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Abstract

In many surveys, the goal is to estimate the proportion of the population within different domains
with a certain characteristic of interest. This estimation problem is often complicated by survey non-
response and the difficulty in modeling the non-response mechanism. In this paper we develop a new
method for analyzing categorical data with non-response when there is uncertainty about ignorability,
which incorporates the idea that there are many a priori plausible ignorable and non-ignorable models.
We consider saturated submodels of the full model, which may have a mixture of ignorable and non-
ignorable components, and use Bayesian averaging to incorporate model uncertainty. This method is
illustrated using data from the 2000 Accuracy and Coverage Evaluation Survey. A simulation study is
used to evaluate the performance of the model and to compare the partition model to other popular
non-ignorable Bayesian models.

1 Introduction

The goal of the decennial census is to count every housing unit and individual in the country once and
in the correct place. Unfortunately, this goal cannot be completely achieved since some housing units and
individuals are not counted, counted multiple times, counted in the wrong place, or it may be that a record
does not correspond to a person. If a person falls into this first category, he is a census omission. If a census
enumeration falls into one of the remaining categories, we say that the record is an erroneous enumeration
(EE). Otherwise the record is considered to be a correct enumeration (CE).

To estimate the probability that a census record is a correct enumeration, a sample of census records is
taken and follow-up interviews are conducted. For the majority of the sampled records there is sufficient
information to determine if the enumeration is correct or erroneous. However, there is a portion of the sample
which cannot be resolved. If the unresolved enumerations are very different than the resolved enumerations,
the estimate of the probability that an enumeration is correct could be inaccurate. See Hogan (1992) or
Chen et al. (2010) for further discussion on estimating enumeration error in the U. S. census.

The previous discussion gives an example of incomplete data where the unresolved census enumerations
are missing. In this paper we consider the general problem of analyzing a data set consisting of a binary
response variables Yij , which may be missing for certain records, that have been post-stratified based on a
vector of categorical covariates Xij , which are observed for all records. Rij is an indicator variable which is
1 if a record is resolved and 0 otherwise. Here, i = 1, . . . , I indexes the post-strata and j = 1, . . . ,mi indexes
the records in the ith post-stratum. In our earlier example, Yij = 1 if a record is a CE and Yij = 0 if a record
is an EE, Xij is a vector of categorical variables describing the characteristics of a record, and Rij is 1 or 0
if a record is resolved or unresolved, respectively. We do not observe Yij if Rij = 0. Let Yi =

∑mi

j=1 YijRij
be the total number of resolved correct enumerations in cell i and Ri =

∑mi

j=1Rij be the total number of
resolved enumerations in cell i. A typical presentation of this type of data is given in Table 1.

∗This report is released to inform interested parties of (ongoing) research and to encourage discussion (of work in progress.)
The views expressed are those of the authors and not necessarily those of the U.S. Census Bureau. The authors would like to
thank Richard Griffin and Yves Thibaudeau for their careful review of this paper and their helpful comments.
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Table 1: Example

Resolved Unresolved

CE EE CE EE Total

Cell 1 Y1 R1 − Y1 ? ? n1 −R1

Cell 2 Y2 R2 − Y2 ? ? n2 −R2

· · · · · · · · · · · · · · · · · ·
Cell I YI RI − YI ? ? nI −RI

Let

pi = P (CE | Cell = i) ,

πi1 = P (Resolved | CE,Cell = i) ,

πi0 = P (Resolved | EE,Cell = i) ,

i = 1, . . . , I. If πi1 = πi0, cell i is said to be ignorable. Said another way, using the terminology of Little
and Rubin (2002), the missing data in cell i is missing at random (MAR), since the missing data mechanism
depends only on which cell the observation belongs to, and not on the characteristic of interest. If πi0 6= πi1,
cell i is said to be non-ignorable, or not missing at random (NMAR).

Our goal is to estimate pi, πi1, and πi0 for each i = 1, . . . , I and to impute values for the unresolved cell
counts. Conceptually, the imputation of resolved status is only needed within sampled clusters or segments,
which are completely enumerated (with respect to their frame) and do not require sample weights. However,
when estimating the parameters of an underlying model, the sampled areas may need to be combined, and
the sample design will need to be accounted for. Within a sampled area, it is usually assumed that the
likelihood has the form

I∏
i=1

{(
ni
Ri

)(
Ri
Yi

)
(piπi1)

Yi ((1− pi)πi0)
Ri−Yi (pi(1− πi1) + (1− pi)(1− πi0))

ni−Ri

}
. (1)

Note that there are 3 ∗ I free parameters and 2 ∗ I data points so that the parameters are not identifiable
without further assumptions.

There is clearly a great difficulty in estimating the proportion of the population with the characteristic
of interest when the sample contains missing data since there is so little information about P (Y | R = 0)
contained in the data. Several approaches to modeling categorical data with non-ignorable non-response have
been proposed. Baker and Laird (1988) showed that certain non-ignorable log-linear models are identifiable
and gave an EM algorithm for estimating the parameters. However, they noted that it can often be the case
that the EM algorithm converges to a boundary solution giving unrealistic estimates. This phenomenon
occurs when fitting the identifiable non-ignorable log-linear model (XY, Y R) to the data set presented in
Table 2 in Section 3.1; the estimated probabilities are π̂i1 = 1 for all i. The notation (XY, Y R) means that
there is dependence between the variables X and Y and the variables Y and R. For a two way contingency
table with one supplemental margin, this is the only non-ignorable log-linear model with estimable parameters
(Little and Rubin, 2002). Park and Brown (1994) gave a geometric argument for why boundary solutions can
occur. They used a prior distribution on the model parameters and the EM algorithm to obtain parameter
estimates that are pushed away from the boundary.

Stasny (1991) described an empirical Bayes method which makes use of hierarchical models and small area
techniques to estimate a proportion, allowing for non-response. Nandram and Choi (2002) extended the work
of Stasny (1991) by using a full Bayesian model and “centering” a non-ignorable model around an ignorable
model. Nandram and Choi (2002) introduce parameters which control the extent of non-ignorability of the
model. Forster and Smith (1998) constructed log-linear models that are also centered around an ignorable
model and introduced parameters which control the extent of non-ignorability when there is uncertainty
about the degree of non-ignorability.
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Some authors have questioned the value of attempting to model the missingness mechanism for NMAR
models. Rubin et al. (1995) argue that ignorable models can be quite accurate and much simpler than
non-ignorable models. They believe that follow-up information tends to support the utility of the ignorable
assumption so long as non-response is limited and good covariate information is available. Tsiatis (2006)
does not believe that NMAR models are useful since the correctness of the model cannot be verified using the
observed data. Molenberghs et al. (2001) argue that non-ignorable models are often simpler than ignorable
models, can provide realistic results, and can therefore be used as a good starting point. They believe that
since an ignorable model can usually be formulated as a special member of a general family of non-ignorable
models, the concept of fitting a single model should be replaced by a sensitivity analysis, where several
plausible non-ignorable models are contrasted.

It is certainly true that ignorable methods are usually simpler than non-ignorable methods and that it
is impossible to verify the correctness of a non-ignorable model. However, it is also impossible to verify the
correctness of an ignorable model, and an ignorable model may be undesirable or unrealistic since one can
never completely exclude the possibility that the data generation process is governed by a NMAR model.
For example, in the earlier census enumeration problem, intuition tells us that it should be easier to resolve a
correct enumeration than an erroneous enumeration. In fact, it was shown in Molenberghs et al. (2008) that
there does not exist an omnibus test of MAR versus NMAR. Hence any model depends on non-verifiable
modeling assumptions.

In this paper we describe a novel method of estimation when there is uncertainty about ignorability,
which can be used as a part of a sensitivity analysis. Our method of estimation tries to incorporate the
idea that there are many a priori plausible ignorable and non-ignorable models. We consider both ignorable
and non-ignorable parametric submodels of the likelihood given in equation (1) that use the data as fully as
possible. We then average the estimates obtained from these submodels by considering which submodels are
a posteriori most likely. Section 2 shows how to construct this partition model and how to obtain parameter
estimates by averaging over a collection of saturated submodels. In Section 3, we analyze a data set from
the 2000 Accuracy and Coverage Evaluation Survey (A.C.E.) using this partition model and compare the
results to commonly used non-ignorable models. In Section 4 we conduct a simulation study to compare the
different models we have considered. Concluding remarks are made in Section 5.

2 A non-ignorable partition model

Due to the non-identifiability of the full model in equation (1), there is not enough information in the
observed data to estimate the parameters of interest. For this reason it makes sense to consider submodels
which use the data as fully as possible, that is, to consider saturated submodels.

If each cell is ignorable then we have a saturated model since there are two free parameters for each
cell, pi and πi = πi1 = πi0, i = 1, . . . , I, which can be estimated using, for example, maximum likelihood
estimates. Another model assumption that can be made is that parameters are shared across cells. For
example, if we believe there is similarity between cell i and cell j, then we could assume that πi1 = πj1 = π1
and πi0 = πj0 = π0. We then have a total of four free parameters in cells i and j, π1, π0, pi, and pj , hence
an estimable, saturated model. This assumption expresses the belief that the missingness mechanism is the
same for each of the two cells. More generally, we can obtain an identifiable, saturated model, if we know a
priori that a cell is either ignorable, or that it shares parameters with exactly one other cell.

Our goal is to find a method which takes into account the fact that there are many a priori plausible
saturated models and to avoid unrealistic boundary estimates. This naturally leads to the idea of partition
models considered in, for example, Hartigan (1990), Malec and Sedransk (1992), and Consonni and Veronese
(1995). Following Malec and Sedransk (1992), we say that a partition of a set I = {1, 2, . . . , I} is a
collection M = {M1,M2, . . . ,Md} of subsets of I, which we call groups, where the Mj are disjoint with
union I. Let M I = {m ∈M : |m| = 1} be the collection of singletons in M , and MNI = {m ∈M : |m| = 2}
be the collection of paired cells in M . A general saturated model can be written MS =

{
MNI ,M I

}
consisting of n pairs of non-ignorable cells in MNI = {(i1, i2) , . . . , (i2n−1, i2n)} and I − 2n ignorable cells in
M I = {i2n+1, . . . , iI}.

Starting from the full likelihood given in equation (1), we can write the likelihood for a saturated sub-
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model, given the parameters p, π1, π0, and a model partition MS , as

f (R,Y | p,π1,π0,MS) = fNI
(
R,Y | p,π1,π0,M

NI
)
× fI

(
R,Y | p,π1,π0,M

I
)

where

fNI
(
R,Y | p,π1,π0,M

NI
)

=

n∏
j=1

{(
ni2j−1

Ri2j−1

)(
Ri2j−1

Yi2j−1

)(
ni2j
Ri2j

)(
Ri2j
Yi2j

)
p
Yi2j−1

i2j−1

(
1− pi2j−1

)Ri2j−1
−Yi2j−1

× p
Yi2j

i2j
(1− pi2j )Yi2j

−Zi2j π
Yi2j−1

+Yi2j

j1 π
Ri2j−1

−Yi2j−1
+Ri2j

−Yi2j

j0

×
[
pi2j−1

(1− πj1) +
(
1− pi2j−1

)
(1− πj0)

]ni2j−1
−Ri2j−1

×
[
pi2j (1− πj1) +

(
1− pi2j

)
(1− πj0)

]ni2j
−Ri2j

}

and

fI
(
R,Y | p,π1,π0,M

I
)

=

I∏
j=2n+1

{(
nij
Rij

)(
Rij
Yij

)
p
Yij

ij
(1− pij )Rij

−Yij π
Rij

ij
(1− πij )nij

−Rij

}
.

If we knew with certainty that the partition MS was correct, we could use maximum likelihood es-
timates for the unknown parameters. However, since there may be many partitions under consideration
and significant uncertainty as to which partition is correct, we instead use a Bayesian procedure for esti-
mation. Given a partition MS , let πj1 and πj0, j = 1, . . . , n, be the parameters that are shared across
cells and πij , j = 2n + 1, . . . , I, the parameters from the ignorable cells. For our prior specification we let

πj1
i.i.d.∼ Beta (α1, β1), πj0

i.i.d.∼ Beta (α0, β0), pij
i.i.d.∼ Beta (a, b), and πij

i.i.d.∼ Beta (α, β). This specifica-
tion implies that the parameters associated to the cells M I (or MNI) are exchangeable. Then the prior
distribution of the parameters given a partition MS is

π (p,π1,π0 |MS) =

n∏
j=1

{
1

B (α1, β1)
πα1−1
j1 (1− πj1)

β1−1 × 1

B (α0, β0)
πα0−1
j0 (1− πj0)

β0−1
}

×
I∏

j=2n+1

{
1

B (a, b)
pa−1ij

(
1− pij

)b−1 × 1

B (α, β)
πα−1ij

(
1− πij

)β−1}
,

where B (x, y) = Γ(x)Γ(y)/Γ(x+y) and Γ(z) =
∫∞
0
tz−1e−tdt is the standard gamma function. The posterior

distribution of the parameters given the data and a model is

π (p,π1,π0 | R,Y,MS) =
f (R,Y | p,π1,π0,MS)π (p,π1,π0 |MS)∫∫∫

f (R,Y | p,π1,π0,MS)π (p,π1,π0 |MS) dp dπ1dπ0
. (2)

It can often be the case that the denominator of (2) does not have a closed form, so that inference must
be made using Markov chain Monte Carlo techniques. However, in our example, we can use the binomial
theorem and the expansion

[p (1− π1) + (1− p) (1− π0)]
n−R

=

n−R∑
r=0

(
n−R
r

)
pr (1− π1)

r
(1− p)n−R−r (1− π0)

n−R−r
(3)

to simplify the calculations. Equation (3) allows us to represent the denominator of (2) as the integral of
the sum of kernels of the beta distribution, so that (2) has a closed form representation and we can obtain
the moments of the posterior distribution.
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If i is an ignorable cell, then the posterior means are given by

E (pi | R,Y,MS) =
B (Yi + a+ 1, Ri − Yi + b)

B (Yi + a,Ri − Yi + b)
=

Yi + a

Ri + a+ b

E (πi | R,Y,MS) =
B (Ri + α+ 1, ni −Ri + β)

B (Ri + α, ni −Ri + β)
=

Ri + α

ni + α+ β
.

If i and j are paired non-ignorable cells, the posterior means are given by

E (pi | R,Y,MS) =

ni−Ri∑
r=0

nj−Rj∑
s=0

{(
ni −Ri

r

)(
nj −Rj

s

)
B (Yi + r + a+ 1, ni − Yi − r + b)

×B (Yj + s+ a, nj − Yj − s+ b)B (Yi + Yj + α1, r + s+ β1)

×B (Ri − Yi +Rj − Yj + α0, ni −Ri − r + nj −Rj − s+ β0)

}
/Cij ,

E (π1 | R,Y,MS) =

ni−Ri∑
r=0

nj−Rj∑
s=0

{(
ni −Ri

r

)(
nj −Rj

s

)
B (Yi + r + a, ni − Yi − r + b)

×B (Yj + s+ a, nj − Yj − s+ b)B (Yi + Yj + α1 + 1, r + s+ β1)

×B (Ri − Yi +Rj − Yj + α0, ni −Ri − r + nj −Rj − s+ β0)

}
/Cij ,

and

E (π0 | R,Y,MS) =

ni−Yi∑
r=0

nj−Rj∑
s=0

{(
ni −Ri

r

)(
nj −Rj

s

)
B (Yi + r + a, ni − Yi − r + b)

×B (Yj + s+ a, nj − Yj − s+ b)B (Yi + Yj + α1, r + s+ β1)

×B (Ri − Yi +Rj − Yj + α0 + 1, ni −Ri − r + nj −Rj − s+ β0)

}
/Cij ,

where

Cij =

ni−Ri∑
r=0

nj−Rj∑
s=0

{(
ni −Ri

r

)(
nj −Rj

s

)
B (Yi + r + a, ni − Yi − r + b)B (Yj + s+ a, nj − Yj − s+ b)

×B (Yi + Yj + α1, r + s+ β1)B (Ri − Yi +Rj − Yj + α0, ni −Ri − r + nj −Rj − s+ β0) .

Let {M1, . . . ,MK} be the set of models under consideration and let P be a prior probability measure on
this set. The posterior probability that a model is correct can be computed using Bayes’ formula:

P (Ml | R,Y) =
P (R,Y |Ml)P (Ml)

P (R,Y)
=

P (R,Y |Ml)P (Ml)∑
l

P (R,Y |Ml)P (Ml)
, (4)
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where P (R,Y |M) =
∫∫∫

f (R,Y | p,π1,π0,M)π (p,π1,π0 |M) dp dπ1dπ0. If P is the uniform proba-
bility measure, that is, P (Mi) = P (Mj) for all i and j so that all models are a priori equally likely, then (4)
simplifies to

P (Ml | R,Y) =
P (R,Y |Ml)∑
l

P (R,Y |Ml)
.

Because we are are assuming Beta priors for the model parameters we can again use the binomial theorem
to expand the likelihood and calculate the probabilities given by (4) explicitly.

Once we have specified a probability measure on the set of models, we can use the posterior probabilities
(4) to average the parameter estimates for the different models. For example,

p̂i = E (pi | R,Y) =
∑
l

E (pi | R,Y,Ml)P (Ml | R,Y) .

Similar expressions can be found for π̂i1 and π̂i0.
The remaining problems are to choose the set of models and to specify a prior distribution for this set. In

our examples, we consider the set of all possible saturated models, that is, all combinations of ignorable cells
and cells that share parameters with exactly one other cell. The computations required for this method are
reasonable if the number of cells is not too large. However, the number of possible saturated models increases
rapidly as the number of cells increase. For example, if there are 10 cells, the number of possible saturated
models is 9496. If there are 15 cells, the number of possible saturated models increases to 10,349,536.

In selecting a prior distribution for the set of possible models, we may believe that an ignorable model
is a reasonable starting point for our analysis, but would like to allow for the possibility of non-ignorability
and to incorporate some uncertainty about the degree of non-ignorability. This is consistent with the idea
of “centering” a non-ignorable model around an ignorable model (Forster and Smith, 1998; Nandram and
Choi, 2002). For this reason, instead of using a uniform prior on the set of models, it may make sense to
put more prior weight on the ignorable components of the models. In our examples we assume each cell has
a prior probability of 0.5 of being ignorable. The remaining partitions are then equally likely.

3 Data Example

3.1 Description of the data

In this section we apply the methodology described in Section 2 to a data set and compare the method to
non-ignorable hierarchical Bayesian models which do not use partitioning. The data set is presented in Table
2 and is constructed using A.C.E. 2000 data post-stratified into 15 cells, so that the elements of each cell
share similar characteristics and correct enumeration rate. See U.S. Census Bureau (2004) for a complete
description of the A.C.E. 2000 design and Moldoff and Viehdorfer (2010) for the methods used to construct
Table 2. Grouping according to correct enumeration rate was done under the assumption that the unresolved
enumerations are missing at random. The variables used to construct this data set are before followup group
(B = 1 – 5), date of birth reported (D = 0, 1), Hispanic origin (H = 0, 1), imputed characteristics (I =
0, 1), and proxy/non-proxy (P = 0, 1). The before followup group is a categorical variable ranging from 1
– 5 indicating whether a household is a match, a conflicting household, a partial household non-match, a
whole household non-match, or a household for which there is insufficient information. The variable D is 1
or 0 corresponding to whether date of birth is reported or not reported, respectively, and the variable H is
1 or 0 corresponding to whether the person is of Hispanic origin or not. The P variable indicates whether
information was collected by proxy; for example, if a neighbor reported information instead of the individual
of interest. Finally, the variable I indicates whether imputation was needed for one or more characteristics.

3.2 Fit of the models to the data

In typical statistical problems in which some inference is to be made based on a sample of data, there is
uncertainty in estimates due to the finiteness of the sample. In missing data problems, in addition to finite
sample statistical imprecision, there is statistical uncertainty (Molenberghs et al., 2001) due to the lack
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Table 2: A.C.E. 2000 data

Cell Resolved Unresolved

Cell Composition CE EE # %

1 B = 1/D = 1 576833 6177 7681 1.3
2 B = 1/D = 0/P = 1 5477 698 482 7.2
3 B = 1/D = 0/P = 0 24956 1077 691 2.6
4 B = 2/D = 1 3875 157 1072 21.0
5 B = 2/D = 0 612 39 209 24.3
6 B = 3/D = 0 2336 50 314 11.6
7 B = 3/D = 1/H = 1 3475 30 393 10.1
8 B = 3/D = 1/H = 0/O = 1 9460 169 624 6.1
9 B = 3/D = 1/H = 0/O = 0 4748 62 799 14.2
10 B = 4/D = 1 36835 612 5502 12.8
11 B = 4/D = 0/P = 1 1226 57 350 21.4
12 B = 4/D = 0/P = 0 2460 66 472 15.7
13 B = 5/I = 0 2181 157 1550 39.9
14 B = 5/I = 1/H = 0 3132 479 4239 54.0
15 B = 5/I = 1/H = 1 409 38 641 58.9

Total 678015 9868 25019 3.5

of information in missing data. Consider “optimistic” estimates, where estimates are constructed as if all
missing data has the characteristic of interest, and “pessimistic” estimates, where estimates are constructed
as if all missing data does not have the characteristic of interest. Any reasonable point estimate should be
between these two extremes. Unfortunately, there does not seem to be any way to distinguish between the
estimators in this range. Let p̂L denote the lower pessimistic estimate and p̂U denote the upper optimistic
estimate. Let p̂t = (1 − t)p̂L + tp̂U , t ∈ [0, 1] be the set of estimates in the interval [p̂L, p̂U ]. Suppose we
evaluate the quality of our statistic using the quadratic loss function. Then straightforward calculations give
the risk of p̂t as

R (p̂t, p) = E (p̂t − p)2 = ((t− 1)p(1− π1) + t(1− p)(1− π0))
2

+O (1/n) . (5)

The first term on the right hand side of equation (5) is constant and gives the risk due to statistical
uncertainty, that is, the risk due to the missingness of data. The risk due to statistical imprecision is
of order 1/n. This shows that the statistic p̂t can have substantial risk for any value of t, even for
arbitrarily large values of n. The first term on the right hand side of equation (5) is minimized at
t∗ = p (1− π1) / [p (1− π1) + (1− p) (1− π0)]. Unfortunately, t∗ is a function of the parameters and is
not estimable without some additional knowledge of the structure of the parameters.

A first step in the analysis is to determine what can be done without making any further model assump-
tions. The estimable quantities are functions of the probability of being a resolved, correct enumeration,
pπ1, the probability of being a resolved, erroneous enumeration, (1 − p)π0, and the probability of being
unresolved, p (1− π1) + (1− p) (1− π0). Due to the non-identifiability of the likelihood, it is impossible to
find estimates of the parameters p, π1, and π0 with properties such as unbiasedness or consistency. We can,
however, find a range of estimates for the unknown parameters. Table 3 gives a range of plausible estimates
for the unknown parameters with range endpoints corresponding to the optimistic and pessimistic estimates
discussed previously. For cells with a high percentage of missing data there can be a wide range of reasonable
point estimates.

To obtain a single point estimate we must place additional structure on the model. Under the assumption
of ignorability, there are two free parameters in each cell, pi and πi = πi1 = πi0. The ignorable estimates
based on the data in Table 2, which can be calculated using the formulas

p̂Ii =
Yi
Ri
, π̂Ii =

Ri
ni
,
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Table 3: Optimistic/pessimistic point estimates

pi πi1 πi0
Cell Pessimistic Optimistic Pessimistic Optimistic Optimistic Pessimistic

1 0.977 0.990 0.987 1.000 0.446 1.000
2 0.823 0.895 0.919 1.000 0.592 1.000
3 0.934 0.960 0.973 1.000 0.609 1.000
4 0.759 0.969 0.783 1.000 0.128 1.000
5 0.712 0.955 0.745 1.000 0.157 1.000
6 0.865 0.981 0.882 1.000 0.137 1.000
7 0.891 0.992 0.898 1.000 0.071 1.000
8 0.923 0.984 0.938 1.000 0.213 1.000
9 0.846 0.989 0.856 1.000 0.072 1.000
10 0.858 0.986 0.870 1.000 0.100 1.000
11 0.751 0.965 0.778 1.000 0.140 1.000
12 0.821 0.978 0.839 1.000 0.123 1.000
13 0.561 0.960 0.585 1.000 0.092 1.000
14 0.399 0.939 0.425 1.000 0.102 1.000
15 0.376 0.965 0.390 1.000 0.056 1.000

are presented in Table 4.
Non-ignorable models typically rely on prior assumptions which effectively reduce the dimension of the pa-

rameter space by specifying the distribution of the unknown parameters. We briefly describe three commonly
used Bayesian models and use these models as a comparison to the partition model. One of the simplest

non-ignorable models making the fewest assumptions assumes pi, πi1, πi0
i.i.d.∼ Beta (1, 1) for i = 1, . . . , I.

This model specification uses a non-informative flat prior distribution and makes no assumptions about how
the model parameters relate to one another. Also, there is no “borrowing strength” in this model specifi-
cation, that is, the parameter estimates for a cell use only the data associated with that cell. We call this
model the uniform model.

The uniform model can be generalized by letting pi
i.i.d.∼ Beta (a, b), πi1

i.i.d.∼ Beta (α1, β1), and πi0
i.i.d.∼

Beta (α0, β0) for i = 1, . . . , I, where the hyperparameters a, b, α1, β1, α0, and β0 are fixed but unknown.
This model was considered by Stasny (1991). The posterior distribution of (a, b, α1, β1, α0, β0) given the data
is calculated by integrating out the parameters p, π1, and π0, and the hyperparameters are estimated using

generalized maximum likelihood techniques. The distributionsBeta
(
â, b̂
)

, Beta
(
α̂1, β̂1

)
, andBeta

(
α̂0, β̂0

)
are used as the “true” prior distributions.

The empirical Bayes method of Stasny (1991) was developed before the MCMC explosion for Bayesian
computation (Gelfand and Smith, 1990). It can now be easily extended to a full Bayes procedure by assuming
additional distributions on the hyperparameters. This method was considered by Nandram and Choi (2002).
The difficulty is in selecting appropriate prior distributions for the hyperparameters, as there are many
reasonable non-informative prior distributions which could be used. For the analysis of this data set, the
beta priors were reparameterized, and uniform and Pareto distributions were used as the distributions for
the hyperparameters, so that

pi
i.i.d.∼ Beta (µτ, (1− µ)τ) ,

πi1
i.i.d.∼ Beta (µ1τ1, (1− µ1) τ1) ,

πi0
i.i.d.∼ Beta (µ0τ0, (1− µ0) τ0) ,

µ, µ1, µ0
i.i.d∼ U (0, 1) ,

τ, τ1, τ0
i.i.d∼ 1

(x+ 1)
2 .

(6)

The mean of the posterior distribution is used as a point estimate. The posterior distribution does not have
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Table 4: Comparison of model based estimates

Ignorable Uniform EB FB Partition model
Cell p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0

1 0.989 0.987 0.987 0.984 0.993 0.685 0.983 0.994 0.621 0.984 0.993 0.695 0.986 0.991 0.738
2 0.887 0.928 0.928 0.861 0.955 0.775 0.848 0.970 0.698 0.862 0.956 0.781 0.874 0.942 0.843
3 0.959 0.974 0.974 0.948 0.985 0.787 0.942 0.991 0.710 0.945 0.988 0.759 0.946 0.987 0.762
4 0.961 0.790 0.790 0.894 0.853 0.410 0.938 0.810 0.550 0.936 0.813 0.620 0.862 0.885 0.322
5 0.940 0.757 0.757 0.862 0.830 0.439 0.908 0.786 0.549 0.915 0.782 0.660 0.818 0.878 0.339
6 0.979 0.884 0.884 0.940 0.921 0.427 0.963 0.899 0.552 0.954 0.908 0.576 0.931 0.930 0.404
7 0.991 0.900 0.900 0.961 0.928 0.346 0.984 0.906 0.552 0.971 0.918 0.511 0.953 0.936 0.263
8 0.982 0.939 0.939 0.960 0.961 0.505 0.968 0.954 0.556 0.965 0.957 0.591 0.981 0.941 0.878
9 0.987 0.858 0.858 0.944 0.898 0.345 0.978 0.866 0.552 0.966 0.877 0.550 0.932 0.910 0.290
10 0.984 0.872 0.872 0.943 0.911 0.383 0.971 0.883 0.551 0.961 0.894 0.545 0.924 0.930 0.276
11 0.956 0.786 0.786 0.886 0.850 0.423 0.929 0.809 0.550 0.932 0.808 0.648 0.855 0.883 0.336
12 0.974 0.843 0.843 0.923 0.891 0.408 0.955 0.859 0.551 0.947 0.868 0.589 0.898 0.916 0.296
13 0.933 0.601 0.601 0.816 0.703 0.351 0.918 0.613 0.548 0.922 0.610 0.646 0.733 0.796 0.280
14 0.867 0.460 0.460 0.728 0.582 0.347 0.875 0.458 0.545 0.901 0.445 0.711 0.620 0.716 0.257
15 0.915 0.411 0.411 0.753 0.536 0.283 0.928 0.409 0.549 0.925 0.415 0.644 0.895 0.432 0.403

a closed form, so a Metropolis-Hastings MCMC algorithm must be used to approximate characteristics of
the posterior distribution. We note that Nandram and Choi (2002) developed a more sophisticated version
of model (6) that “centers” the model around the parameter γi = πi1/πi0, which they call the expansion
model. However, we use the simpler model (6) as a point of comparison, since it is much easier to implement.

Table 4 presents a comparison of the point estimates made using the different Bayesian models described
in this section and the estimates made using the partition model discussed in Section 2. All four methods
indicate some degree of non-ignorability in each of the cells. Recall that our intuition led us to believe that
it is more likely that a correct enumeration will be resolved than an erroneous enumeration, that is, that
πi1 > πi0 for i = 1, . . . , 15. This relationship holds for each model in cells 1 – 12, with the uniform model and
the partition model producing estimates that are generally furthest from the ignorable estimates, resulting in
the most pessimistic estimates. A comparison of the estimates for pi shows that we could be overestimating
the proportion of correct enumerations in some of the cells if the assumption of ignorability is incorrect.

Table 5: Summary: number of imputed correct enumerations

Method
Cell # UR Ignorable Uniform EB FB Partition

1 7681 7597 4436 3671 4496 5328
2 482 428 267 172 268 338
3 691 663 388 232 319 323
4 1072 1030 726 927 941 501
5 209 196 137 172 183 89
6 314 307 215 268 257 176
7 393 389 287 365 334 243
8 624 613 408 473 464 596
9 799 789 579 743 708 473
10 5502 5414 3877 4936 4686 2774
11 350 335 234 297 309 164
12 472 460 325 410 402 223
13 1550 1446 1038 1404 1439 663
14 4239 3675 2677 3785 4010 1731
15 641 587 425 605 611 564

Total 25019 23929 16019 18460 19427 14186
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Table 6: Comparison of model based estimates for cells 13 – 15

Ignorable Uniform EB FB Model averaging
Cell p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0 p̂i π̂i1 π̂i0

13 0.933 0.601 0.601 0.816 0.703 0.351 0.760 0.745 0.189 0.866 0.650 0.375 0.670 0.850 0.157
14 0.867 0.460 0.460 0.728 0.582 0.347 0.651 0.629 0.193 0.783 0.518 0.355 0.497 0.836 0.150
15 0.915 0.411 0.411 0.753 0.536 0.283 0.684 0.569 0.133 0.817 0.474 0.307 0.913 0.412 0.416

Cells 14 and 15 using the empirical Bayes method and cells 13 – 15 using the full Bayes version give
estimates contrary to intuition where π̂i1 < π̂i0. One possible reason this may happen is that there is
excessive shrinking to the prior mean in these models. In particular, the empirical Bayes method gives
estimates of πi0 in cells 4 – 15 near 0.55 with very little variability between cells. It is of course also possible
that the characteristics of persons belonging to cells 13 – 15 cause the true proportions to be counter to
intuition.

Table 5 gives a summary of the results of both the ignorable and the non-ignorable methods by showing
the number of imputed correct enumerations. There is clearly strong sensitivity to the selected model. The
number of imputed correct enumerations ranges from a high of 23,929, or 96% of the unresolved data, using
the ignorable model, to a low of 14,186, or 57% of the unresolved data, using the partition model.

3.3 Analysis of cells 13, 14, and 15

Because the empirical Bayes and full Bayes models produced estimates for the parameters in cells 13 – 15
that were unexpected, we decided to analyze this data separately. Analyzing these cells separately has the
additional advantage of showing how dependent the estimates for the parameters in one cell are to the data
in other cells. The estimates based on this subset of the data are given in Table 6.

The ignorable model and the uniform model do not “borrow strength” from other cells, that is, the
parameter estimates for a cell are based only on the data contained in that cell. Therefore, these estimates
are identical to the estimates calculated using the full data set.

The estimates based on this subset of data using the partition model are not drastically different than
the estimates using the full data set. The estimates for the parameters in cells 13 and 14 show the same
non-ignorability relationship and the estimates for the parameters in cell 15 indicate that the cell is nearly
ignorable. The reason for these results is that most of the posterior weight (≈ 0.91) is given to the partition
MS = {(13, 14) , 15}.

The most interesting thing to notice in Table 6 is how different the estimates for cells 13 – 15 based on
the empirical Bayes and the full Bayes models are from those in Table 4. The inequality is now reversed so
that π̂i1 > π̂i0. This indicates that there may be excessive shrinking to the mean when using hierarchical
Bayes methods.

4 Simulation Example

Due to the non-identifiability of the model, it is impossible to construct a goodness-of-fit statistic to verify
the correctness of the assumption of ignorability or non-ignorability. Hence, in the previous data example,
since we do not know the truth, we cannot say one model is more appropriate than another. In this section
we conduct a simulation study to compare the different models.

A set of population parameter values used for the simulation study is presented in Table 7. The pi were
drawn from a uniform distribution and the πi were drawn from a distribution giving probability of 1/2 each
to 0.9 and to 0.1. Five of the cells in Table 7 are ignorable while five of the cells are non-ignorable. The
non-ignorable cells 2, 4, and 5 share parameters such that π1 < π0, and non-ignorable cells 3 and 7 share
parameters such that π1 > π0. This set of parameters most likely does not correspond to any realistic
population. It does give a population with a mix of ignorable and non-ignorable cells with parameters that
are rather extreme, with the true parameter values near the boundaries. Also, the non-ignorable cells are
not uniform, in the sense that some non-ignorable cells are such that πi1 > πi0, while some cells are such
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Table 7: True probabilities

Cell pi πi1 πi0 nE (R)

1 0.850 0.9 0.9 90.0
2 0.078 0.1 0.9 83.7
3 0.023 0.9 0.1 11.8
4 0.288 0.1 0.9 67.0
5 0.329 0.1 0.9 63.7
6 0.430 0.1 0.1 10.0
7 0.488 0.9 0.1 49.1
8 0.886 0.9 0.9 90.0
9 0.100 0.9 0.9 90.0
10 0.389 0.1 0.1 10.0

that πi1 < πi0. This setup gives us a chance to compare the fit of the different models for a variety of cell
types.

For our simulation study we generated a sample of size 100 in each of the 10 cells from the likelihood
(1) using the probabilities in Table 7 and generated point estimates using each of the previously discussed
methods. This procedure was repeated 100 times. All work was done using R. Tables 8 – 10 give the sample
mean, standard deviation, 2.5th and 97.5th percentiles of the point estimates for each model. The goodness of

fit statistics given are estimates of the maximum absolute deviation (MAX), max
i
E
∣∣∣ θ̂i − θi ∣∣∣, the root mean

square error (RMSE),

(
1/I

I∑
i=1

E
(
θ̂i − θi

)2)1/2

, and the mean absolute error (MAE), 1/I
I∑
i=1

E
∣∣∣ θ̂i − θi ∣∣∣.

For individual cells, all models were capable of producing estimates that missed the true value of the
parameter badly. The parameters associated with cell 3 proved to be the most difficult to estimate. This
is due to the fact that most of the observations are missing (≈ 88%) and that the characteristics of the
unresolved enumerations are so different than those of the resolved enumerations. For a sample size of
100 observations in cell 3, we expect approximately 2 correct resolved enumerations, 10 erroneous resolved
enumerations, 0 correct unresolved enumerations, and 88 erroneous unresolved enumerations. None of the
methods estimated the parameters associated with cell 3 very well and some of the methods estimated
these parameters exceptionally badly. For example, the empirical Bayes estimates were (p̂3, π̂31, π̂30) =
(0.824, 0.058, 0.792) while the true value of the parameters are (0.023, 0.9, 0.1).

No one model uniformly outperformed the other models. However, somewhat surprisingly, the uniform
model came closest to being “best” for this example as all three goodness-of-fit statistics for each parameter
were either smallest or next smallest. As we should expect, the ignorable maximum likelihood estimates are
very accurate for the ignorable cells 1, 6, and 8 – 10. It is also no surprise that the estimates can be quite
poor for the non-ignorable cells. Because the ignorable estimates for the five ignorable cells are so precise, the
overall performance of the ignorable model was not bad, compared to the other models under consideration.
The empirical Bayes and full Bayes models seemed to have the worst performance, especially for estimating
the main parameter of interest, p. The partition model was not the best model in this example, but it was
an improvement over the ignorable model.

This simulation study shows that the 2.5% – 97.5% ranges given in Tables 8 - 10 can do a poor job of
covering the true value of the parameters, so that we can not necessarily use frequentist properties of the
estimators to construct confidence intervals. We considered different methods for constructing uncertainty
ranges. First, we looked at Bayesian credible intervals, which can be calculated for the uniform, empirical
Bayes, and full Bayes models. Figure 1 gives the average 95% Bayesian credible intervals for the mean of
the posterior distribution for these models. The true parameter values are represented by dashed lines.

The credible intervals generated from the uniform model had the best performance, as all intervals contain
the true value of the parameter, with the exception of the interval for π3,1. The cost is that, on average,
the length of the interval is quite large. The average credible intervals based on the empirical Bayes and full
Bayes methods miss the true value of the parameter too often to be useful. Not only do these intervals give
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Table 8: Comparison of the estimates for p

Ignorable Uniform EB FB Partition model
Cell µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5%

1 0.850 0.040 0.783 0.929 0.812 0.038 0.745 0.886 0.833 0.046 0.751 0.914 0.812 0.040 0.741 0.889 0.827 0.039 0.760 0.903
2 0.011 0.011 0.000 0.037 0.067 0.020 0.035 0.107 0.061 0.030 0.015 0.120 0.060 0.023 0.028 0.114 0.058 0.018 0.030 0.096
3 0.199 0.126 0.000 0.437 0.394 0.052 0.296 0.483 0.824 0.174 0.308 0.948 0.456 0.162 0.155 0.742 0.322 0.091 0.168 0.492
4 0.044 0.027 0.000 0.101 0.148 0.033 0.086 0.211 0.229 0.077 0.071 0.360 0.146 0.042 0.075 0.241 0.149 0.028 0.081 0.199
5 0.049 0.027 0.000 0.104 0.162 0.033 0.093 0.224 0.270 0.088 0.099 0.427 0.161 0.043 0.088 0.248 0.164 0.033 0.095 0.229
6 0.443 0.153 0.154 0.726 0.482 0.047 0.392 0.568 0.873 0.160 0.379 0.971 0.523 0.175 0.198 0.876 0.494 0.098 0.316 0.676
7 0.888 0.044 0.796 0.960 0.746 0.036 0.680 0.811 0.905 0.078 0.671 0.972 0.752 0.068 0.639 0.874 0.849 0.030 0.776 0.903
8 0.882 0.035 0.811 0.943 0.842 0.034 0.777 0.897 0.865 0.041 0.779 0.937 0.844 0.035 0.774 0.899 0.860 0.035 0.791 0.923
9 0.095 0.030 0.044 0.151 0.137 0.031 0.083 0.198 0.114 0.029 0.063 0.166 0.128 0.031 0.077 0.197 0.112 0.028 0.062 0.165
10 0.419 0.147 0.133 0.667 0.474 0.044 0.378 0.542 0.871 0.174 0.350 0.972 0.518 0.187 0.135 0.855 0.475 0.093 0.276 0.655

Max 0.400 0.371 0.801 0.433 0.361
RMSE 0.200 0.167 0.369 0.209 0.177
MAE 0.150 0.123 0.245 0.149 0.128

Table 9: Comparison of the estimates for π1

Ignorable Uniform EB FB Partition model
Cell µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5%

1 0.893 0.030 0.825 0.940 0.919 0.021 0.887 0.953 0.902 0.037 0.817 0.963 0.925 0.023 0.870 0.961 0.904 0.024 0.846 0.939
2 0.836 0.039 0.760 0.910 0.332 0.059 0.252 0.441 0.297 0.129 0.082 0.576 0.423 0.106 0.223 0.618 0.448 0.090 0.298 0.649
3 0.117 0.033 0.060 0.185 0.193 0.030 0.139 0.249 0.058 0.084 0.003 0.283 0.295 0.134 0.035 0.571 0.147 0.032 0.082 0.213
4 0.667 0.042 0.600 0.745 0.344 0.061 0.224 0.452 0.196 0.112 0.037 0.459 0.433 0.107 0.210 0.625 0.392 0.073 0.257 0.512
5 0.635 0.051 0.540 0.735 0.340 0.058 0.217 0.450 0.182 0.128 0.030 0.471 0.431 0.105 0.196 0.629 0.392 0.067 0.255 0.520
6 0.102 0.033 0.050 0.175 0.214 0.032 0.156 0.290 0.081 0.092 0.015 0.316 0.309 0.136 0.066 0.567 0.137 0.041 0.063 0.218
7 0.491 0.050 0.400 0.590 0.606 0.043 0.528 0.691 0.487 0.082 0.375 0.717 0.623 0.072 0.497 0.770 0.515 0.045 0.427 0.599
8 0.897 0.030 0.835 0.940 0.924 0.020 0.881 0.954 0.905 0.035 0.832 0.963 0.928 0.024 0.877 0.962 0.906 0.026 0.848 0.944
9 0.899 0.033 0.835 0.960 0.664 0.076 0.519 0.793 0.768 0.076 0.608 0.889 0.723 0.068 0.600 0.837 0.826 0.079 0.660 0.930
10 0.100 0.032 0.040 0.155 0.210 0.031 0.150 0.263 0.078 0.092 0.015 0.348 0.305 0.141 0.050 0.590 0.134 0.040 0.058 0.205

Max 0.783 0.707 0.842 0.605 0.753
RMSE 0.441 0.293 0.322 0.314 0.323
MAE 0.316 0.223 0.199 0.253 0.228

Table 10: Comparison of the estimates for π0

Ignorable Uniform EB FB Partition model
Cell µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5% µ σ 2.5% 97.5%

1 0.893 0.030 0.825 0.940 0.725 0.060 0.629 0.827 0.841 0.073 0.680 0.930 0.749 0.056 0.638 0.844 0.811 0.041 0.741 0.892
2 0.836 0.039 0.760 0.910 0.873 0.029 0.815 0.925 0.873 0.038 0.796 0.944 0.873 0.030 0.821 0.925 0.864 0.031 0.806 0.920
3 0.117 0.033 0.060 0.185 0.250 0.036 0.186 0.323 0.792 0.200 0.214 0.930 0.392 0.132 0.139 0.646 0.196 0.050 0.118 0.301
4 0.667 0.042 0.600 0.745 0.747 0.034 0.688 0.814 0.837 0.067 0.687 0.930 0.757 0.041 0.673 0.824 0.753 0.033 0.693 0.807
5 0.635 0.051 0.540 0.735 0.723 0.042 0.649 0.804 0.839 0.064 0.712 0.930 0.734 0.053 0.620 0.822 0.731 0.036 0.667 0.800
6 0.102 0.033 0.050 0.175 0.224 0.034 0.165 0.287 0.791 0.201 0.218 0.930 0.376 0.135 0.121 0.645 0.179 0.041 0.115 0.261
7 0.491 0.050 0.400 0.590 0.349 0.047 0.261 0.437 0.803 0.169 0.307 0.930 0.463 0.117 0.184 0.658 0.506 0.063 0.395 0.624
8 0.897 0.030 0.835 0.940 0.694 0.065 0.545 0.789 0.835 0.082 0.604 0.930 0.728 0.057 0.603 0.806 0.810 0.033 0.746 0.864
9 0.899 0.033 0.835 0.960 0.926 0.022 0.881 0.966 0.899 0.037 0.828 0.968 0.922 0.026 0.869 0.966 0.898 0.028 0.842 0.953
10 0.100 0.032 0.040 0.155 0.224 0.034 0.160 0.287 0.795 0.192 0.240 0.930 0.379 0.147 0.109 0.672 0.176 0.042 0.101 0.249

Max 0.391 0.249 0.703 0.363 0.406
RMSE 0.172 0.162 0.460 0.236 0.164
MAE 0.111 0.142 0.313 0.191 0.122

poor coverage, they can be very narrow, giving a false perception of high precision. For example, the 95%
average credible interval based on the empirical Bayes model for π3,1 is (0.008, 0.166) while the true value
of the parameter is 0.9.

We also considered the range of optimistic and pessimistic estimates for use as a confidence interval. The
first lines of Figure 1 give the average interval of the lower pessimistic and upper optimistic estimates. This
interval performs well as it covers the true value of each parameter. It is, however, a rather conservative
measure giving wide intervals.

5 Conclusion

In this paper we proposed a new partition model for analyzing categorical data with non-ignorable non-
response. The partition model averages estimates from each saturated submodel to produce estimates for
the full model. This model has good intuitive appeal when there is uncertainty about the reasonableness of
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pi

Uniform

EB

FB

Range

p1 = 0.85 p2 = 0.08 p3 = 0.02 p4 = 0.29 p5 = 0.33 p6 = 0.43 p7 = 0.49 p8 = 0.89 p9 = 0.1 p10 = 0.39

πi1

Uniform

EB

FB

Range

π1,1 = 0.9 π2,1 = 0.1 π3,1 = 0.9 π4,1 = 0.1 π5,1 = 0.1 π6,1 = 0.1 π7,1 = 0.9 π8,1 = 0.9 π9,1 = 0.9 π10,1 = 0.1

πi0

Uniform

EB

FB

Range

π1,0 = 0.9 π2,0 = 0.9 π3,0 = 0.1 π4,0 = 0.9 π5,0 = 0.9 π6,0 = 0.1 π7,0 = 0.1 π8,0 = 0.9 π9,0 = 0.9 π10,0 = 0.1

Figure 1: Average 95% credible intervals

an ignorability assumption and gives non-ignorable estimates that are not on the boundary. The degree of
uncertainty about ignorability can be tuned through the prior distribution on the components of the model
partition.

While the partition model is a useful tool for analyzing categorical data with possibly non-ignorable
nonresponse, it is certainly not without its flaws. As with any model, since there is so much added uncertainty
due to the missing data, it is impossible to produce estimates that are unbiased or consistent, or to use the
data to validate the model. When analyzing this type of data, we feel that several models, such as the
uniform model and the hierarchical Bayes models, should be considered and the estimates they produce
compared as part of a sensitivity analysis. If trends in the estimates can be detected, it may make sense to
abandon the ignorable model.

We have also considered different ways to construct confidence intervals for our parameter estimates. A
range with endpoints given by pessimistic and optimistic estimates gives bounds for any reasonable model
based estimates. It also provides good coverage as a conservative confidence interval, although the length of
the interval is wider than one would hope. The Bayesian credible intervals can also be used, however, only
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the credible intervals from the uniform model seemed reliable, and these intervals also tended to be wide.
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