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ABSTRACT

When a monthly economic indicator series contracts sharply for a few months
and then starts to recover, the published annual and monthly growth rates
can give conflicting signals: the annual growth rate can indicate a decrease
and the monthly growth rate an increase or vice versa. This is well known to
the seasonal adjustment community, see, for example, Shiskin (1957). In this
paper, we revisit, illustrate and then explain this potential for conflict more
analytically. For example, the annual differences lag the monthly differences
by five and a half months because the same-month-year-ago difference is the
sum of the current and eleven preceding monthly differences, and the annual
sum has a phase shift of five and a half months. Illustrative examples are
followed by an elementary formal mathematical derivation using the gain and
phase functions of the annual sum.
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1 INTRODUCTION

Wyman (2010) notes that there has been a growing interest in understanding
the movements in monthly economic time series, most often seasonally ad-
justed series, as a result of the late 2008 economic downturn and its recovery
period. Her paper reviews the basic aspects of seasonal adjustment and how
seasonal adjustment helps analysts interpret the economic trend when such
a situation occurs. Wyman (2010) can be viewed as an updated version of
Shiskin (1957) to publicize the benefits of seasonal adjustment for economic
data users. Both papers discuss year-over-year changes as an alternative to
seasonal adjustment, its weaknesses and, of most interest to this study, its
main limitation that it gives an outdated story. Here we revisit this main
limitation, illustrate it with a simple function example and empirically, and
then provide an elementary formal mathematical derivation of the delay of
the year-over-year comparison with respect to the month-to-month compar-
ison.

Shiskin (1957), pages 230-231, provides a footnote with a reference to
Macaulay (1931), pages 134-135,

Economists have long been critical of same-month-year-ago-
comparison. Thus in 1931 Frederick R. Macaulay wrote: “There
is a simple and enlightening way to describe the operation of
subtracting the quotation for the same month last year from the
quotation of the present month [. . .] . It amounts to taking a 12-
months moving total of the data and using the first differences
of this moving total [. . .] . Moreover, as the 12-months moving
average does not extend to the end of the data, its first differences
do not tell whether, at the present time, the underlying curve of
the data is high or low or whether it is rising or falling, but simply
whether it was rising or falling six months ago”.

Macaulay (1931), pages 135-136, further illustrates this delay of six months
with the examples of sine curves of 24-month and 48-month periods.

Rhodes and Elhawary-Rivet (1983) presents the relationship between the
monthly and annual rates of change that permits reconciliation of possibly
contradictory movements. It provides a graphical example, intuitive argu-
ments and uses the gain and phase shift functions to provide the five and half
month delay of the annual growth rate with respect to the monthly growth
rate.
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The present tutorial paper provides a reproducible and corrected example,
simplifies the derivation by using differences instead of rates, and supplies
missing details. The most helpful perspective is that an annual difference is
the sum of the twelve intervening monthly differences (1). Hence, the phase
shift of the annual difference relative to the phase shift of the monthly differ-
ence is simply that induced by the annual sum. Equation (D.4) of Findley
and Martin (2006) gives the gain and phase function of the annual sum fil-
ter without the details of its derivation. We provide a detailed derivation,
starting from elementary concepts.

This paper is organized as follows: Section 2 first illustrates the precise
problem graphically with an elementary function. Then the New Car Dealer
Sales series from the Canadian Monthly Retail Trade Survey serves to provide
a real example with sign differences between monthly and annual growth
rates. Section 3 develops the relevant business cycle frequency perspective
from basic concepts and examples. Section 4 provides the formal derivation
of the phase shift induced by the annual sums, leading to the conclusion that
annual differences lag monthly differences by five and a half months in a basic
way.

2 ILLUSTRATIVE EXAMPLES

2.1 An Artificial Example

It happens occasionally that a monthly time series indicates an annual de-
crease and at the same time a monthly increase. This can create confusion
among users of its data. The following example illustrates the situation.
See also the discussions in Shiskin (1957), second column, page 229, and in
Macaulay (1931), pages 135-136.

Consider the time series Xt = cos(2πt/24) for t = 0, 1, 2, . . . , 24, displayed
in Figure 1. Next consider the monthly differences Xt−Xt−1 for t = 1, . . . , 24
and the annual difference Xt − Xt−12 for t = 12, . . . , 24 displayed in Figure
2. The monthly differences, available starting at t = 1, are negative from
t = 1 to t = 12 and then positive from t = 13 to t = 24. They indicate
the decrease in Xt from t = 1 to t = 12 and the subsequent increase in
Xt from t = 13 to t = 24. The continuous line that joins the monthly
differences crosses the x-axis at t = 12.5. There is no observation at this
mid-time. The annual differences only start at t = 12. They are negative

4



ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç

ç
ç

5 10 15 20

-1.0

-0.5

0.5

1.0

Figure 1: Xt = cos(2πt/24) for t = 0, 1, 2, . . . , 24
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Figure 2: Monthly (circles) and Annual (squares) Differences of Xt
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Differences (squares) of Xt
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from t = 12 to t = 17, zero at time t = 18 and then positive from t = 19 to
t = 24. For t = 13, 14, 15, 16, 17 and 18, the monthly differences are positive
and the annual differences are not. Thus, it seems they provide contradictory
information. The time plot of the first differences in Figure 2 clearly indicates
that the series started to increase at t = 13. The first positive increase from
the annual differences occurs six months later at time t = 19.

One can observe that the continuous-time curve of the annual differences
crosses the x-axis exactly 5.5 = 18 − 12.5 months after the monthly differ-
ences. The explanation will turn out to reside in the fact that each annual
difference is the sum of the last twelve monthly differences:

Xt −Xt−12 = (Xt −Xt−1) + (Xt−1 −Xt−2) + . . .+ (Xt−11 −Xt−12) . (1)

As a start, this shows that if series has been decreasing for a few months,
it will generally take a few months of positive increase to make the annual
differences positive.

The larger scale of the annual differences in Figure 2 is exactly explained
by the gain function of annual sums, which will be defined and derived in
Section 4. For now, consider the re-scaled annual differences obtained by
dividing the annual differences by the ratio of the sine functions in Equation
(5) at λ = 1/24, the frequency of a two-year cycle. Also, shift their graph
backward by exactly 5.5 months, corresponding to the phase shift of annual
sums at this frequency, derived as (7) below. Now the monthly and re-scaled
and time-shifted annual differences, as displayed in Figure 3, tell the same
story. In particular, the series was decreasing until t = 12 and then started
to increase at t = 13.

In conclusion for this section, the annual differences were 5.5 months late
in identifying the change from decrease to increase relative to the monthly
differences. They tell an outdated story. Further information regarding these
differences and their phase shifts, or time delays, will be provided below.

2.2 New Car Dealer Sales

This section provides a real example with Statistics Canada New Car Dealer
Sales from the Monthly Retail Trade Survey1. The estimates are available
from Statistics Canada’s web site. They are provided in Table 1 for the period
January 2007 to July 2010 and are displayed in Figure 4. The seasonally

1Older examples are provided in Shiskin (1957).
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adjusted series clearly shows the drop in the sales at the end of 2008 and its
recovery early 2009.

Before comparing the monthly growth rates and annual growth rates of
the seasonally adjusted series, we review the statement in Wyman (2010)
that Statistics Canada’s main economic data releases use seasonally adjusted
series to compare year-over-year measures. This is illustrated in Table 1
and Figure 5 where the annual growth rates of both the raw and seasonally
adjusted series are displayed. Figure 5 shows that the growth rate from
the seasonally adjusted series is smoother and achieved its lowest value in
December 2008, whereas that of the raw series achieved its lowest values two
months later in February 2009. The growth rates computed from the raw
series are affected by the calendar effects that include trading-day effects,
a 2008 leap year February that affected the February 2009 year-over-year
comparison, and an April 2009 Easter Sunday combined with a March 2008
Easter Sunday that affected both the March and April comparison. Wyman
(2010) discusses these topics in detail. For our further discussion of this
example, the annual growth rates computed from the seasonally adjusted
series will be used.

The monthly and annual growth rates in the seasonally adjusted series
are provided in Table 1 and displayed in Figure 6. The monthly growth rate
is positive in January 2009, slightly drops back to a small negative value in
February 2009 and then returns to and remains positive through October
2009. The annual growth rates are negative through September 2009. Thus
there is a sign contradiction between the monthly and annual growth rates
for seven consecutive months. Only in October 2009 do they have the same
sign. Publishing only the current monthly and annual growth rates sends a
confusing signal because one is positive and the other is negative. Despite
the fact that the annual growth rates are negative at the beginning of 2009,
Figure 6 shows that the improvement in the annual growth rates also started
in January 2009. Most data publications provide neither this graph nor the
previous month’s annual growth rate.

The Canadian Consumer Price Index publication is a notable exception.
In it, both current and previous month annual growth rates are shown and
the difference is calculated and commented on. Also publishing the previ-
ous month’s annual growth rate and commenting on the difference from the
current month’s annual growth rate would, in general, avoid confusion from
disagreements with the signal provided by the recent values of the seasonally
adjusted series. More on this topic can be found in Wyman (2010).

7



Table 1: New Car Dealer Sales from January 2007 to July 2010: raw, sea-
sonally adjusted (SA), annual growth rate in % in the raw (A GR Raw), an-
nual growth rate in % in the seasonally adjusted series (A GR SA), monthly
growth rate in % in the seasonally adjusted series (M GR SA)

Date Raw SA A GR Raw A GR SA M GR SA
2007Jan 4969575 6256082
2007Feb 4833879 6174078 -1.31
2007Mar 6833771 6376681 3.28
2007Apr 7268126 6556587 2.82
2007May 8186647 6626927 1.07
2007Jun 7570250 6501631 -1.89
2007Jul 6955440 6464541 -0.57
2007Aug 7338273 6641227 2.73
2007Sep 6130209 6413151 -3.43
2007Oct 6153139 6396495 -0.26
2007Nov 5822440 6428010 0.49
2007Dec 5426751 6653090 3.50
2008Jan 5404653 6689868 8.75 6.93 0.55
2008Feb 5303599 6629311 9.72 7.37 -0.91
2008Mar 6438205 6515989 -5.79 2.18 -1.71
2008Apr 7807596 6406912 7.42 -2.28 -1.67
2008May 7597202 6330020 -7.20 -4.48 -1.2
2008Jun 6928454 6266093 -8.48 -3.62 -1.01
2008Jul 6911068 6105610 -0.64 -5.55 -2.56
2008Aug 6305914 5977386 -14.07 -10.00 -2.10
2008Sep 6245315 6349413 1.88 -0.99 6.22
2008Oct 5950398 6154373 -3.29 -3.79 -3.07
2008Nov 5077802 5827447 -12.79 -9.34 -5.31
2008Dec 4483801 5201588 -17.38 -21.82 -10.74
2009Jan 4232132 5371485 -21.69 -19.71 3.27
2009Feb 4114647 5324453 -22.42 -19.68 -0.88
2009Mar 5852277 5522325 -9.10 -15.25 3.72
2009Apr 6405143 5543801 -17.96 -13.47 0.39
2009May 6684784 5717547 -12.01 -9.68 3.13
2009Jun 6717658 5763867 -3.04 -8.01 0.81
2009Jul 6525669 5873070 -5.58 -3.81 1.89
2009Aug 6240691 5976009 -1.03 -0.02 1.75
2009Sep 6198862 6103334 -0.74 -3.88 2.13
2009Oct 6042329 6219647 1.54 1.06 1.91
2009Nov 5296071 6172845 4.30 5.93 -0.75
2009Dec 5414355 6136234 20.75 17.97 -0.59
2010Jan 4531819 5941702 7.08 10.62 -3.17
2010Feb 4787190 6175739 16.35 15.99 3.94
2010Mar 6991355 6436994 19.46 16.56 4.23
2010Apr 7062390 6086019 10.26 9.78 -5.45
2010May 6991542 6108290 4.59 6.83 0.37
2010Jun 7475499 6234774 11.28 8.17 2.07
2010Jul 6942796 6302895 6.39 7.32 1.09
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Figure 4: New Car Dealer Sales: Raw (circles) and Seasonally Adjusted
Series (squares)
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3 INTRODUCTORY CONCEPTS

3.1 Frequencies in Time Series

A time series may be considered from two perspectives: time and frequency.
In the time domain, the series Xt is treated as a succession of T regularly
observed values over an interval of months, say, with a time index t varying
from 1 to T or some other designation of the months. This is how a time
series is generally approached and the time plot of Xt against t shows its
evolution over time. Figure 4 provided such a time plot for the raw and
seasonally adjusted New Car Dealer Sales’ series.

In the frequency domain, a time series Xt of length T can be represented
by a sum of T periodic functions, specifically sine and cosine functions of
typically different amplitudes and possibly different phases. Details of the
representation will not be needed in this note. The low frequencies corre-
spond to slowly changing components such as the trend and the business
cycle. The high frequencies correspond to the more quickly changing com-
ponents including seasonal components and more volatile components.

The usual domain of sine and cosine functions is the interval [0, 2π], i.e.
0 ≤ ω ≤ 2π, or any translation of it in the interval [−2π, 2π] such as [−π, π].
However it will be seen that, for our purposes, we can focus on positive
frequencies in [0, π], even on the smaller subinterval of frequencies relevant
for business cycle analysis. A given frequency ω within the interval [0, π] can
be expressed as ω = 2πλ with 0 ≤ λ ≤ 1/2. For example, the graph of Xt =
cos(2πt/24) in Figure 1 would represent the cosine function of amplitude 1
with λ = 1/24. The function cos(2πλt) repeats itself every 24 months since

cos[2π(t+ 24)/24] = cos(2πt/24 + 2π) = cos(2πt/24).

For monthly series, the number 1/λ indicates the number of months it takes
for a component of the series with frequency λ to go through a full cycle in
the time series, 24 months with λ = 1/24. The cosine function cos(2πt/24)
could provide the fundamental component for modeling a 2-year business
cycle in a monthly time series that oscillates around the value zero.

10



Some frequencies of interest for a monthly economic time series are:

• λ = 1/60, associated with the five year cycle because 60 = 5× 12.

• λ = 1/24, associated with the two year cycle because 24 = 2× 12.

• The interval [1/60, 1/24], associated with five down to two year business
cycles.

• The interval [0, 1/60), associated with phenomena that take more than
5 years to be fully expressed in the time series. Those with λ close to
0 are related to the long-term trend.

• The values λ = k/12 with k = 1, 2, 3, 4, 5, 6, which are the fundamental
seasonal frequency (k = 1) and its harmonics. They are associated with
phenomena that recur in the time series 1, 2, 3, 4, 5 or 6 times within a
year.

The frequency ω = 2πλ with λ = 6/12 = 1/2 is associated with the 2-
month cycle. This is the highest frequency that can be observed in a monthly
time series. Hence, in the sequel, λ can be restricted to the interval [0, 1/2],
corresponding to 0 ≤ ω ≤ π.

3.2 Complex Numbers

The use of complex numbers simplifies the analysis of cycles and phase shifts.
A complex number has the form z = x+ iy where x and y are real numbers
and i is the imaginary unit with the property i2 = −1; x is called the real
part of the complex number; y is the imaginary part. The complex number
x− iy is called the complex conjugate of z and is denoted z̄.

A complex number z is graphically represented in the plane by its coordi-
nate pair (x, y). The magnitude of z, also known as the modulus or absolute
value, is the distance of (x, y) from the origin (0, 0) and is written r = |z|.
By Pythagoras’ theorem, r = |z| = |x+ iy| =

√
x2 + y2 =

√
z × z̄.

For z 6= 0, the principal argument of z = x + iy, written arg(z), is the
angle which the line from (x, y) to (0, 0) makes with the positive x axis,
measured in radians, but with a minus sign if y < 0. It is not defined
for z = 0. The magnitude and argument provide the polar representation
z = rei arg(z), with −π < arg(z) ≤ π. A function definition of arg(z), which

11



we will not explicitly need, can be given with the aid of the atan2 function2.
See Wikipedia Contributors (2011) for example.

The combination of the magnitude and argument fully specify the position
of a point in the plane (x, y) = (r cosϕ, r sinϕ) different from (0, 0). Hence,
a non-zero complex number can be written in various ways: the rectangular
form z = x + iy, the trigonometric form z = r(cosϕ + i sinϕ) and the
exponential form z = reiϕ coming from (x, y) = (r cosϕ, r sinϕ) and eiϕ =
cosϕ+ i sinϕ.

A complex number on the unit circle (r = 1) can be written as eiϕ =
cosϕ+ i sinϕ. These representations provide the following equalities used in
this paper: e±i2πk = 1, k = 0, 1, . . .; i = ei2π/4; and sinϕ = (eiϕ − e−iϕ) /(2i).

Multiplication of two complex numbers is simple using the exponential
form since (r1e

iϕ1) · (r2e
iϕ2) = r1r2e

i(ϕ1+ϕ2). When ϕ1 + ϕ2 falls outside
the interval (−π, π], the principal argument ϕ1 + ϕ2 ± 2π in the interval
(−π, π] is usually taken to resolve that ambiguity that z = rei arg(z)±2πk for
any k = 1, 2, . . ..

3.3 Moving Averages/Filters

A moving average is a weighted sum of a fixed number of time series values
that is applied in a sequential manner over a subinterval of the time series
data X1, . . . , XT , adding and dropping one observation at each step. The
value X̂t of the moving average at time t is given by a formula

X̂t =

+f∑
k=−p

θkXt+k

where the coefficients θk, k,= −p, . . . , f are often called the weights of the
moving average. (The weights can have negative values and need not sum
to 1.0, so the name can be misleading.) A moving average is also called a
filter, which is the term we will use. Then the values X̂t are called the filter

2

arg(z) = atan2(y, x) = ϕ =



arctan(y/x) x > 0
arctan(y/x) + π y ≥ 0, x < 0
arctan(y/x)− π y < 0, x < 0
π/2 y > 0, x = 0
−π/2 y < 0, x = 0
undefined y = 0, x = 0

12



output and those of Xt the filter input. The output defines a time series in
which the value at instant t of the series Xt is replaced by a weighted average
of p “past” values of the series, the current value, and f “future” values of
the series. Its values cannot be calculated for the first p values and the last
f values of the time interval of the Xt values.

We will be concerned with the filter that transforms monthly differences
to annual differences. The formula (1) shows that this is the annual sum
filter with p = 11, f = 0, and θk = 1.0, k = −11, . . . , 0.

3.4 Gain and Phase Shift Functions

Consider Xt = Reiωt = R [cos(ωt) + i sin(ωt)], a time series at frequency ω
with amplitude R. When a filter is applied to Xt the output is

X̂t =

+f∑
k=−p

θkRe
iω(t+k)

= Reiωt
+f∑
k=−p

θke
iωk

= Xt

+f∑
k=−p

θke
iωk,

which is the initial value Xt multiplied by complex number
∑+f

k=−p θke
iωk.

For ω in the interval (−π, π], the function

G(ω) =

+f∑
k=−p

θke
iωk =

+f∑
k=−p

θk cos(ωk) + i

+f∑
k=−p

θk sin(ωk)

is called the transfer function of the filter. It can be expressed as G(ω) =
|G(ω)|eiϕ(ω) using the polar representation of a complex number.

• The function |G(ω)| =
∣∣∣∑+f

k=−p θke
iωk
∣∣∣ is called the gain function of

the filter. For economic indicator data, usually ω = 2πλ, with λ in units
of cycles per year. The graph of |G(2πλ)| against 0 ≤ λ ≤ 1/2 (see
Figure 7 for the annual sum filter) shows the frequencies suppressed,
preserved or amplified by the filter. The gain function is graphed only
for 0 ≤ λ ≤ 1/2 because |G(−2πλ)| = |G(2πλ)|.

13



• The function ϕ(ω) = arg[G(ω)], defined only where G(ω) 6= 0, is called
the phase shift function of the filter. It can be directly calculated for
the business cycle frequencies of interest for our example. In general,
it is given by

ϕ(ω) = atan2

(
+f∑
k=−p

θk sin(ωk),

+f∑
k=−p

θk cos(ωk)

)
.

Graphing ϕ(2πλ) over 0 ≤ λ ≤ 1/2 or over the business cycle frequen-
cies of interest can show the extent to which the cyclical component at
frequency λ is shifted by the filter. For 0 < λ ≤ 1/2, the phase shift is
commonly graphed as ϕ(2πλ)/2πλ. This expresses the phase shift as
a time shift in units of months (or whatever the sampling interval is).
The graphing interval is again restricted positive frequencies because
ϕ(−2πλ) = −ϕ(2πλ) and ϕ(−2πλ)/− 2πλ = ϕ(2πλ)/2πλ. The latter
function can be defined at λ = 0 via limλ→0ϕ(2πλ)/2πλ = ϕ′ (0) when
this limit exists.

4 THE ANNUAL SUM FILTER

The transfer function of the annual sum filter in (1) is

GAS(ω) = 1 + e−iω + e−2iω + . . .+ e−11iω.

Using the formula (1− z) (1 + z + z2 + . . .+ z11) = 1− z12, we obtain

GAS(ω) =

{
12, ω = 0

1−e−i12ω

1−e−iω , ω 6= 0.
(2)

Substituting ω = 2πλ, we can obtain a formula for GAS(2πλ) that better
reveals the gain and phase-shift functions. To do this, we re-express the
denominator and numerator in (2) as

1− e−i2πλ =
(
ei2πλ/2 − e−i2πλ/2

)
e−i2πλ/2

= 2i sin (2πλ/2) e−i2πλ/2

= 2 sin (2πλ/2) ei2π(1/4−λ/2), (3)

14
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Figure 7: Gain Function of the Annual Sum Filter for 0 ≤ λ ≤ 1/2

and

1− e−i12×2πλ =
(
ei2π12λ/2 − e−i2π12λ/2

)
e−i2π12λ/2

= 2i sin (2π12λ/2) e−i2π12λ/2

= 2 sin (2π12λ/2) ei2π(1/4−12λ/2), (4)

respectively. Substitution into (2) yields

GAS(2πλ) =

{
12, λ = 0

sin(2π12λ/2)
sin(2πλ/2)

ei2π(−11λ/2), λ 6= 0,−1/2 < λ ≤ 1/2
. (5)

The gain function thus has the formula

|GAS(2πλ)| =

{
12, λ = 0∣∣∣ sin(2π12λ/2)

sin(2πλ/2)

∣∣∣ , 0 < λ ≤ 1/2
(6)

Its graph in Figure 7 shows that it decreases to 0 at the fundamental seasonal
frequency λ = 1/12 and its harmonics, λ = k/12, k = 2, . . . , 6. This reveals
that annual sums damp seasonal variations.

The formula (5) also immediately reveals the phase shift function of the
annual sum filter for 0 < λ < 1/12, which is adequate for cyclical analysis,
because it covers all cycles of length greater than one year. Indeed, the
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sine functions in the formula (5) are both positive for 0 < λ < 1/12, so
their ratio is positive and coincides with the gain function over this interval.
Consequently, the argument function in the exponential factor coincides with
the phase shift function on this interval.

Specifically, for 0 ≤ λ < 1/12, (5) shows that the phase shift function for
the annual sums filter is

ϕAS(2πλ) = 2π (−11λ/2) ,

in months
ϕAS(2πλ)

2πλ
= −5.5, (7)

(as a limit at λ = 0). Because this phase shift is constant, it need not be
graphed. The frequency λ = 1/12 is excluded because the phase shift is not
defined where the gain function is zero.

This result explains how annual differences reveal cyclical information
later than monthly differences. It confirms the annual sum phase shift for-
mula (D.4) of Findley and Martin (2006), stated without a detailed deriva-
tion. This reference also provides phase shift graphs of various seasonal
adjustment filters that show how seasonal adjustments of recent data can
exhibit phase shift.

Remark. The transfer functions of the monthly and annual difference
filters are shown in (3) and (4), where they are factorized in a way that is
analogous to (5) for the annual sum filter. Only the annual sum filter and
its constant phase shift are relevant to the goals of this paper.

5 CONCLUSIONS

The annual difference is the sum of the twelve intervening monthly differ-
ences; hence, the phase shift of the annual differences relative to the phase
shift of the monthly differences is simply that induced by the annual sum,
which we have shown to be −5.5 months quite generally. From a practical
point of view, this shows why an analyst who uses both monthly and an-
nual differences may observe contradictory movements, especially right after
a turning point. Comparing the current month’s annual difference with the
annual difference of the previous month may help to resolve such an apparent
conflict.
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Disclaimer. This article is released to inform interested parties and to
encourage discussion of research. All opinions expressed are those of the
authors and not necessarily those of Statistics Canada or the U.S. Census
Bureau.
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