

fore necessary to account for the purpose of a particular application when selecting and checking

model performance. We have proposed a test for model misspecification that fits a general class of

forecasting problems.

Although we restricted attention to real-time signal-extraction problems, the scope of the pro-

posed approach is more general because we allowed for arbitrary signals. Therefore, revision errors

can be “designed” by choosing suitable (artificial) signal definitions. As an example, assume that a

signal is defined by a symmetric MA(3)-filter with coefficients γ−1, γ0, γ1 where γ−1 = γ1. If γ1 = 1,

then the revision error would correspond to the one-step ahead forecasting error. Thus, traditional

(one-step ahead) diagnostics can be replicated in our framework by choosing the above artificial

filter. More generally, revision errors relying on arbitrary linear combinations of one- and multi-step

ahead forecasts can be derived by specifying a corresponding symmetric MA-filter. (Note that the

central weight γ0 is not important here.) Therefore, a diagnostic test can be set up that accounts

for performances involving any linear combination of forecasts. As a consequence, the proposed

diagnostic test can fit a variety of practically relevant estimation problems whose precise structures

can be accounted for explicitly.

Our simulation results confirm a good concordance between asymptotic and finite sample test

distributions; although in our Monte Carlo simulations the LB statistics generally out-performed

RV (in terms of power), the latter is still fairly successful in real-data studies, particularly if the

misspecification directly affects filter performances. Results in the context of the KOF Economic
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Barometer suggest stronger rejection of false unit roots hypotheses, in both seasonal and trend

roots. This is due to the fact that the above series exhibit mid-term trend reversion that are

difficult to detect with statistics relying exclusively on short-term forecasting performances.

Traditional model-fitting diagnostics are based on computing model residuals and testing them

for whiteness, i.e., whether or not they are serially uncorrelated. The signal extraction revision

process is similar in many ways to model residuals, although under the null hypothesis of correct

model and covariance specification they do not behave as white noise, but rather have another

covariance structure (as given in Proposition 1). Both model residuals and signal extraction revi-

sions can be used to assess poorness of model fit, but each examines different aspects of the data’s

dynamics. For the KOF series, model residuals appear to be white and hence no problems with

the over-specified model are indicated, whereas the signal extraction revisions tend to be less than

what one would expect from the model, indicating an over-specification of the fitted model in some

cases. Hence, model residuals and signal extraction revisions present different information about a

series7. Essentially, signal extraction revisions allow the practitioner to focus on particular aspects

or sections of the data’s pseudo-spectrum, whereas model residuals look at the spectrum as a whole.

Given these findings, we present the RV statistic as a useful tool to complement standard

goodness-of-fit statistics such as LB and unit root tests. One drawback of the RV statistic is that

it takes some time and effort to encode the formulas of Proposition 1, and some thought must

also be given to how the models for signal and noise are related to the data process. A second

caution is the finite-sample power of the RV statistic will tend to be lower than desired in the over-

specification case (Table 1). However, we argue that these caveats are offset by the great flexibility

of the RV diagnostics, which essentially allow one to assess the model over several forecasting leads

simultaneously.

Acknowledgement We are indebted to the careful comments of an anonymous referee.
7Even though signal extraction residuals can be written as a linear combination of model residuals, the weights

in this linear combination provide a different view of the model performance.
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Appendix

Proof of Proposition 1. For the first assertion, we write out εt in vector form.

εt = e′nF (n+h)
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− e′nF (n)
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...

Yt+n




= e′n
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−
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= e′nE
(n+h)
t − e′nE

(n)
t ,

where E
(n)
t denotes the error process at time t based on the sample from time t + 1 to t + n. Such

an error process is simply a linear combination of Us and Vs – the differenced signal and noise

processes – at times t + 1 ≤ s ≤ t + n. The same goes for E
(n+h)
t , so εt is a linear combination of

{Us} and {Vs}, which are weakly stationary and uncorrelated with one another. Thus, the revisions

are weakly stationary, too (and if the {Us} and {Vs} processes are strictly stationary, then so is

the revision process). Since these error processes have mean zero, so does the revision process.

Finally, we consider the autocovariance at lag k; considering k ≥ 0, we have

εtεt+k = e′nE
(n+h)
t E

(n+h)
t+k

′
en − e′nE

(n+h)
t E

(n)
t+k

′
en

− e′nE
(n)
t E

(n+h)
t+k

′
en + e′nE

(n)
t E

(n)
t+k

′
en.

Next, we compute each of the error processes:

E
(n)
t = −M (n)∆′

SΣ−1
U Ut+1+dS :t+n + M (n)∆′

NΣ−1
V Vt+1+dN :t+n

E
(n)
t+k = −M (n)∆′

SΣ−1
U Ut+k+1+dS :t+k+n + M (n)∆′

NΣ−1
V Vt+k+1+dN :t+k+n

E
(n+h)
t = −M (n+h)∆′

SΣ−1
U Ut+1+dS :t+n+h + M (n+h)∆′

NΣ−1
V Vt+1+dN :t+n+h

E
(n+h)
t+k = −M (n+h)∆′

SΣ−1
U Ut+k+1+dS :t+k+n+h + M (n+h)∆′

NΣ−1
V Vt+k+1+dN :t+k+n+h

We can conceive of a vector U of dimension k + n + h− dS , which contains the Uj for t + 1 + dS ≤
j ≤ t + k + n + h. Then we can substitute selection matrices into the above expressions, such as

[1n+h−dS
0]U , and so forth. Similarly, we can do the same with the vector V . These expressions may

be substituted into the formula for εtεt+k above, and the expectation of UU ′ is ΣU of appropriate

dimension. The same holds for V , though note that EUV ′ is a zero matrix due to our assumptions

on the components. Then by rearranging terms, we arrive at the stated formula. 2

Pseudo-code for RV . The following text gives a sketch of an implementation of the RV statistic.

The syntax used is Ox. SARIMAmodel is an Ox object that includes many functions pertinent
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to working with SARIMA models: InitParams declares the SARIMA specification, and also gives

initial values for the MLE routine; Estimate gets the MLEs using BFGS (Koopman, Shephard, and

Doornik 1999); Decompose implements the canonical decomposition algorithm of Hillmer and Tiao

(1982) for a narrow suite of SARIMA models somewhat wider than the airline model; buildDiffMa-

trices constructs the matrices ∆S and ∆N referred to in Section 2.1; buildCovMatrices constructs

ΣU and ΣV ; ExtractSignals constructs the filter matrices F , and ComputeMSE constructs the

matrices M . In what follows, we focus on the trend as signal, although other signals (such as

seasonal and nonseasonal) have been considered by us. ComputeRevisionFilter generates the filter

that produces revision errors from the data; it is further detailed below. ComputeRevisionVar

implements the formula of Proposition 1. The variables SlidingSpan and RevLead correspond to n

and h respectively. Following is the main driver for the program.

Main Driver Code:

SlidingSpan = 60;

RevLead = 12;

my = loadmat(“series.mat”);

nobs = sizer(my);

CrossVal = nobs - (SlidingSpan+RevLead);

myModel = my[0:(SlidingSpan-1)];

Revision = zeros(1,CrossVal);

RevCovar = zeros(1,CrossVal);

decl rev = new SARIMAmodel();

rv.SetData(my, 0, 12, < 2000,1 > );

rv.InitParams(<>, <>, < −.6 >, < −.6 >, 0, < 1, 1 >);

rv.Estimate();

rv.Decompose();

rv.buildDiffMatrices(sizer(myModel));

rv.buildCovMatrices();

rv.ExtractSignals();

rv.ComputeMSE();

Filter = rv.ComputeRevisionFilter(RevLead,SlidingSpan);

for(j=0;j < CrossVal; j++)

{
Revision[j] = Filter*myCrossval[j:(j+SlidingSpan+RevLead-1)];

RevCovar[j] = rv.ComputeRevisionVar(RevLead,j,SlidingSpan);

}
Bmat = invert(toeplitz(RevCovar,sizec(RevCovar)));

kappa = Revision*Bmat*Revision′/CrossVal;
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println(“RV: ”,kappa);

kappa = (kappa - 1)/sqrt(2/CrossVal);

println(“Standardized RV: ”,kappa);

delete rv;

Next, we provide some details on ComputeRevisionFilter. The variable FTrend is the matrix

F of Section 2.1, where the signal is trend (and noise is seasonal-irregular).

Code for ComputeRevisionFilter:

buildDiffMatrices(SlidingSpan);

buildCovMatrices();

ExtractSignals();

RevFilterTrend = FTrend[SlidingSpan-1][ ] ∼ zeros(1,Lead);

buildDiffMatrices(SlidingSpan+Lead);

buildCovMatrices();

ExtractSignals();

ComputeMSE();

RevFilterTrend = FTrend[SlidingSpan-1][ ] - RevFilterTrend;

Finally, we provide details on ComputeRevisionVar. The variables FiltSign and FiltSignh are

signal extraction matrices of dimension n and n+h respectively, whereas FiltNoisen and FiltNoisenh

are the same but for the noise process (seasonal-irregular in this case). TrendVar is simply the

matrix M (of appropriate dimension), and deltaT and deltaS are constructed (as global variables)

in buildDiffMatrices, and correspond to differencing matrices for trend and seasonal respectively.

SigUT is the covariance matrix for differenced trend (an MA(2) process in the case of the airline

model), whereas SigUS is the same for the seasonal. Also, IrrInnovar is the variance of the irregular.

The variable Lag refers to the lag k in the revision autocovariance sequence.

Code for ComputeRevisionVar:

decl FiltSign, FiltSignh, FiltNoisen, FiltNoisenh;

decl RevVar;

buildDiffMatrices(SlidingSpan);

buildCovMatrices();

ComputeMSE();

FiltSign = TrendVar*deltaT′*invert(SigUT);

FiltNoisen = TrendVar*deltaS′*invert(SigUS + IrrInnovar*deltaS*deltaS′);

buildDiffMatrices(SlidingSpan+Lead);

buildCovMatrices();

ComputeMSE();
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FiltSignh = TrendVar*deltaT′*invert(SigUT);

FiltNoisenh = TrendVar*deltaS′*invert(SigUS + IrrInnovar*deltaS*deltaS′);

buildDiffMatrices(SlidingSpan+Lead+Lag);

buildCovMatrices();

RevVar = ((FiltSignh*unit(sizec(FiltSignh),sizec(FiltSignh)+Lag))[SlidingSpan-1][ ]

- (FiltSign*unit(sizec(FiltSign),sizec(FiltSign)+Lag+Lead))[SlidingSpan-1][ ])*SigUT

*(((zeros(Lag,sizec(FiltSignh)) | unit(sizec(FiltSignh)))*FiltSignh′)[ ][SlidingSpan-1]

- ((zeros(Lag,sizec(FiltSign)) | unit(sizec(FiltSign)) | zeros(Lead,sizec(FiltSign)))

*FiltSign′)[ ][SlidingSpan-1])

+ ((FiltNoisenh*unit(sizec(FiltNoisenh),sizec(FiltNoisenh)+Lag))[SlidingSpan-1][ ]

- (FiltNoisen*unit(sizec(FiltNoisen),sizec(FiltNoisen)+Lag+Lead))[SlidingSpan-1][ ])*

(SigUS + IrrInnovar*deltaS*deltaS′)

*(((zeros(Lag,sizec(FiltNoisenh)) | unit(sizec(FiltNoisenh)))*FiltNoisenh′)[ ][SlidingSpan-1]

- ((zeros(Lag,sizec(FiltNoisen)) | unit(sizec(FiltNoisen)) | zeros(Lead,sizec(FiltNoisen)))

*FiltNoisen′)[ ][SlidingSpan-1]);
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Table 1. RV Size and Power

DGPs

St1 (T) 0 1 2 3 4 5 6 7 8

Ld 12 .05 .05 .05 .09 .08 .07 .59 .53 .45 .08 .08 .07 .60 .53 .46 .19 .17 .15 .78 .71 .63 .75 .68 .60 .98 .96 .92

Ld 24 .05 .05 .05 .08 .08 .07 .56 .50 .42 .08 .08 .07 .57 .50 .42 .18 .16 .14 .75 .68 .59 .73 .65 .56 .97 .95 .90

Ld 36 .05 .05 .05 .08 .08 .07 .54 .47 .39 .08 .08 .07 .54 .47 .39 .18 .15 .13 .72 .65 .55 .70 .62 .52 .96 .93 .87

Ld 48 .05 .04 .05 .08 .08 .07 .51 .44 .35 .08 .07 .07 .52 .43 .36 .16 .14 .12 .69 .61 .50 .67 .58 .48 .96 .91 .83

Ld 60 .05 .04 .05 .08 .07 .07 .48 .40 .32 .07 .07 .07 .49 .41 .32 .15 .13 .11 .66 .57 .46 .64 .55 .43 .94 .89 .79

St1 (S) 0 1 2 3 4 5 6 7 8

Ld 12 .05 .05 .05 .09 .08 .08 .59 .53 .46 .08 .08 .07 .59 .53 .45 .20 .17 .16 .78 .71 .62 .75 .68 .61 .98 .96 .92

Ld 24 .05 .05 .05 .08 .08 .08 .57 .50 .43 .08 .08 .07 .52 .45 .37 .18 .16 .13 .71 .63 .53 .72 .64 .56 .97 .93 .87

Ld 36 .05 .05 .05 .08 .08 .07 .54 .47 .40 .07 .07 .07 .47 .39 .31 .17 .14 .12 .66 .56 .45 .68 .60 .51 .95 .90 .81

Ld 48 .05 .05 .05 .08 .08 .07 .51 .44 .37 .07 .07 .06 .43 .34 .26 .15 .13 .11 .61 .51 .38 .65 .57 .46 .93 .86 .75

Ld 60 .05 .05 .05 .08 .07 .07 .48 .40 .33 .07 .07 .06 .39 .30 .21 .14 .12 .10 .57 .45 .32 .62 .52 .41 .91 .82 .67

St2 0 1 2 3 4 5 6 7 8

Ld 12 1.0 1.0 1.0 .87 .83 .77 .05 .05 .05 1.0 1.0 1.0 1.0 1.0 1.0 .91 .87 .83 .98 .97 .94 .09 .09 .08 .62 .57 .49

Ld 24 1.0 1.0 1.0 .86 .80 .75 .05 .05 .05 1.0 1.0 1.0 1.0 1.0 1.0 .90 .85 .80 .98 .96 .93 .09 .09 .08 .60 .54 .46

Ld 36 1.0 1.0 1.0 .84 .78 .72 .05 .05 .05 1.0 1.0 1.0 1.0 1.0 1.0 .88 .83 .78 .97 .95 .91 .09 .09 .08 .58 .51 .43

Ld 48 1.0 1.0 1.0 .82 .76 .70 .05 .05 .05 1.0 1.0 .99 1.0 1.0 .99 .87 .81 .74 .97 .94 .89 .09 .08 .08 .56 .48 .40

Ld 60 1.0 1.0 1.0 .80 .73 .66 .05 .05 .05 1.0 1.0 .99 1.0 1.0 .99 .85 .79 .71 .96 .92 .86 .09 .09 .08 .53 .45 .37

Table 1: Entries indicate empirical size and power as a percentage, computed via 10,000 Monte
Carlo simulations, of the RV statistic. The DGPs 0 through 8 indicate the data generating process
that was simulated, with the Lead (Ld) and type of Study (St1, St2) on the left. St1 (S) refers to
revision statistics based on the seasonal signal in (8), whereas St1 (T) refers to the trend in the
same model. For these studies DGP 0 corresponds to the null hypothesis, so this column gives size,
whereas the other columns give power. For St2 the null hypothesis corresponds to DGP 2 given in
(9), so this column gives size and the other columns give power. The three numbers in each cell
are size/power for window sizes 120, 150, and 180 respectively, from left to right.
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Table 2. LB Size and Power

DGPs

0 1 2 3 4 5 6 7 8

St1 .05 .06 .07 .15 .14 .13 .97 .83 .72 .07 .08 .10 .57 .60 .56 .18 .18 .18 .72 .72 .68 .97 .83 .77 1.0 .99 .98

St2 1.0 1.0 1.0 1.0 1.0 1.0 .06 .06 .07 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .08 .09 .10 .56 .60 .56

Table 2: Entries indicate empirical size and power as a percentage, computed via 10,000 Monte
Carlo simulations, of the LB statistic (computed using fixed parameters). The DGPs 0 through 8
indicate the data generating process that was simulated, with the type of Study (St1, St2) on the
left. DGP 0 corresponds to the null hypothesis for St1, so this column gives size, whereas the other
columns give power. For St2 the null hypothesis corresponds to DGP 2, so this column gives size
and the other columns give power. The three numbers in each cell are size/power for LB lags 12,
24, and 36 respectively, from left to right.

Table 3. Standardized RV statistics for the KOF series.

Series

St1 (T) KOF9 KOF25 KOF27 KOF29

Ld 12 -.32 -.59 .45 -1.10 -1.15 -1.10 -1.35 -1.38 -1.06 -.86 -.55 -.61

Ld 24 -1.40 -1.77 -.85 -.78 -.80 -0.72 -1.25 -1.25 -.88 -.55 -.22 -.24

Ld 36 -1.48 -1.87 -.96 -1.11 -1.16 -1.15 -1.19 -1.20 -.84 -.55 -.21 -.24

Ld 48 -2.20 -2.70 -1.88 -1.39 -1.45 -1.52 -1.47 -1.46 -1.16 -.99 -.67 -.78

Ld 60 -2.56 -3.10 -2.33 -1.26 -1.32 -1.40 -1.66 -1.70 -1.50 -1.16 -.86 -1.02

St1 (S) KOF9 KOF25 KOF27 KOF29

Ld 12 -.24 -.65 .41 -1.09 -.95 -.67 -1.58 -1.19 -.96 -.90 -.71 -.50

Ld 24 -.15 -.65 .34 -1.51 -1.49 -1.23 -1.17 -1.11 -.99 -.59 -.34 -.08

Ld 36 -.88 -1.45 -.47 -1.23 -1.27 -1.15 -2.19 -1.88 -1.75 -1.00 -.78 -.62

Ld 48 -1.45 -2.11 -1.21 -1.22 -1.04 -.83 -.49 -.42 .03 -.72 -.41 -.16

Ld 60 -1.19 -2.18 -1.33 -1.19 -1.04 -.82 -1.40 -1.17 -.88 -1.13 -.89 -.71

St2 KOF9 KOF25 KOF27 KOF29

Ld 12 2.60 2.20 1.86 1.74 1.14 .76 3.74 3.04 2.76 2.07 1.72 .59

Ld 24 2.50 2.08 1.72 2.21 1.63 1.30 4.01 3.32 3.07 2.45 2.13 1.00

Ld 36 2.38 1.94 1.56 1.72 1.07 .66 3.67 2.93 2.64 2.67 2.37 1.22

Ld 48 2.42 1.97 1.59 1.96 1.32 .93 4.00 3.28 3.04 2.85 2.57 1.39

Ld 60 2.45 2.00 1.61 2.03 1.38 .98 3.68 2.90 2.62 2.49 2.16 .86

Table 3: Normalized RV test statistics for KOF series 9, 25, 27, and 29. For St1 an Airline model
was fitted to the data using Maximum Likelihood Estimation, and the corresponding parameter
values were used to determine the null hypothesis. For St2 model (9) was fitted instead. The three
numbers in each cell are normalized RV at window sizes 120, 150, and 180 respectively, from left
to right.
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Table 4. Standardized RV statistics for the GBR series.

Series

St1 (T) PPIPFU01 PRMNVE02 PRMNVE03

Ld 12 2.27 3.25 3.03 .81 .70 .81 .80 .77 .99

Ld 24 2.30 3.29 3.06 1.04 .94 1.07 1.09 1.04 1.30

Ld 36 1.34 2.32 2.05 1.28 1.19 1.34 1.37 1.34 1.62

Ld 48 1.08 2.06 1.77 1.54 1.46 1.62 1.75 1.73 2.03

Ld 60 .79 1.77 1.47 1.77 1.70 1.87 1.75 1.74 2.04

St1 (S) PPIPFU01 PRMNVE02 PRMNVE03

Ld 12 2.66 3.65 3.44 1.06 1.03 1.34 .30 .57 .76

Ld 24 1.94 2.93 2.68 1.04 1.06 1.40 .57 .85 1.05

Ld 36 1.43 2.41 2.14 .75 .83 1.14 .87 1.17 1.38

Ld 48 .98 1.96 1.67 1.03 1.17 1.52 1.19 1.51 1.74

Ld 60 .86 1.85 1.55 1.52 1.57 1.93 1.44 1.77 2.01

St2 PPIPFU01 PRMNVE02 PRMNVE03

Ld 12 405.12 412.44 412.16 2.26 2.75 3.43 -.21 -.20 -.44

Ld 24 404.43 412.04 411.99 2.53 3.04 3.75 -.10 -.09 -.34

Ld 36 381.64 388.73 387.98 2.87 3.40 4.14 .20 .23 -.01

Ld 48 372.82 379.90 379.04 3.17 3.73 4.49 .57 .61 .38

Ld 60 378.68 386.34 386.01 3.52 4.10 4.90 .75 .79 .57

Table 4: Normalized RV test statistics for GBR series PPIPFU01, PRMNVE02, and PRMNVE03.
For St1 an Airline model was fitted to the data using Maximum Likelihood Estimation, and the
corresponding parameter values were used to determine the null hypothesis. For St2 model (9) was
fitted instead. The three numbers in each cell are normalized RV at window sizes 120, 150, and
180 respectively, from left to right.
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Table 5. Standardized RV statistics for the Unemployment series.

Series

St1 (T) HUNGARY BRAZIL JAPAN

Ld 12 (1) -.51 -.65 -.03 -.77 -2.05 -2.32 .40 .41 .45

Ld 24 (2) -.48 -.62 -.00 -.40 -1.72 -1.93 -.16 -.16 -.14

Ld 36 (3) -.43 -.56 .03 .03 -1.34 -1.58 -.24 -.25 -.24

Ld 48 (6) -.75 -.93 -.34 .42 -.90 -1.07 -.82 -.84 -.86

Ld 60 (12) -1.00 -.91 -.21 .92 -.39 -.45 -1.32 -1.37 -1.40

St1 (S) HUNGARY BRAZIL JAPAN

Ld 12 (1) -.51 -.65 -.03 -.74 -2.12 -2.36 .23 .52 .57

Ld 24 (2) -.16 -.64 -.12 -.34 -1.78 -1.92 .12 .37 .33

Ld 36 (3) -.36 -.42 .16 .24 -1.50 -1.64 -.16 .12 .08

Ld 48 (6) -.51 -.64 -.10 .60 -1.02 -1.13 -.29 -.04 -.05

Ld 60 (12) -1.23 -.90 -.22 1.23 -.76 -.70 -1.28 -1.10 -1.21

St2 HUNGARY BRAZIL JAPAN

Ld 12 (1) 7.01 5.14 2.04 -2.38 -3.37 -2.62 30.39 32.10 34.06

Ld 24 (2) 7.23 5.36 2.23 -1.99 -2.99 -2.17 28.93 30.63 32.59

Ld 36 (3) 7.45 5.58 2.41 -1.79 -2.81 -1.95 28.03 29.73 31.70

Ld 48 (6) 8.05 6.19 2.90 -1.56 -2.62 -1.70 27.57 29.29 31.30

Ld 60 (12) 9.56 7.73 4.38 -1.04 -2.10 -1.05 27.98 29.77 31.86

Table 5: Normalized RV test statistics for Unemployment series for Hungary, Brazil, and Japan.
For St1 an Airline model was fitted to the data using Maximum Likelihood Estimation, and the
corresponding parameter values were used to determine the null hypothesis. For St2 model (9) was
fitted instead. The three numbers in each cell are normalized RV at window sizes 120, 150, and
180 respectively for BRAZIL and JAPAN, from left to right. The window sizes for HUNGARY are
60, 66, and 72; also the HUNGARY revision leads are in parentheses: 1, 2, 3, 6, and 12.

29



Table 6. Standardized RV statistics for the Manufacturing series.

Series

St1 (T) X3 X3020 X3022 X10140

Ld 12 1.08 1.55 1.45 .73 .88 1.50 1.23 1.92 2.29 -1.38 -1.38 -.87

Ld 24 1.11 1.64 1.63 .33 .40 1.05 -.35 .20 .43 -2.15 -2.27 -1.72

Ld 36 1.09 1.67 1.61 .37 .49 1.24 -.69 -.11 .18 -1.70 -1.82 -1.11

Ld 48 .68 1.47 1.24 -.70 -.55 .05 -.56 .05 .51 -2.48 -2.61 -2.06

Ld 60 .12 1.07 .80 -.47 -.28 .65 -1.34 -.77 -.29 -2.10 -2.23 -1.53

St1 (S) X3 X3020 X3022 X10140

Ld 12 1.27 1.00 1.13 1.14 1.50 1.73 2.19 2.46 3.10 -.57 -.08 .77

Ld 24 1.16 1.04 1.47 .45 .87 .99 1.59 1.92 2.72 -1.00 -.41 .47

Ld 36 .84 .95 1.21 .89 1.57 2.01 .47 .74 2.07 -2.00 -1.45 -.68

Ld 48 1.61 1.14 1.50 .38 1.01 1.20 .59 1.45 2.64 -1.73 -1.19 -.36

Ld 60 .86 .95 .66 -.75 -.20 -.93 -.78 .08 1.09 -2.35 -1.66 -1.10

St2 X3 X3020 X3022 X10140

Ld 12 15.41 16.18 18.07 5.72 6.91 8.30 11.11 12.17 11.91 -1.20 -.75 .01

Ld 24 13.29 14.12 16.24 5.62 6.96 8.66 11.20 12.49 12.40 -1.54 -1.07 -.31

Ld 36 12.17 13.30 15.89 1.35 2.55 4.00 5.22 6.28 5.44 -1.04 -.47 .48

Ld 48 12.14 13.80 17.48 -2.88 -1.96 -1.30 3.12 4.24 2.87 -1.73 -1.19 -.13

Ld 60 4.17 4.61 6.74 -2.64 -1.64 -.82 2.84 4.21 2.63 -1.92 -1.24 .11

Table 6: Normalized RV test statistics for the Manufacturing series X3, X3020, X3022, and X10140.
For St1 an Airline model was fitted to the data using Maximum Likelihood Estimation, and the
corresponding parameter values were used to determine the null hypothesis. For St2 model (9) was
fitted instead. The three numbers in each cell are normalized RV at window sizes 60, 72, and 84
respectively, from left to right.
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