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Abstract

Gegenbauer processes and their generalizations represent an extremely general way of model-

ing long memory and seasonal long memory; they include ARFIMA, seasonal ARFIMA, and

GARMA processes as special cases. Models from this class of processes have been used exten-

sively in economics, finance and in the physical sciences and are thus of widespread interest.

Nonetheless, one obstacle to using this class of models is finding explicit formulas for the autoco-

variances that are valid for all lags. We provide a computationally efficient method of computing

these autocovariances by determining the moving average representation of these processes, and

also give an asymptotic formula for the determinant of the covariance matrix. The techniques

are then illustrated using maximum likelihood estimation to model atmospheric CO2 data.

Keywords. ARFIMA; Exponential model; FEXP model; GARMA; k-factor GARMA; k-factor

GEXP; Long memory; Maximum likelihood; SARFIMA; Seasonality; Spectral density.
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1 Introduction

Gegenbauer processes (Gray, Zhang, and Woodward, 1989) provide a flexible way of modeling time

series data that exhibit long memory and seasonal long memory. These processes and their gener-

alizations (k-factor GARMA, discussed in Woodward, Cheng, and Gray (1998)) are easily seen to

include standard ARFIMA (Hosking, 1981) and seasonal ARFIMA (Porter-Hudak, 1990) processes,
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as demonstrated below. If such a model is fitted to data using maximum likelihood estimation, it is

essential that a fast, convenient method for computing the autocovariances is available. The same

need is also present in Bayesian approaches to long memory (see Holan, McElroy, and Chakraborty

(2009) and the references therein). This article provides a general method for computing autoco-

variances that is quite computationally efficient when there are multiple Gegenbauer polynomial

terms in the model spectral density (i.e., multiple fractional memory parameters).

Over the past two decades there has been substantial interest in applying models that capture

seasonal long-range dependance. In particular, since the initial introduction of the k-factor GARMA

(Woodward, Cheng, and Gray, 1998), these models have become pervasive in economics (e.g.,

Bisaglia et al., 2003; Soares and Souza, 2006), finance (e.g., Ferrara and Guégan, 2000) and in the

physical and natural sciences (e.g., Gil-Alana, 2008; Talamantes et al., 2007). Since successful fitting

of these models is computationally expensive, our approach is critical for practical implementation.

We briefly mention related recent literature. In special cases, such as a pure ARFIMA(0,d,0)

process, the exact autocovariances are known and can be convolved with any “short memory” por-

tions of the model (i.e., those factors of the spectral density that have no poles). See Brockwell and

Davis (1991) for the ARFIMA example. An efficient approach to approximating this convolution

is achieved through the so-called “splitting method” outlined in Bertelli and Caporin (2002) and

Hurvich (2002). This technique can also be extended to GARMA processes (Gray, Zhang, and

Woodward, 1989), since there is only one seasonal long memory parameter.

Although there is an extensive literature on long memory time series (see Palma (2007), Beran

(2010), and the references therein), this literature does not discuss the computation of autoco-

variances when multiple fractional memory parameters are present. Instead, the computation

of autocovariances associated with single fractional memory parameter models (e.g., ARFIMA

models) has been typically addressed; see Doornik and Ooms (2003) and the references therein.

One notable exception is given by Bisognin and Lopes (2009), wherein the authors provide re-

sults for autocovariances for the SARFIMA model. Specifically, the authors explicitly derive the

autocovariance generating function for the case of the SARFIMA(P, D, Q)s. In the case of a

SARFIMA(p, d, q)× (P, D, Q)s the authors mention that this can be achieved through additional

convolution. In principle, the case of multiple seasonal factors can be handled by adding on another

convolution for each extra term, i.e., multiple splitting. Unfortunately, this is exceedingly expen-

sive computationally; also since each convolution must be truncated, there is an additional loss of

accuracy involved. The method we propose avoids splitting by instead computing the coefficients

of the infinite order moving average representation of the Gegenbauer process explicitly through

a recursive formula. The autocovariances are computed from these coefficients in the usual way,

although this involves an infinite summation that must be truncated. We show how this truncation

error can be accurately estimated using an asymptotic formula for the moving average coefficients,

which is also fast to compute.
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Furthermore, the Gaussian likelihood function requires computation of the determinant of the

covariance matrix. This matrix is likely to be ill-conditioned due to multiple poles in the spectral

density; instead, we can compute an approximation to this quantity by generalizing the approach

of Chen, Hurvich, and Lu (2006) to this problem. Together, our results allow for computationally

efficient maximum likelihood and/or Bayesian estimation of a broad class of processes exhibiting

seasonal (and trend) long range dependence.

The remainder of this paper proceeds as follows. Section 2 presents the so-called k-factor GEXP

model and draws connections to the ARFIMA and SARFIMA models. Our methodology is detailed

in Section 3. In particular, this section provides theoretical justification for our computationally ef-

ficient approach to calculating the autocovariances. In addition, this section develops an asymptotic

formula for calculating the determinant of the covariance matrix. An empirical study is presented

in Section 4, illustrating the effectiveness and accuracy of our approach. Section 5 presents an

application of our methodology to modeling atmospheric CO2 data using maximum likelihood.

Finally, Section 6 provides concluding discussion, and all proofs are left to the Appendix.

2 The k-GEXP Model

We consider the following k-factor Generalized Exponential model, or k-GEXP, whose spectral

density can be written as

f(λ) = |1− e−iλ|−2a |1 + e−iλ|−2b
K∏
l=1

|1− e−iωle−iλ|−2cl |1− eiωle−iλ|−2cl
g(λ), (1)

where the parameters a, b, c1, · · · , cK are each bounded in (−1/2, 1/2) in order to guarantee

stationarity. The frequencies ωl are distinct from one another, and not equal to zero or π. When a

parameter a, b, or cl is positive, there is a corresponding pole in the spectral density at frequency

zero, π, or ωl respectively – this is the case of long memory. On the other hand, negative parameters

correspond to a zero in the spectrum, and correspond to intermediate memory (or negative memory,

also called anti-persistence by some authors; see Beran, (2010) and the references therein). The

function g is bounded, and represents the short memory portion of the spectrum; in particular, it

corresponds to an EXP(q) model (Bloomfield, 1973) so that

g(λ) = exp


q∑
j=1

gj cos(λj)

σ2 = exp

g0 +
1
2

∑
0<|j|≤q

gje
−iλj

 , (2)

where g−j = gj . So the innovation variance σ2 of the model is equal to exp(g0). It will be convenient

to define κ(z) = exp{1
2

∑q
j=1 gjz

j} and

β(z) = (1− z)−a(1 + z)−b
K∏
l=1

(1− e−iωlz)−cl(1− eiωlz)−clκ(z), (3)
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which can be written as
∑∞

k=0 βkz
k; then g(λ) = |κ(e−iλ)|2σ2 and f(λ) = |β(e−iλ)|2σ2. A model

related to (1) was described in less generality, and using a different formulation, in Hsu and Tsai

(2009). However, in that context, the authors conduct estimation using log periodogram regression.

Importantly, except for the 1-GEXP, the model they propose can not be estimated using a likelihood

or Bayesian approach, due to the lack of specification of the autocovariance sequence and the

absence of methodology for estimating the determinant.

We claim that (1) is extremely general, including generalized Gegenbauer processes, as well as

ARFIMA and seasonal ARFIMA. Recall (Gray, Zhang, and Woodward, 1989) that a Gegenbauer

process has spectrum proportional to |1− 2ue−iλ + e−i2λ|−2d, with |u| ≤ 1 and |d| < 1/2. The

polynomial 1 − 2uB + B2 has either two real roots or a pair of complex conjugate roots; in both

cases, the spectrum takes on the form of (1). The spectrum of a generalized Gegenbauer process

contains many such factors multiplied together, which of course is also of the form (1). The seasonal

ARFIMA (of which the ARFIMA is a special case) takes the form

f(λ) = |1− e−iλ|−2d|1− e−isλ|−2D
g(λ), (4)

where g is allowed to have infinite order (i.e., q = ∞) corresponding to an ARMA process, d,D

are restricted so as to guarantee stationarity, and s is the seasonal period. Noting that 1 − Bs =

(1 − B)U(B) with U(B) equal to the product of factors corresponding to the s roots of unity

(excepting the one at frequency zero), the pole of f at frequency zero has exponent d+D, whereas

the other roots of unity generate poles with exponent D. Therefore this corresponds to (1) with

a = d+D, b = D, cl = D, and ωl = ±2πl/s, 1 ≤ l ≤ s/2− 1.

3 Computation of the Model

We now turn to the practical issue of computing the autocovariances of (1). The idea is to first

compute the Fourier coefficients of the log spectrum, and second to re-express the coefficients of

the infinite moving average (MA) representation in terms of these, from which the autocovariances

are determined in standard fashion. The reason why this approach is computationally efficient is

that each extra multiplicative factor in (1) only adds an extra summand to the Fourier coefficients

of the log spectrum – whereas a direct approach at obtaining the MA coefficients would involve an

extra discrete convolution for each additional term. Now, defining

θj =
1
π

∫ π

−π
log f(λ) cos(λj) dλ (5)

for j ≥ 1, we have f(λ) = exp{
∑

j≥1 θj cos(λj)}σ2. Here the innovation variance satisfies log σ2 =
1

2π

∫ π
−π log f(λ) dλ as usual. The following result tells us how to compute these coefficients (5) at

once from the parameters in (1).
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Proposition 1 Given the model (1), the coefficients in (5) are given by

θj =
2
j

{
a+ b(−1)j + 2

K∑
l=1

cl cos(ωlj)

}
+ gj . (6)

For Proposition 1 to be useful, one must know {gj}; either these are known from the presumptive

EXP(q) model for the short memory portion of the spectrum, or these coefficients are directly

computed from known ARMA parameters. Suppose that we have an invertible ARMA model for

the short memory portion, such that κ(z) =
∏
k (1− ζkz)pk for (possibly complex) reciprocal roots

ζk of the moving average and autoregressive polynomials; here pk equals one if k corresponds to a

moving average root, but equals negative one if k corresponds to an autoregressive root. Then gj

is given by

gj = 2
∑
k

pkζ
j
k/j. (7)

The derivation of (7) can be found in McElroy and Holan (2009) and Hsu and Tsai (2009, Ap-

pendix B). Note that if ζk is complex, there exists a conjugate factor ζk such that their sum is

|ζk|j2 cos(jωk), where ωk is the angular portion. Thus gj is always real, and readily computed;

due to the exponential decay in (7), it is always safe to truncate the sum using a relatively small

number of terms (e.g., 100 terms).

Next, recall that we can write (1) as |β(e−iλ)|2σ2. Then applying the Proposition of Pourahmadi

(1984) – also see Hurvich (2002) for treatment of the FEXP case – we obtain

βj =
1
2j

j∑
k=1

kθkβj−k (8)

for j ≥ 1. This is a convolution, which is expensive to compute; moreover it must be carefully

monitored for decay – see Theorem 1 below. We can expect these coefficients to decay slowly, e.g.,

in the case of an ARFIMA we have b = 0 = cl and βj ∼ j−a−1 (Brockwell and Davis, 1991, p. 522).

Once we compute σ2, the autocovariances are given by the usual formula:

γh = σ2
∑
j≥0

βjβj+h (9)

for h ≥ 0 (and γ−h = γh). So the algorithm amounts to the application of (6), (8), and a truncated

version of (9). Now for processes where the long memory is pronounced (say a, b, or cl is close

to .5), the decay of the coefficients βj is extremely slow, and thus computing γh via taking a

truncation in (9) induces a substantial amount of error. One can take the truncation point farther

out, but for fairly pronounced long memory the number of βjs needed becomes computationally

prohibitive. (As an example, we found that with a = .49, even taking greater than 100, 000 βjs

yielded autocovariance values that severely under-estimated the target.) Therefore, in practice, it

is necessary to compute the truncation error via asymptotic formulas. We approach this problem
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by first presenting asymptotic formulas for the βj sequence, which is a new result. Then we show

how to use these approximations to compute an asymptotic form for the truncation error. If at

least one of the memory parameters (a, b, c1, · · · , cK ) are positive, then we can use formula (11)

below. However, if they are all negative, the process is intermediate memory and the βj coefficients

will decay rapidly.

Consider β(z) in (3), and collect all of the factors associated with the minimal memory exponent

α, i.e., α = min{−a,−b,−c1, · · · ,−cK}, and denote this (possibly non-monomial) polynomial by

Θ(z); the remaining factors are gathered into Φ(z) (and it necessarily includes κ(z) as a factor).

Further, let Θ(z) consist of m factors Θk(z) of the form (1− ζ−1
k z)α, and denote β(z)/Θk(z) by

β−k(z) (which has its pole at ζk removed).

Theorem 1 Let α be the minimal memory exponent in (1) and (3), and suppose α < 0. Then the

overall rate of decay of βj is governed by πj(α) = Γ(j−α)
Γ(j+1)Γ(−α) , and

πj(α) =
j−α−1

Γ(−α)
{1 +O(j−1)}. (10)

Letting E(j) =
∑m

k=1 ζ
−j
k β−k(ζk), the exact asymptotics for βj are

βj = πj(α)E(j){1 + o(1)}. (11)

Remark 1 This is a general result, and applies to any β(z) given as a product of factors of the

form (1− ζ−1z)γ for unit roots ζ and non-zero γ ∈ (−1/2, 1/2) (times any bounded function). For

our purposes (3) is sufficient. It is easy to see that this result generalizes that of Chung (1996); in

terms of our notation, that paper’s equation (9) yields

βj ∼ πj(α) · cos{(j − α)ω + απ/2} 21+α sinα(ω),

where β(z) = (1− e−iωz)α(1− eiωz)α. The function multiplying πj(α) on the right hand side can

be rewritten as eijω(1− e−i2ω)α + e−ijω(1− ei2ω)α, which agrees with (11).

Now, for some cutoff J , we can express (9) as

γh = σ2
J−1∑
j=0

βjβj+h + σ2
∞∑
j=J

βjβj+h = BJ(h) +RJ(h). (12)

The first term is computed using the exact βjs via (8), while the second term will use the approxi-

mate βjs given in (11). This remainder term – denoted RJ(h) – can be written

RJ(h) = σ2
∞∑
j=J

βjβj+h ∼
σ2

Γ2(−α)

m∑
k,l=1

β−k(ζk)β−l(ζl)
∞∑
j=J

j−α−1(j + h)−α−1ζ−jk ζ−j−hl
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as J →∞. This remainder term can be approximated by an easily computed expression, which is

given in the proposition below. A notation that we shall use repeatedly is

Ah =
m∑
k=1

|β−k(ζk)|2ζ−hk . (13)

This expression, (13), is used in both Proposition 2 and Theorem 2.

Proposition 2 The remainder term RJ(h) for fixed h and J →∞ is given by

RJ(h) =
{
J−1−2α σ

2 F (1 + α; 1 + 2α; 2 + 2α;−h/J)Ah
Γ2(−α)(1 + 2α)

}
{1 + o(1)}, (14)

where F (1 + α; 1 + 2α; 2 + 2α; z) is the hypergeometric function evaluated at z.

This result is proved using methods discussed in the proof of Theorem 2, and hence its proof

is included in the Appendix at the end of that theorem’s proof. We proceed with some specific

examples.

1-GEXP The 1-GEXP model has only one memory parameter a, which can be associated with

frequency 0, π or ω ∈ (0, π). In the latter case we can generalize the calculation from Remark 1,

using β(z) = (1− e−iωz)−c(1− eiωz)−cκ(z), and obtain

Ah = 21−2c sin−2c(ω) exp

{
q∑

k=1

gk cos(ωk)

}
cos(hω).

The frequency zero case is known as the FEXP, and β(z) = (1− z)−aκ(z); then Ah = κ2(1).

Similarly, the frequency π case has β(z) = (1 + z)−bκ(z) and Ah = κ2(−1)(−1)h.

2-GEXP The 2-GEXP model has two memory parameters. There are four main cases, depending

on the locations of the poles: poles at 0 and π; poles at 0 and ω ∈ (0, π); poles at π and ω ∈
(0, π); poles at ω1 6= ω2 ∈ (0, π). In the first case β(z) = (1− z)−a(1 + z)−bκ(z). If a > b

then Ah = 2−2bκ2(1), but if b > a then Ah = 2−2aκ2(−1)(−1)h. If a = b we just sum (this is

true for all the cases below): Ah = 2−2bκ2(1) + 2−2aκ2(−1)(−1)h. In the second case β(z) =

(1− z)−a(1− e−iωz)−c(1− eiωz)−cκ(z). If a > c then Ah = |1− eiω|−4c
κ2(1), but when c > a we

instead obtain

Ah = 2|1− eiω|−2a|1− ei2ω|−2c|κ(eiω)|2 cos(hω).

Thirdly, suppose β(z) = (1 + z)−b(1− e−iωz)−c(1− eiωz)−cκ(z). If b > c we have

Ah = |1 + eiω|−4c
κ2(−1)(−1)h,

and if c > b we obtain

Ah = 2|1 + eiω|−2b|1− ei2ω|−2c|κ(eiω)|2 cos(hω).
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The final case is the most complicated. Here

β(z) = (1− e−iω1z)−c1(1− eiω1z)−c1(1− e−iω2z)−c2(1− eiω2z)−c2κ(z).

If c1 > c2 then we obtain

Ah = 2|1− ei2ω1 |−2c1 |1− ei(ω1−ω2)|−2c2 |1− ei(ω1+ω2)|−2c2 |κ(eiω1)|2 cos(hω1).

Clearly if c2 > c1, we just interchange ω1 and ω2 and c1 and c2 in the above formula.

SFEXP We refer to a process following (4), with short memory EXP dynamics (i.e., g(λ) ∼
EXP(q)), by a Seasonal Fractional EXP model, or SFEXP for short. There are s poles at various

seasonal frequencies, but we have b = ck for k ≤ s/2 − 1. It is then straightforward to apply (6)

and (8) to obtain βj for j < J (the small index case). For the large index case, clearly we need to

compute Ah; also recall that α is the negative of the larger of a and b, the two memory parameters.

Now β(z) = (1− z)−aU−b(z)κ(z), and note that U(z)/(1 − ζ−1z)|z=ζ = s/(1 − ζ) for any ζ unit

root of U(z). So if a > b, then

βj ∼ πj(−a) s−b κ(1)

follows from (11), and Ah = s−2bκ2(1). Alternatively, if b > a we obtain βj ∼ πj(−b) times the

sum over s− 1 unit roots ζ for U(z) of U−b(z)(1− z)−aκ(z)(1− ζ−1z)bζ−j evaluated at z = ζ, i.e.,

(1− ζ)b−aκ(ζ)s−bζ−j . Focusing on the case s = 12, we can simplify to

Ah = 12−2b

{
22(b−a)κ2(−1)(−1)h + 2

5∑
k=1

|1− eiπk/6|2(b−a)|κ(eiπk/6)|2 cos(πkh/6)

}
.

Finally, in this case a 6= b unless either d or D equals zero.

It is also of interest to know the asymptotic behavior of the autocovariances γh as h→∞. This

can be useful in computations where many lags are involved, and a quicker formula is needed.

Theorem 2 Let α be the minimal memory exponent in (1) and (3), and suppose α < 0. Then the

autocovariances are asymptotically given by

γh = h−2α−1 σ2Γ(1 + 2α)
Γ(−α)Γ(1 + α)

Ah {1 + o(1)} (15)

as h→∞, where Ah is defined in (13).

Remark 2 In the formula (15), specific information about the long memory poles at non-zero

frequencies is located in the Ah term – see (13) – which distinguishes this asymptotic result from

the more basic FEXP and ARFIMA processes. Of course, estimation of GARMA processes can

be handled using the same result, since (13) holds for GARMA (only with the form of β(z) being

somewhat different through the specification of κ(z)).
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Remark 3 In a sense (15) is a special case of (14) when h→∞ and P = h/J →∞. In the last line

of the proof, we let P → 0 in the integral and use P = J/h to obtain h−1−2αΓ(−α)Γ(1+2α)/Γ(1+α),

again via 3.194.3 of Gradshteyn and Ryzhik (1994), which produces (15).

We proceed by considering a few specific examples.

1-GEXP First if β(z) = (1− e−iωz)−c(1− eiωz)−cκ(z) then γh ∼ h2c−1 σ
2Γ(1−2c)

Γ(c)Γ(1−c)2{2 sin(ω)}−2c×
cos(hω)|κ(eiω)|2. Using Γ(c)Γ(1−c) = π/ sin(πc) and Γ(h+2c)/Γ(h+1) ∼ h2c−1, we see this agrees

exactly with the formula of Chung (1996). If the pole is at frequency zero or π, we obtain κ2(1)

and κ2(−1)(−1)h respectively, multiplied each by σ2Γ(1− 2c)h2c−1/{Γ(c)Γ(1− c)}.

2-GEXP Let ξ(α) = σ2Γ(1 + 2α)/{Γ(−α)Γ(1 + α)}, so that γh = h−2α−1ξ(α)Ah. The values of

Ah have been previously computed for the various cases of the 2-GEXP.

SFEXP The expression for Ah given after Proposition 2 can be used when s = 12, and γh is

easily obtained.

In this way the autocovariances can be efficiently computed. To summarize, the procedure is

the following:

Step 1: determine all parameters of (1);

Step 2: compute a sufficient number of θj via (6);

Step 3: compute a sufficient number of βj via (8);

Step 4: compute BJ(h) for h small via (12);

Step 5: compute Ah for all desired h via (13);

Step 6: compute RJ(h) for h small via (14);

Step 7: compute γh for h large via (15).

This necessarily involves some choices, such as the cutoff between small and large h, and the

truncation level J . In practice it makes little difference how these are chosen, but it is recommended

that J be taken large relative to the lag cutoff, e.g., J ≥ 2000 and the h cutoff at 100. Additionally,

in many cases, the number of desired lags is sufficiently small enough that γh can be calculated for

all h without appealing to (15) (i.e., omitting Step 7 of the above procedure).

For maximum likelihood (and Bayesian) estimation, it is also necessary to compute the deter-

minant of the covariance matrix Σn(f). In general, this can be computationally expensive. One
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path to computing this determinant is to use the Durbin-Levinson algorithm applied to the autoco-

variance function (see Brockwell and Davis, 1991). However, this can be computationally infeasible

for large sample sizes (Chen et al., 2006). Alternatively, an approximate formula can be obtained

from Theorem 5.47 of Böttcher and Silbermann (1999):

Proposition 3 Considering the model (1) we have:

|Σn(f)| ∼ σ2n na
2+b2+2

∑K
l=1 c

2
l E(f),

where the constant E(f) is equal to

E(f) = exp

 q∑
j=1

jg2
j /4 +

q∑
j=1

gj

{
a+ b(−1)j + 2

K∑
l=1

cl cos(ωlj)

}
· 2−2ab

K∏
l=1

{2− 2 cos(ωl)}−2acl{2 + 2 cos(ωl)}−2bcl{2− 2 cos(2ωl)}−c
2
l

∏
m>l

{2− 2 cos(ωm − ωl)}−2cmcl{2− 2 cos(ωm + ωl)}−2cmcl

· G
2(1− a)

G(1− 2a)
G2(1− b)
G(1− 2b)

K∏
l=1

G4(1− cl)
G2(1− 2cl)

.

Here G is the Barnes G function (Böttcher and Silbermann, 1999) given by

G(z + 1) = (2π)z/2 exp[−{z(z + 1) + γz2}/2]
∏
n≥1

{
(1 + z/n)ne−z+z

2/(2n)
}

with γ Euler’s constant ≈ .57721.

The proof is omitted, as the result directly follows from Böttcher and Silbermann (1999). Al-

together, this provides a method for the fast and accurate evaluation of the Gaussian likelihood

function for (1).

In summary, the preceding algorithm can be used to construct the authocovariance matrix

needed to compute the Gaussian likelihood. In some cases it is possible to invert the autocovariance

matrix and to find its’ determinant directly using standard software packages (e.g. R or Matlab -

R Development Core Team, (2010); Mathworks, Inc. (2010)). When this is not possible, inversion

can be handled using a conjugate gradient (or pre-conditioned conjugate gradient) approach (Golub

and Van Loan, 1996) and the log determinant can be approximated using Proposition 3.

4 Empirical Results

This section discusses the accuracy of the autocovariance approximations and asymptotic formula

for the determinant (Proposition 3). Exact quantification of the error necessarily depends on the
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ability able to compute the true autocovariance sequence and true determinant. Unfortunately this

is not always possible.

In some cases, such as fractional Gaussian noise (i.e. FGN or ARFIMA(0, d, 0)), the autoco-

variances can be computed exactly and the determinant calculated numerically. In this case we

computed the log determinant numerically using the autocovariance obtained from (12), the log

determinant obtained from Proposition 3, and the log determinant obtained numerically from the

exact autocovariances. In all cases, even for d = .45 (and J=5000), the difference between all

three methods is less than 10−5. (A comprehensive breakdown of these results are available upon

request.)

In the case of the FEXP(q) model, the autocovariance sequence can not be computed exactly.

Nevertheless, the autocovariance sequence can be computed up to any degree of accuracy using the

so-called splitting method (cf. Section 1 and Bertelli and Caporin (2002)). Similar to the case of

FGN, we computed the log determinant numerically using the autocovariances obtained from (12),

the log determinant obtained from Proposition 3, and the log determinant obtained numerically

from the autocovariances obtained using the splitting method. In all cases, for various short memory

specifications g and even for d = .45 (J=5000), the difference between all three methods was less

than 10−4. (A comprehensive breakdown of these results are available upon request.)

In principal, the autocovariances for 1-GEXP case can be computed to any degree of accuracy.

However, this would require use of the splitting method and the autocovariance function associated

with the Gegenbauer process (i.e., one seasonal long memory factor). Alternatively, a formula for

approximating the autocovariance of the Gegenbauer process has been derived by Chung (1996)

and has a complicated form involving Legendre functions that entail recursive calculations. In order

to avoid this complex form, Chung (1996) also provides an approximate asymptotic formula that

is seen to be a special case of Theorem 1 (cf. Remark 1).

In the case of the 1-GEXP, 2-GEXP and SFEXP the autocovariances sequence can not be

computed exactly. Therefore, in practice, the true autocovariance from these models are unknown.

Additionally, use of the splitting method for the 1-GEXP case would require an explicit formula

for the autocovariances associated with the Gegenbauer process. Specifically, this would require

the autocovariance function of a GARMA(0,0) model, which has a complicated form (Chung,

1996). Therefore in order to assess the accuracy of our method, in the case of these models,

we computed the log determinant numerically using the autocovariance obtained from (12) and

the log determinant obtained from Proposition 3. Although, in principal, the autocovariances

for the multiple memory parameter case could be obtained by numerically calculating the inverse

Fourier transform of the spectrum, this numerical integration can be prohibitively slow and becomes

unstable, even for “moderate” size memory parameters. As a consequence, in practice, this estimate

is subject to numerical error and often not obtainable; thus, it is not included in our comparison.

As demonstrated in Tables 1 and 2 the approximations for the 1-GEXP closely agree (i.e. for
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J ≥ 10, 000 and c ≤ .35 the difference is on the order of 10−4). In fact, by increasing J , even

for c = .45 the difference in the approximations can be made arbitrarily small. In the case of the

2-GEXP, Tables 3 and 4 provide a sense of the accuracy of the approximations. Specifically, in this

case, unless both memory parameters are pronounced (i.e. both c1 and c2 are greater than or equal

to .4), the difference in the approximations can be made on the order of 10−2 (for moderate size

J).

The SFEXP exhibits similar behavior to the 2-GEXP model. In this case, the trend long-

memory parameter equals d + D whereas the seasonal long-memory parameter is given by D. As

demonstrated in Tables 5 and 6, when both the trend (d + D) and seasonal (D) long-memory

parameters are larger than .3 approximation accuracy is diminished. However, for moderate size

seasonal long-memory parameter and substantial trend long memory parameter there is exceptional

agreement between the independent computations (i.e., a difference on the order of 10−2 for J ≥
5000), indicating excellent accuracy.

As expected, when models have multiple memory parameters approaching the nonstationary

region of .5 there is decreased accuracy in the approximation of the autocovariance sequence.

Nonetheless, it is important to note that no exact formulas exist for the autocovariances associated

with seasonal long memory models having multiple memory parameters. Further, the cases where

our method suffers from loss of accuracy are exactly the cases that are intractable using standard

numerical approaches (i.e., numerical calculation of the inverse Fourier transform of the spectrum).

In this context, our approach allows calculation of autocovariance sequences, with minimal loss of

accuracy, that otherwise would not be possible. Additionally, the comparison we have conducted is

“cumulative”, in the sense that the error in the autocovariance sequence is determined through the

log determinant rather than by comparison of each individual autocovariance (i.e. for each lag),

the latter being impossible to calculate directly in many situations. Finally, by coupling (12) with

(15) computational efficiency can be increased for large sample sizes and/or substantial memory

parameters.

5 Mauna Loa Data

To illustrate the utility of our approach we model 382 monthly atmospheric CO2 measurements

collected at the summit of Mauna Loa in Hawaii beginning in March 1958 (Keeling et al., 1989).

This data was previously analyzed by Woodward et al. (1998) using a 2-factor GARMA model

for the second differences of the atmospheric CO2 data. Figures 1 and 2 display the original data,

its sample autocorrelations, the log periodogram of the second differenced data and the sample

autocorrelation of the second differenced data. Looking at the log periodogram, it is immediately

apparent that the spectrum possesses multiple peaks. To accommodate this behavior we fit a

2-GEXP model using maximum likelihood estimation.
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The goal of our analysis is to demonstrate the effectiveness of embedding our autocovariance

computations into a maximum likelihood analysis. As such, no efforts have been made in terms of

formal model selection. To this end, we fit a 2-GEXP(4) model with unknown peak frequencies.

Figure 3 displays our estimated model spectrum with the log periodogram plus γ superimposed.

The value γ = .57211 is the Euler constant and is added to the log periodogram, as this forms

an unbiased estimate of the log spectrum (see Percival and Walden (2000) for a comprehensive

discussion).

Several salient features of our analysis are important to note. First, the estimated peak frequen-

cies are ω = (ω1, ω2) = (.5239, 1.048). These correspond to 12- and 6-month cycles and corrobo-

rates the analysis of Woodward et al., (1998). Additionally, the corresponding memory parameters

c = (c1, c2) = (.4972, .4970) and also coincide with the analysis of Woodward et al., (1998). The as-

sociated standard errors can be obtained from the estimated inverse Hessian. For the peak frequen-

cies the standard errors are 1.42×10−7 and 6.66×10−7 for ω1 and ω2 respectively. The standard er-

rors for the memory parameters are 5.33×10−6 and 4.29×10−6 for c1 and c2 respectively. Finally, the

short memory portion of the model is given by (g0, g1, g2, g3, g4) = (−2.162,−1.188,−1.175, 1.150)

with standard error (1.54 × 10−2, 4.99 × 10−2, 3.17 × 10−2, 1.70 × 10−2, 1.22 × 10−2) and the

estimated mean (of the twice differenced data) is equal to .198, with standard error 3.98× 10−4.

6 Conclusion

Flexible modeling of seasonal long-range dependent processes has been severely hampered due to

the lack of computationally efficient methods for calculating the associated model autocovariances.

Additionally, for seasonal long-memory models, approaches to approximating the determinant of

the autocovariance matrix needed for evaluating the exact Gaussian likelihood have been lacking.

As a result, in general, generalized Gegenbauer processes have experienced limited use. Further, in

their limited usage, these models have been necessarily estimated using log periodogram regression

or Whittle approximations to the Gaussian likelihood.

The approach presented here allows for fast accurate computation of the autocovariances for

seasonal long-memory models having multiple memory parameters. As a consequence, flexible

models for long-range dependent data can be estimated using exact likelihood or Bayesian meth-

ods. To assess the accuracy of our method we presented the results of an empirical study that

compares independent estimates of the log determinant. The comparisons are achieved using the

estimated autocovariance sequence directly and through the proposed asymptotic approximation

to the log determinant. In general, we find that the estimated autocovariance sequences produce

log determinants that agree with high accuracy to their asymptotic approximation counterpart.

Additionally, we illustrate the utility of the autocovariance computation approach by embed-

ding our approximations in a maximum likelihood analysis for the Mauna Loa data. The results
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obtained from this analysis are seen to provide sensible estimates that corroborate the analysis of

Woodward et al. (1998). This analysis, along with the results of the empirical study, demonstrate

the effectiveness of our computational formulas, allowing for the estimation of a general class of

models using exact maximum likelihood and Bayesian methodology.

Appendix - Proofs of Results

Proof of Proposition 1. Taking the logarithm of (1) yields

log f(λ) = −a log(2−2 cosλ)−b log(2+2 cosλ)−
K∑
l=1

cl log [{2− 2 cos(ωl − λ)} {2− 2 cos(ωl + λ)}]+log g(λ).

Using integration by parts we obtain (for j ≥ 1)

1
π

∫ π

−π
log(2− 2 cosλ) cos(λj) dλ = − 1

π

∫ π

−π

sin(λj) sinλ
j(1− cosλ)

dλ.

For rigor, the integral should be broken into two integrals over [−π, 0) and (0, π] and re-assembled,

which is used to show that the boundary terms in the integration by parts amount to zero. Next,

letting Ω denote the unit circle in the complex plane we have

− 1
π

∫ π

−π

sin(λj) sinλ
j(1− cosλ)

dλ = − 1
2πij

∫
Ω
z−(j+1)(z+1)

2j−1∑
k=0

zk dz = − 1
jj!

∂j

∂zj

{
(z + 1)

2j−1∑
k=0

zk

}
|z=0 = −2

j
,

since there is a pole of order j + 1 at zero, making use of the residue formula (see Henrici (1974)).

Similarly,

1
π

∫ π

−π
log(2 + 2 cosλ) cos(λj) dλ =

1
π

∫ π

−π

sin(λj) sinλ
j(1 + cosλ)

dλ

=
1

2πij

∫
Ω
z−(j+1)(z − 1)

2j−1∑
k=0

(−z)k dz

=
1
jj!

∂j

∂zj

{
(z − 1)

2j−1∑
k=0

(−z)k
}
|z=0

= −2(−1)j

j
.

Finally, suppose that ω 6= 0, π.

1
π

∫ π

−π
log {2− 2 cos(λ+ ω)} cos(λj) dλ = − 1

π

∫ π

−π

sin(λj) sin(λ+ ω)
j{1− cos(λ+ ω)}

dλ

= − 1
2πij

∫
Ω

(zeiω + 1)z−(j+1)(z2j − 1)
zeiω − 1

dz.

The integrand has a simple pole at e−iω, unless eiω2j = 1 (in which case there is a cancelation).

The residue is 2(e−iωj − eiωj), which gets halved because it lies on Ω. The pole at zero is of order
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j + 1, and its residue comes out to be 2eiωj . As a final result we obtain −2 cos(ωj)/j if eiω2j 6= 1,

and −2/jeiωj otherwise. However, in this latter case we have cos(ωj) = eiωj , so that −2 cos(ωj)/j

is a valid formula for both cases. Finally, note that these roots ω ∈ (0, π) found in (1) always occur

in pairs, which accounts for the doubling of these terms in (6). This concludes the derivation. 2

Proof of Theorem 1. As a first step, consider the case that Θ(z) consists of a single factor, i.e.,

Θ(z) = (1− ζ−1z)α. Expanding in z yields (see Theorem 13.2.1 of Brockwell and Davis (1991))

Θ(z) =
∑

j≥0 πj(α)ζ−jzj , with the asymptotic form of πj(α) given by (10). Now Φ(z) consists of

κ(z), whose coefficients decay at exponential rate (see Hurvich, 2002), multiplied by various factors

(1− ξ−1z)γ where γ > α. We proceed by induction on the number of these factors; first suppose

that Φ = κ. Then

βj =
j∑

k=0

πk(α)ζ−kφj−k (A.1)

follows from β(z) = Θ(z)Φ(z), with φj the coefficients of Φ. We split the sum (A.1) into four

parts using a sequence τ(j) such that 1/τ(j) + τ(j)/j → 0: sum over 0 ≤ k < τ(j) − 1 (part I);

sum over τ(j) ≤ k < j/2 (part II); sum over j/2 ≤ k < j − τ(j) (part III); sum over j − τ(j) ≤
k ≤ j (part IV). For part I, we have φj−k is asymptotic to φj times a function of exponential

decay, so that φj−k/φj ∼ r−k (for some r < 1) times other bounded functions. Then the sum

in part I is asymptotic to φj
∑τ(j)

k=0 πk(α)ζ−kr−k (leaving out the bounded functions, since they

don’t affect the argument), which tends to zero since φj is dominant. For part II, we note that

πk(α)’s asymptotic form (10) can be substituted since k ≥ τ(j)→∞. The resulting sum converges

(because φj−k has exponential decay), but since it is a tail sum starting at τ(j) part II converges

to zero. For parts III and IV we first make a change of variable so that the summands look like

πj−k(α)ζk−jφk. Since πj−k(α)/πj(α) → 1 for k ≤ τ(j), part III is asymptotic to πj(α)ζ−j times

the tail sum of a convergent series, and hence is o(πj(α)). Only part IV is left, which is asymptotic

to πj(α)ζ−j
∑τ(j)

k=0 ζ
kφk, and this sum tends to Φ(ζ). But this is (11).

Now suppose that Φ(z) consists of κ(z) times n factors of the form (1− ξ−1z)γ , and consider

β(z) = (1− ζ−1z)αΦ(z)(1− ξ−1z)γ . Group the first term with Φ(z), and call this ∆(z); then by

the induction hypothesis, we know that its coefficients δj satisfy (11), i.e., δj ∼ πj(α)ζ−jΦ(ζ). The

second term (1− ξ−1z)γ has coefficients ρj , and we know that ρj = πj(γ)ξ−j . Now similar to (A.1),

βj =
∑j

k=0 δkρj−k and we can break the sum into four parts as in the base case. Although ρj does

not have exponential decay, we can use the fact that ρj/πj(α)→ 0 – as well as the summability of

ρkζ
−kξ−k, as ξ and ζ are unit roots – to conclude that the first three parts are o(πj(α)). Part IV

is asymptotic to δj
∑τ(j)

k=0 ξ
kρk ∼ πj(α)ζ−jΦ(ζ)(1− ξ−1ζ)γ , as desired.

Finally, we must induct on the number of factors in Θ(z). We have established the base case

already (one factor), so suppose that (11) holds for m factors, i.e., β(z) = Θ(z)(1− ζ−1
m+1z)

α, and

θj satisfies (11). Since the coefficients of this latter factor are exactly πj(α)ζ−jm+1, (A.1) yields
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βj =
∑j

k=0 θkπj−k(α)ζk−jm+1. This can be decomposed into four portions as before, but now only

parts II and III are negligible. This is because for both these summations we can asymptotically

pull out a πj(α) term, leaving the tail sum of a convergent series (again, because the presence of

the unit roots ζl bring about convergence), making them both o(πj(α)). For part I we obtain the

asymptotic ζ−jm+1πj(α)
∑τ(j)

k=0 θkζ
k
m+1 ∼ πj(α)ζ−jm+1Θ(ζm+1). For part IV we first observe that

θj−k
θj
∼
∑m

l=1 ζ
−j+k
l Θ−l(ζl)∑m

l=1 ζ
−j
l Θ−l(ζl)

,

so that the asymptotic is θj
∑τ(j)

k=0

∑m
l=1 ζ

−j+k
l Θ−l(ζl)πk(α)ζ−km+1/

∑m
l=1 ζ

−j
l Θ−l(ζl), which is

πj(α)
∑m

l=1 ζ
k
l Θ−l(ζl)(1− ζl/ζm+1)α. Putting parts I and IV together yields

βj
πj(α)

∼ ζ−jm+1Θ(ζm+1) +
m∑
l=1

ζkl Θ−l(ζl)(1− ζl/ζm+1)α =
m+1∑
l=1

ζkl β−l(ζl).

We make some further comments on the order of approximation. By examining the Gamma func-

tion and using results of Gradshteyn and Ryzhik (1994), it is possible to show that πj(α) =

j−(1+α)Γ−1(−α){1 + O(j−1)}. In the analysis of βj , there are error terms that are o(πj(α)) and

cannot be improved in general; thus βj = πj(α)E(j){1 + o(1)}. This concludes the proof. 2

Proof of Theorem 2. Without loss of generality set σ2 = 1. Let τ(h) play the same role as in

the proof of Theorem 1, and break the sum in γh into two parts: j ≤ τ(h) and j > τ(h). The first

portion is
τ(h)∑
j=0

βjβj+h =
τ(h)∑
j=0

βj(j + h)−(1+α)Γ−1(−α)E(j + h){1 + o(1)}

= h−(1+α)Γ−1(−α)
τ(h)∑
j=0

βj(1 + j/h)−(1+α)E(j + h){1 + o(1)}.

The o(1) term is as h→∞. Because of the asymptotic rate of decay of βj , a bound on the divergence

of the sum is τ(h)−α = o(h−α). Hence the overall bound on the first term is O(h−(1+2α)). Turning

to the second term, we have∑
j>τ(h)

βjβj+h = Γ−2(−α)
∑
j>τ(h)

j−(1+α)(j + h)−(1+α)E(j)E(j + h){1 + o(1)}. (A.2)

Here there is error that is o(1) as j →∞ and as j+h→∞, which amounts to just o(1) as h→∞,

since j > τ(h). Now writing out E(j) and E(j+h), we must compute
∑

j>τ(h) j
−(1+α)(j + h)−(1+α)ζ−jl ζ−jk

for unit roots ζl, ζk. If ζlζk 6= 1, they make the sum oscillatory fostering convergence, such that we

obtain a bound of O(h−(1+α)); else if ζlζk = 1 the sum decays at the slower rate of h−(1+2α), as

shown below. Letting k0 = τ(h) and kp = hp for p ≥ 1, we can rewrite as

h−2(1+α)

∑
p≥1

kp∑
j=kp−1+1

(j/h)−(1+α)(1 + j/h)−(1+α)

 ∼ h−(1+2α)
∑
p≥1

∫ p

p−1
x−(1+α)(1 + x)−(1+α) dx,
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since it is a Riemann sum. We also use the fact that τ(h)/h→ 0. Now
∫∞

0 x−(1+α)(1 + x)−(1+α) dx =

Γ(−α)Γ(1 + 2α)/Γ(1 + α) by 3.194.3 of Gradshteyn and Ryzhik (1994). Next, we must determine

how many unit root pairs satisfy ζlζk = 1, i.e., are conjugate to one another. If the root is ±1, it

is self-conjugate. Otherwise, there is always a conjugate root present in β(z) since these factors

come in pairs. In any event, the only terms in EjEj+h that need be considered are those such that

ζlζk = 1 for all 1 ≤ l, k ≤ m, which is

m∑
l,k=1

1{ζlζk=1}β−l(ζl)β−k(ζk)ζ
−h
k =

m∑
k=1

|β−k(ζk)|2ζ−hk = Ah.

Putting this together with h−(1+2α)Γ(−α)Γ(1 + 2α)/Γ(1 + α) yields the stated result (15).

Here we also prove Proposition 2, using the same techniques. Let J = hP , and suppose h is

fixed but J and P are tending to infinity. Then RJ(h) can be expressed by (A.2), but with τ(h)

replaced by J . Similar arguments (but now taking a J asymptotic instead of an h asymptotic)

allow us to focus on unit roots such that ζkζl = 1, and the summation for such k, l is

∞∑
j=J

j−α−1(j + h)−α−1 = J−2−2α
∑
r≥1

(r+1)J∑
j=rJ

(j/J)−1−α(j/J + 1/P )−1−α

≈ J−1−2α

∫ ∞
1

x−1−α(x+ 1/P )−1−α dx.

The approximation used here is the Riemann integration approximation for bounded integrands,

so the error is O(J−2−2α). However, the approximation error from discounting the ζkζl 6= 1 terms

is lower order, namely o(J−1−2α). Using 3.194.2 of Gradshteyn and Ryzhik (1994), the integral is

equal to

P 1+2α

∫ ∞
P

y−1−α(1 + y)−1−α dx =
F (1 + α; 1 + 2α; 2 + 2α;−1/P )

1 + 2α
,

using the change of variable y = Px. This completes the proof. 2
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1-GEXP: g = (0, .75); ω = .56; n = 500

c = c0 (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = .1 (.4299165) .4299322 .4299343 .4299339 .429934 .429934

(1.568073e-5) (1.779021e-5) (1.741245e-5) (1.748945e-5) (1.746436e-5)

c = .25 (1.582358) 1.582165 1.582420 1.582377 1.582400 1.582391

(-1.930936e-4) (6.205987e-5) (1.854933e-5) (4.148341e-5) (3.288235e-5)

c = .35 (3.058414) 3.055264 3.058549 3.058041 3.058518 3.058331

(-.003149895) (1.351969e-4) (-3.730171e-4) (1.033682e-4) (-8.28445e-5)

c = .45 (5.973976) 5.939837 5.972566 5.968087 5.97576 5.972568

(-.03413864) (-.001410034) (-.005889043) (-.001783619) (-.001407956)

Table 1: Log determinant of the autocovariance sequence, for a 1-GEXP model, obtained from
Equation (12) for a given J . The number in parenthesis below denotes the difference between
the estimate from Equation (12) and log |Σprop| obtained from Proposition 3. Recall that g0 = 0
implies unit innovation variance.

1-GEXP: g = (0, .75); ω = .56; n = 1000

c = c0 (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = .1 (.4437794) .4437847 .4437889 .4437881 .4437833 .4437882

(5.240159e-6) (9.415287e-6) (8.660819e-6) (8.817557e-6) (8.76521e-6)

c = .25 (1.669002) 1.668565 1.669074 1.668987 1.669033 1.669016

(-4.361900e-4) (7.217425e-5) (-1.433973e-5) (3.161854e-5) (1.435415e-5)

c = .35 (3.228235) 3.221981 3.228549 3.227534 3.228488 3.228115

(-.006254165) (3.133181e-4) (-7.010782e-4) (2.526479e-4) (-1.201864e-4)

c = .45 (6.2547) 6.1866 6.252189 6.243225 6.25859 6.252199

(-.06804101) (-.002511493) (-.011475681) (.003889263) (-.002501926)

Table 2: Log determinant of the autocovariance sequence, for a 1-GEXP model, obtained from
Equation (12) for a given J . The number in parenthesis below denotes the difference between
the estimate from Equation (12) and log |Σprop| obtained from Proposition 3. Recall that g0 = 0
implies unit innovation variance.



2-GEXP: g = (0, .75); ω = (ω1, ω2) = (.1, .56); n = 500

c = (c1, c2) (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = (.1, .2) (1.528072) 1.523229 1.52541 1.526801 1.527357 1.527665

(-.004843934) (-.002662391) (-.001271907) (-7.154246e-4) (-4.072432e-4)

c = (.1, .3) (2.714834) 2.708252 2.711868 2.713324 2.71408 2.714331

(-.006581986) (-.002966315) (-.001509996) (-7.54218e-4) (-5.028845e-4)

c = (.1, .45) (6.538299) 6.486128 6.519585 6.527094 6.538506 6.53538

(-.05217059) (-.01871311) (-.01120481) (2.078213e-4) (-2.918457e-4)

c = (.45, .2) (8.134616) 7.668759 7.90187 8.190575 8.13965 8.115619

(-0.4658567) (-0.2327459) (0.05595938) (0.00503351) (-0.01899707)

c = (.45, .3) (9.49205) 8.5508 8.945401 9.494429 9.444705 9.411312

(-0.9412503) (-0.5466491) (0.002378529) (-0.04734516) (-0.08073868)

c = (.45, .4) (11.68251) 9.423213 9.978965 11.26194 11.27301 11.22001

(-2.259298) (-1.703546) (-0.420568) (-0.4094976) (-0.4625005)

Table 3: Log determinant of the autocovariance sequence, for a 2-GEXP model, obtained from
Equation (12) for a given J . The number in parenthesis below denotes the difference between
the estimate from Equation (12) and log |Σprop| obtained from Proposition 3. Recall that g0 = 0
implies unit innovation variance.

2-GEXP: g = (0, .75); ω = (ω1, ω2) = (.1, .56); n = 1000

c = (c1, c2) (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

c = (.1, .2) (1.597387) 1.588833 1.592713 1.595149 1.596123 1.596659

(-.008554216) (-.004673783) (-.002238315) (-.001263973) (-7.277024e-3)

c = (.1, .3) (2.853464) 2.841542 2.848285 2.850855 2.852228 2.852651

(-.01192180) (-.005178798) (-.002608591) (-.001235417) (-8.126799e-4)

c = (.1, .45) (6.832886) 6.730148 6.796645 6.811344 6.834062 6.827721

(-.1027383) (-.03624135) (-.02154171) (.001175967) (-.005165404)

c = (.45, .2) (8.470792) 7.557704 8.018156 8.59122 8.486669 8.43687

(-0.9130878) (-0.4526367) (0.1204275) (0.01587655) (-0.0339227)

c = (.45, .3) (9.897542) 8.142808 8.902406 9.97242 9.856134 9.776608

(-1.754733) (-0.9951356) ( 0.07487789) (-0.04140792) (-0.1209333)

c = (.45, .4) (12.18504) 8.318515 9.338821 11.80701 11.76417 11.60253

(-3.866528) (-2.846222) (-0.3780357) (-0.4208718) (-0.5825138)

Table 4: Log determinant of the autocovariance sequence, for a 2-GEXP model, obtained from
Equation (12) for a given J . The number in parenthesis below denotes the difference between
the estimate from Equation (12) and log |Σprop| obtained from Proposition 3. Recall that g0 = 0
implies unit innovation variance.
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SFEXP: g = (0, .75); n = 500

(d, D) = (d0, D0) (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

(d, D) = (.1, .2) (3.606141) 3.376883 3.455379 3.518562 3.547613 3.566701

(-.2292581) (-.1507615) (-.08757812) (-.05852793) (-.03943965)

(d, D) = (.1, .3) (8.584982) 7.459553 7.747775 8.01178 8.151985 8.256607

(-1.125429) (-.837207) (-.5732017) (-.4329975) (-.3253756)

(d, D) = (.1, .35) (12.71477) 10.422228 10.90555 11.37301 11.63730 11.84609

(-2.292494) (-1.809218) (-1.341755) (-1.077465) (-.8686839)

(d, D) = (.2, .1) (1.648142) 1.622271 1.633137 1.640714 1.643690 1.645398

(-.02587158) (-.01500525) (-.007428354) (-.004452358) (-.002744174)

(d, D) = (.3, .1) (2.599647) 2.573756 2.584518 2.592081 2.595056 2.596761

(-.02589099) (-.01512898) (-.007565892) (-.004590889) (-.002886382)

(d, D) = (.35, .1) (3.472745) 3.446911 3.457536 3.465090 3.468067 3.469766

(-.02583382) (-.01520905) (-.007655405) (-.004678368) (-.002979346)

Table 5: Log determinant of the autocovariance sequence, for a SFEXP model, obtained from
Equation (12) for a given J . The number in parenthesis below denotes the difference between
the estimate from Equation (12) and log |Σprop| obtained from Proposition 3. Recall that g0 = 0
implies unit innovation variance.

SFEXP: g = (0, .75); n = 1000

(d, D) = (d0, D0) (log |Σprop|) J = 5, 000 J = 10, 000 J = 25, 000 J = 50, 000 J = 100, 000

(d, D) = (.1, .2) (3.973509) 3.622366 3.745153 3.842621 3.88708 3.916191

(-.3511428) (-.228356) (-.1308877) (-.0864286) (-.05731751)

(d, D) = (.1, .3) (9.382102) 7.848874 8.257978 8.622112 8.812097 8.952638

(-1.53227) (-1.124124) (-.75999) (-.5700042) (-.4294634)

(d, D) = (.1, .35) (13.78915) 10.83478 11.49619 12.11198 12.45169 12.71667

(-2.954365) (-2.292958) (-1.677172) (-1.337460) (-1.072474)

(d, D) = (.2, .1) (1.786772) 1.741965 1.761085 1.774356 1.779555 1.782536

(-.04480619) (-.02568656) (-.01241565) (-.007216655) (-.004235872)

(d, D) = (.3, .1) (2.786797) 2.742162 2.761073 2.774320 2.779518 2.782491

(-.04463461) (-.02572414) (-.01247751) (-.007279237) (-.004305617)

(d, D) = (.35, .1) (3.689353) 3.64497 3.663606 3.676836 3.68204 3.685002

(-.04438323) (-.02574781) (-.01251715) (-.0073137) (-.004350972)

Table 6: Log determinant of the autocovariance sequence, for a SFEXP model, obtained from
Equation (12) for a given J . The number in parenthesis below denotes the difference between
the estimate from Equation (12) and log |Σprop| obtained from Proposition 3. Recall that g0 = 0
implies unit innovation variance.
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Figure 1: (a) Mauna Loa CO2 data, 382 monthly observations beginning March 1958. (b) Auto-
correlation function of the Mauna Loa CO2 data.
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Figure 2: (a) Log periodogram + .57721 of the twice differenced Mauna Loa CO2 data. (b)
Autocorrelation function of the twice differenced Mauna Loa CO2 data.



0.0 0.5 1.0 1.5 2.0 2.5 3.0

-5
0

5

w

lo
g 

pe
rio

do
gr

am
 +

 .5
77

21

log periodogram + .57721
2-GEXP(4)

Figure 3: Log periodogram + .57721 of the twice differenced Mauna Loa CO2 data with the
estimated 2-GEXP(4) model superimposed.


