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Abstract

While it is typical in the econometric signal extraction literature to assume that the unobserved

signal and noise components are uncorrelated, there is nevertheless an interest among econome-

tricians in the hypothesis of hysteresis, i.e., that major movements in the economy are fundamen-

tally linked. While specific models involving correlated signal and noise innovation sequences

have been developed and applied using state space methods, there is no systematic treatment

of optimal signal extraction with correlated components. This paper provides the Mean Square

Error optimal formulas for both finite samples and bi-infinite samples, and furthermore relates

these filters to the more well-known Wiener-Kolmogorov (WK) and Beveridge-Nelson (BN) sig-

nal extraction formulas in the case of ARIMA component models. Then we obtain the result

that the optimal filter for correlated components can be viewed as a weighted linear combination

of the WK and BN filters. The gain and phase functions of the resulting filters are plotted for

some standard cases. Some discussion of estimation of hysteresis models is presented, along

with empirical results on several economic time series. Comparisons are made between signal

extraction estimates from traditional WK filters and those arising from the hysteresis models.

Keywords. ARIMA, Nonstationary, Seasonality, Time Series.

Disclaimer This paper is released to inform interested parties of ongoing research and to encour-

age discussion of work in progress. The views expressed are those of the author and not necessarily

those of the U.S. Census Bureau.

1 Introduction

In the econometric literature on nonstationary signal extraction, two popular approaches have

developed, each based on an underlying assumption on the relationship of signal and noise: namely,

that these components are uncorrelated (i.e., orthogonal) or that they are fully correlated (i.e.,
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collinear). These assumptions are motivated alternatively by economic considerations – reflecting

a priori beliefs on the nature of the driving forces underpinning an economic variable – or through

statistical considerations of identifiability of a given time series model. The ambiguity is due to

the fact that neither signal nor noise is actually observed, so the actual correlation structure of

the putative components cannot be directly measured. In between these two extreme viewpoints

– orthogonality on the one-hand and collinearity on the other – exists a generic formulation where

there is some degree of cross-correlation between signal and noise. Ghysels (1987) investigated this

phenomenon for time series with trend and seasonality. The term hysteresis has been introduced

(Jäger and Parkinson, 1994) to describe this situation with respect to trends and cycles; we use it

more generally in this paper to denote a correlation between the unobserved signal and noise.

More generally, the term “hysteresis” refers to a dynamical system whose output depends

not only upon the inputs, but upon the internal state of the system. There is a considerable

amount of economic literature on this topic. Proietti (2006) gives an overview with a focus on the

case of nonzero correlation; the key reference for the full correlation case is Beveridge and Nelson

(1981), but also see Snyder (1985), Ghysels (1987), Ord, Koehler, and Snyder (1997), Hyndman,

Koehler, Snyder, and Gross (2002), and Oh, Zivot, and Creal (2008). The literature on orthogonal

components goes back to Wiener (1949), but more recent references include Bell and Hillmer (1984),

Bell (1984), Harvey (1989), Harvey and Jäger (1993), and McElroy (2008). This is not an exhaustive

list: for further reading see the references in Proietti (2006) and Bell (2004). The paper at hand

does not seek to enter the argument as to whether hysteresis exists and/or is a useful concept,

because this has been argued in many other papers. Instead we focus on providing a complete and

general mathematical analysis of hysteresis, in order to better elucidate the properties of signal

extraction in this context.

In particular, we provide exact optimal formulas for nonstationary signal extraction (with a

nonstationary noise component) when cross-correlation is present in varying degrees, for both finite

samples and bi-infinite samples. Although formulas for stationary bi-infinite samples can be found

in Whittle (1963), our formulas for the nonstationary case are novel. The new finite sample formulas

allow for a quite general treatment of hysteresis, and are practical for implementation on real series

(without requiring the labor of state space methods). Here optimality refers to an estimator that has

minimum mean squared error among all estimators linear in the data, or alternatively one that has

minimum mean squared error among all estimators when the data is Gaussian. So the estimators

are classical, in the sense that they are conditional expectations under a Gaussian assumption,

but are derived under the new and somewhat heterodox assumption of cross-correlation in the

components, thereby generalizing the standard formulas employed in the orthogonal paradigm.

In order for these results to be useful in applied econometric analysis, one needs algorithms to

fit hysteresis models to time series data, and generate the component estimates. The most viable

approach at present is to set up a structural model for the data, directly estimating the cross-
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correlation of signal and noise innovations along with the other parameters; see Proietti (2006) for

an in-depth discussion. Some supplementary explication is offered in our article, with algorithms

for a simple hysteresis structural model. Our main focus is to provide explicit signal extraction

formulas and illustrate how these can be implemented for linear structural models1. Furthermore,

we develop a fundamental interpretation of the optimal hysteresis filter as a convex combination of

the Beveridge-Nelson (BN) and Wiener-Kolmogorov (WK) filters2. The filters are then examined

in the frequency domain through the plotting of their gain and phase delay functions.

The organization of this paper is as follows. In Section 2 we develop the main mathematical

material, with proofs in the Appendix. The special case of ARIMA component models is developed

in Section 3, and we connect the BN and WK filters to the hysteresis filters. A discussion of

implementation of the signal extraction filters is also provided3, with a frequency domain analysis

of the filters that provides further insight into the role of hysteresis. Section 4 proposes a simplistic

structural hysteresis model, with a discussion of its estimation utilizing unconstrained optimization

of the exact Gaussian likelihood. Then Section 5 provides an application of these models to several

economic time series, with comparisons of traditional and hysteresis signal estimates. Section 6

summarizes our findings, and all proofs are in the Appendix.

2 Signal Extraction Formulas

We consider the additive decomposition of our data vector Y = (Y1, Y2, · · · , Yn)′ into signal S

and noise N , via Y = S + N. For example, the signal might be the trend component, while the

noise includes the seasonal and irregular components. Following Bell (1984), we let {Yt} be an

integrated process such that Wt = δ(B)Yt is stationary, where B is the backshift operator and δ(z)

is a polynomial with all roots located on the unit circle of the complex plane. (Also, δ(0) = 1

by convention.) Typically, it is assumed that {Wt} is stationary, although this is not required for

Theorem 1 below. This δ(z) is referred to as the differencing operator of the series, and we assume

it can be factored into relatively prime polynomials δS(z) and δN (z) (i.e., polynomials with no

common zeroes), such that the series

Ut = δS(B)St Vt = δN (B)Nt (1)

are mean zero time series that could possibly be correlated with one another. Note that δS = 1

and/or δN = 1 are included as special cases (in these cases either the signal or the noise or both
1By this we mean any unobserved component time series model – see Gersch and Kitagawa (1983) and Harvey

(1989) – where each component, once suitably differenced to reduce to stationarity, can be viewed as a linear process.
2Technically, the WK filter only applies to the case of stationary signal and noise, but by a standard abuse of

terminology we extend this appellation to the case of nonstationary signal and noise as developed in Bell (1984).
3R code (R Development Core Team, 2008) for the finite sample filters is available from the first author.
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are stationary). We let d be the order of δ, and dS and dN are the orders of δS and δN ; since the

latter operators are relatively prime, δ = δS · δN and d = dS + dN .

Now we can write (1) in a matrix form, as follows. Let ∆ be a (n− d)× n matrix with entries

given by ∆ij = δi−j+d (the convention being that δk = 0 if k < 0 or k > d), i.e.,

∆ =




δd · · · δ1 1 0 0 · · ·
0 δd · · · δ1 1 0 · · ·
...

. . . . . . . . . . . . . . .
...

0 · · · 0 δd · · · δ1 1




The matrices ∆S and ∆N have entries given by the coefficients of δS(z) and δN (z), but are (n −
dS) × n and (n − dN ) × n dimensional respectively. This means that each row of these matrices

consists of the coefficients of the corresponding differencing polynomial, horizontally shifted in an

appropriate fashion. Hence

W = ∆Y U = ∆SS V = ∆NN

where W , U , V , S, and N are column vectors of appropriate dimension, with covariance matrices

ΓW , ΓU , etc. We also have need of differencing matrices of reduced dimension, denoted as ∆N

and ∆S ; these have the same entries as ∆N and ∆S , but have dimension (n − d) × (n − dS) and

(n− d)× (n− dN ) respectively, such that

∆ = ∆S∆N = ∆N∆S . (2)

A proof of (2) can be found in McElroy and Sutcliffe (2006). With these notations it is possible to

write the Mean Square Error (MSE) linear optimal estimate Ŝ as a linear matrix operating on Y ,

i.e., Ŝ = FY . The error covariance matrix, i.e., the covariance matrix of Ŝ − S, is denoted by M .

The difference from the conventional signal extraction literature is that we allow for cross-

correlation between differenced signal {Ut} and differenced noise {Vt}:

E[UV ′] = ΓUV .

We do not assume that the multivariate process {(Ut, Vt)} is stationary in Theorem 1 below, as no

special structure of the matrix ΓUV is needed. In general, ΓUV will not be square. Note that

ΓV U = E[V U ′] = Γ′UV .

Now from (2) it follows that

W = ∆NU + ∆SV.

Then the covariance matrices are related as follows:

ΓW = ∆SΓV ∆′
S + ∆NΓU∆′

N + ∆NΓUV ∆′
S + ∆SΓV U∆′

N . (3)
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We need to assume that ΓU , ΓV , and ΓW are invertible, but they need not be Toeplitz, as would

be true of stationary processes. As was established for conventional signal extraction theory (Bell

(1984) and extended to the finite sample case by McElroy (2008), it is useful to consider an as-

sumption relating the initial values of the process to the differenced signal and noise:

Assumption A The initial values Y ∗ = (Y1, Y2, · · · , Yd)
′ are uncorrelated with {Ut} and {Vt}.

Theorem 1 Assume the invertibility of ΓU , ΓV , and ΓW . Under Assumption A, the MSE linear

optimal signal extraction filter is given by

F = M−1
[
∆′

NΓ−1
V ∆N + PΓ−1

W ∆
]
,

where the matrices M and P are

M = ∆′
SΓ−1

U ∆S + ∆′
NΓ−1

V ∆N

P = ∆′
SΓ−1

U ΓUV ∆′
S −∆′

NΓ−1
V ΓV U∆′

N .

The error covariance matrix Γε is

Γε = M−1 −M−1
(
PΓ−1

W P ′ + ∆′
NΓ−1

V ΓV UΓ−1
U ∆S + ∆′

SΓ−1
U ΓUV Γ−1

V ∆N

)
M−1.

Remark 1 In the special case that U and V are not cross-correlated, P = 0 and we at once obtain

the more classical signal extraction filters (McElroy, 2008). When P is nonzero, F and Γε need not

be centro-symmetric.

The case of a bi-infinite sample is somewhat easier to describe. Now we seek the MSE optimal

estimate Ŝt = Ψ(B)Yt, for a signal extraction filter Ψ(B). Because we seek to derive time-invariant

filters, we shall now assume that {Ut} and {Vt} are jointly stationary. We employ the notation fW

and fU for the spectral density functions of {Wt} and {Ut}, while fUV is the cross spectral density

of {Ut} and {Vt} – so fUV (λ) = fV U (−λ). We adopt the conventions of Brockwell and Davis (1991),

so that E[Ut+hVt] is the lag h value of cross-covariance function (of U with V ), with corresponding

cross-spectrum fUV (λ) =
∑

h∈Z E[Ut+hVt]e−ihλ. Letting z = e−iλ as an abbreviation, we have the

following relations in analogy with (3):

fW (λ) = fU (λ)δN (z)δN (z) + fUV (λ)δN (z)δS(z) + fV U (λ)δS(z)δN (z) + fV (λ)δS(z)δS(z). (4)

Then the frequency response function (frf) for Ψ(B) is given in the following result.

Theorem 2 Under Assumption A, the MSE linear optimal signal extraction filter has frf given by

Ψ(z) =
fU (λ)δN (z)δN (z) + fUV (λ)δN (z)δS(z)

fW (λ)
.

The spectral density of the stationary error process is

fU (λ)fV (λ)− fV U (λ)fUV (λ)
fW (λ)

.
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Remark 2 Clearly Ψ(B) includes noise differencing δN (B), but a second noise differencing δN (F )

is not included when there is cross-correlation. This differs from the conventional case, where of

course fUV = 0 and Ψ(B) contains both δN (B) and δN (F ) as factors.

3 The ARIMA Case: Relation to BN and WK Filters

In this section we consider bi-infinite data drawn from ARIMA component models with the following

notation borrowed from Bell and Martin (2003). The process Yt = St + Nt as before, with

Yt =
θ(B)
ϕ(B)

at St =
θS(B)
ϕS(B)

bt Nt =
θN (B)
ϕN (B)

ct. (5)

The denominator polynomials ϕ, ϕS , and ϕN can always be factored into portions involving roots

on the unit circle and roots outside the unit circle. The former are denoted by δ, δS , and δN as in

Section 2, but the latter are denoted φ, φS , and φN , i.e., these are the autoregressive polynomials.

The innovation sequences {at}, {bt}, and {ct} are white noise of variance σ2
a, σ2

b , and σ2
c , but

we allow for the possibility that {bt} and {ct} are cross-correlated. The orders of the various

polynomials are q, qS , qN for moving average polynomials, and p, pS , pN for full autoregressive

polynomials (including the differencing operators). Next, we write down the various spectra of

Section 2 in the ARIMA model notation. First, let z = e−iλ for any frequency λ ∈ [−π, π]. The

cross-covariance function of the innovation {ct} relative to {bt} is defined via

%h = E[ct+hbt], h ∈ Z

which has discrete fourier transform ρ(z)σbσc; it follows from the Cauchy-Schwarz inequality that

|ρ(z)| ≤ 1. Then we have:

fU (λ) =
θS(z)θS(z)
φS(z)φS(z)

σ2
b

fV (λ) =
θN (z)θN (z)
φN (z)φN (z)

σ2
c

fUV (λ) =
θS(z)θN (z)
φS(z)φN (z)

ρ(z)σbσc

fV U (λ) =
θN (z)θS(z)
φN (z)φS(z)

ρ(z)σbσc. (6)

Let us suppose, for the remainder of this section, that these polynomials and spectra are fixed

quantities; then one may construct various filters under potentially inconsistent assumptions (e.g.,

constructing the WK filter when ρ is nonzero). The optimal hysteresis (H) filter arising from

application of Theorem 2 will be denoted ΨH , and clearly depends on the function ρ:

ΨH(z) =
θS(z)θS(z)ϕN (z)ϕN (z)σ2

b + θS(z)θN (z)ϕN (z)ϕS(z)ρ(z)σbσc

θ(z)θ(z)σ2
a

. (7)
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This follows from substitution of the relevant spectra into Theorem 2. We observe that both the

BN and WK filters (for bi-infinite data) are special cases of Theorem 2 where ρ(z) is set equal to

one and zero respectively (see Beveridge and Nelson (1981) and Bell (1984)). We then obtain the

following formulas4 for their frfs:

ΨBN (z) =
θS(z)ϕN (z)σb

θ(z)σa
= ΨH(z)|ρ≡1 (8)

ΨWK(z) =
θS(z)θS(z)ϕN (z)ϕN (z)σ2

b

θ(z)θ(z)σ2
a

= ΨH(z)|ρ≡0. (9)

That is, holding all the polynomials fixed ahead of time, setting ρ identically to unity or zero,

respectively, in the hysteresis filter will yield the BN or WK filters. A further algebraic relation

among the Hysteric, BN, and WK filters is derived below. Again, we suppose that the hysteresis

model holds for some correlation function ρ, but we construct the filters ΨBN and ΨWK by plugging

into their formulas given above. That is, we use the polynomials θ, θS , and ϕN associated with the

hysteresis model, but then apply them to construct the BN and WK filters as if ρ were identically

one and zero respectively. Since ΨBN is a signal extraction filter, we may denote it also by ΨS
BN

when there is the need to distinguish it from the Beveridge-Nelson noise extraction filter given by

ΨN
BN (z) =

θN (z)ϕS(z)σc

θ(z)σa
,

which is in turn equal to the noise hysteresis filter when ρ ≡ 1. Then we have

ΨH(z) = ΨS
BN (z)

[
θS(z)ϕN (z)σb + θN (z)ϕS(z)ρ(z)σc

θ(z)σa

]

= ΨS
BN (z)

[
ΨS

BN (z) + ρ(z)ΨN
BN (z)

]

= ΨWK(z) + ρ(z)ΨS
BN (z)ΨN

BN (z). (10)

This derivation uses several facts. The first equality arises from splitting the rational function in

(7) into polynomials involving z on the left and z on the right. The second equality utilizes the

conjugate of the BN noise filter. The last equality is a simple rearrangement of terms, recognizing

that ΨWK(z) is the squared modulus of ΨS
BN (z).

Let us interpret this interesting relationship. When ρ ≡ 0, (10) reduces to ΨH = ΨWK , which

is true because when no hysteresis is present, the optimal signal extraction filter is given by the

WK. But when ρ ≡ 1, full hysteresis holds and ΨN
BN = 1 − ΨS

BN , so that the right hand side of

(10) produces

ΨWK(z) + ΨS
BN (z)(1−ΨS

BN (z)) = ΨS
BN (z).

Thus the hysteresis filter is equal to the BN filter in this case, which is correct. More generally,

as in the work of Proietti (2006), the innovation correlation function ρ(z) = ρ might be constant
4See the Appendix for the derivation of the BN filter.
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in [−1, 1], and then the hysteresis filter is just a weighted combination of the familiar WK and

BN (signal and noise) filters. When ρ(z) is non-constant, additional lag and amplitude effects are

superimposed on the constituent filters.

The actual implementation of the finite sample formulas is straightforward once the spectra and

cross-spectra are known. We outline this procedure below. Note that for long time series (say more

than 360 observations) the matrix approach is still quite fast in practice, since the required inversion

of non-Toeplitz matrices of dimension equal to sample size is very fast relative to model fitting.

(Signal extraction requires a few matrix inversions, whereas optimizing a likelihood requires such

an inversion during each evaluation step; state space methods that utilize the Kalman recursions

can be used to reduce computation time.) The extra time required over a state space approach is

operationally irrelevant for series of moderate length, and in any event may be warranted if one is

interested in the full covariance matrix of the error process.

1. Obtain fitted component models that follow (5).

2. Compute the autocovariance and cross-covariance functions corresponding to fU , fV , fUV ,

and fV U given in (6)5.

3. Use these quantities to compute P , M , and F in Theorem 1.

Of course, step 1 requires the fitted component models. How is this to be accomplished in

practice? A current approach in the literature on hysteresis uses structural models with correlated

innovations, and estimates the log Gaussian likelihood using state space algorithms; see Proietti

(2006). It is also possible for the correlation ρ to arise from the model itself, as in the work of

Harvey and Trimbur (2007). In that paper an underlying continuous time model is stipulated for

trend and noise components, and the way in which sampled signal and noise are defined implies

a hysteresis structure, with correlation derivable from other parameters of the model. In Section

4 below, we provide details on a structural hysteresis model that generalizes the work of Proietti

(2006) to seasonal time series.

We next illustrate the frequency response function (frf) of hysteresis filters, adopting the trend-

cycle paradigm studied in Proietti (2006). In particular, the signal is a smooth trend given by

the model (1−B)2St = bt, whereas the noise is a stochastic cycle given by Φ(B)Nt = ct, and

Φ(z) = 1 − 2κ cos(ω)z + κ2z2. The persistence of the cycle is determined by κ ∈ (0, 1), while the

chief frequency is governed by ω ∈ (0, 2π). As in Section 4, the correlation between the white noise

sequences {bt} and {ct} is ρ ∈ [−1, 1], and they each have variance σ2
b and σ2

c respectively.

The signal extraction problem is identical with trend estimation, whereas the noise extraction

problem corresponds to cycle estimation. A third component of white noise could also be included
5Standard algorithms – in R for instance – produce the autocovariances for fU and fV ; a little more work is

required for the cross-covariances, but similar principles are in play.
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in this simple process, but this somewhat clouds intuition and is therefore omitted here (we consider

three component models in the next section). We calculate the frequency response functions for

the hysteresis filter ΨH , for both trend and cycle estimation, and plot the resulting components:

real and imaginary portions (the frf is complex in general), squared gain (labeled just as gain), and

phase delay. See Findley and Martin (2006) for definitions of these frequency domain functions.

The parameters of the cyclical model are κ = .8 and ω = π/60 – for a cycle of period roughly

5 years – and σb = σc = 1. For these parameters, we compute the Hysteric, BN, and WK filters

as described above. That is, ΨH is computed via (7) using ρ = ±.5, whereas ΨBN and ΨWK are

computed using (8) and (9) respectively, essentially ignoring the true values of ρ. We have plots

for ρ = ±.5: see Figures 1, 2, 3, and 4.

The Squared Gain and Phase Delay are probably of chief interest. For the Hysteric Trend in

Figure 1, the low-pass shape of the Squared Gain function is familiar, although in the ρ = .5 case

there is a “nose” in the cycle-band reminiscent of a concurrent filter. For positive cross-correlation,

there is phase advance at cyclical frequencies, whereas the opposite effect – phase delay in the cycle

band – is evident when ρ = −.5. The cycle filter Squared Gain functions are as expected, and there

is considerable phase advance at low frequencies when ρ = −.5.

The Squared Gain functions for the BN Trend filter in Figure 2 are qualitatively similar to the

Hysteric case. The Phase Delay functions for the BN Cycle filter is not well-defined at frequency

zero, resulting in non-informative explosive behavior. For the WK case in Figure 3, there is no

phase delay (since the filters are symmetric). The low-pass shape for the Trend and Cycle filters

is even more pronounced in the WK case, but qualitatively the impact of ρ = .5 versus ρ = −.5 is

the same.

Finally, we track the relations between the Hysteric, BN, and WK filters in Figure 4. This is

the visual display corresponding to equation (10), where ρ = ±.5. We don’t examine Squared Gain

or Phase Delay comparisons, since (10) does not apply to these nonlinear functions of the frf. The

Trend (real part) frfs for ρ = −.5 show some dramatic differences, with the Hysteric filter providing

much more smoothing than the BN and WK filters. For the Cycle filters, there is an interesting

negative dip in Hysteric and BN filters – associated with their asymmetry – at the low frequencies.

4 Estimation of Structural Hysteresis Models

In order to utilize the formulas of Theorem 1, it is necessary to have the autocovariance and

crosscovariance functions for the components. The two most popular model-based approaches in

the literature are the structural and decomposition methods. The former postulates models for

the unobserved signal and noise – and this includes cross correlation structure – so that for any

choice of parameters the autocovariances for the data are calculated via (3). In this way Gaussian

maximum likelihood estimation provides the component models, and the signal extraction formulas
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can then be applied. In contrast, the decomposition approach begins with a posited model for the

data process, and obtains models for the components using algebra.

Much of the current work on hysteresis (Proietti, 2006) adopts the structural approach within

the context of Harvey’s basic structural models, modeling the cross-correlation via cross-correlated

white noise innovation sequences for signal and noise. The model estimation and signal extraction

computations (corresponding to the the matrix formulas of Theorem 1) are efficiently carried out

through state space algorithms. The results of Theorem 2 can be used to understand the frequency

domain properties of these signal extraction filters.

We now describe the methodology for fitting a structural hysteresis model. A typical application

to economic time series will involve a model with seasonal, trend, and irregular components. So we

posit the existence of a seasonal component P (typically an S is used, but to avoid confusion with

the signal notation, we use P for periodic), a trend component T , and a (white noise) irregular

component I such that Y = P + T + I. The seasonal differencing and trend differencing operators

are denoted δP (B) and δT (B) respectively, with Zt = δP (B)Pt and Xt = δT (B)Tt the stationary

differenced series. Hence we have by assumption

ϕY (B)Yt = ΘY (B)at

ϕP (B)Pt = ΘP (B)bt

ϕT (B)Tt = ΘT (B)ct

for innovation sequences {at}, {bt}, and {ct}, which along with {It}, a white noise. We use Θ to

denote moving average polynomials, whereas ϕ denotes a combined auto-regressive and unit root

differencing polynomial. As mentioned above, we use δ for differencing polynomials; if we wish

to refer to the non-unit root factors of ϕ, i.e., the pure auto-regressive portions, then we use the

symbol φ. These conventions apply to data Y , trend T , and seasonal P . In order for the structural

relation to hold, we must have ϕY = ϕT ϕP .

As usual, ϕP and ϕT are relatively prime; this only constitutes a decision about how the signals

are conceived. Allowing for correlation between bt, ct, and It – but for simplicity we suppose that

cross-correlation only occurs at lag zero – produces the following analogue of (4):

ΘY (z)ΘY (z)
ϕY (z)ϕY (z)

σ2
a =

ΘP (z)ΘP (z)
ϕP (z)ϕP (z)

σ2
b +

ΘT (z)ΘT (z)
ϕT (z)ϕT (z)

σ2
c + σ2

I (11)

+
ΘP (z)
ϕP (z)

τσbσI +
ΘP (z)
ϕP (z)

τσbσI +
ΘT (z)
ϕT (z)

ξσcσI +
ΘT (z)
ϕT (z)

ξσcσI

+
ΘT (z)ΘP (z)
ϕT (z)ϕP (z)

ρσbσc +
ΘP (z)ΘT (z)
ϕP (z)ϕT (z)

ρσbσc.

The correlation between bt and It is denoted by τ , the correlation between ct and It is denoted

by ξ, and the correlation between bt and ct is denoted by ρ. Clearly τ , ξ, and ρ are bounded by

one in magnitude; also it follows – by the injunction that the covariance matrix of bt, ct, and It be
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non-negative definite – that 1 − (ρ2 + ξ2 + τ2) + 2ρξτ ≥ 0. Parameters satisfying this injunction

are said to be admissible. Note that any admissible choice of ΘT , ΘP , σb, σc, τ , ξ, and ρ must

also satisfy (11), for some polynomial Θ; it is easy to see that δ(B)Yt can be expressed as a linear

combination of a tri-variate stationary vector process, and hence the left hand side of (11) will

always be non-negative.

Now (11) tells us how the structural components are related to the data process, even as the

terms on the right hand side sum up to the left hand side. Passing into time domain via integra-

tion against eiλh, we obtain a relation of autocovariances. Parameters enter into the covariance

quantities, which are in turn aggregated to the whole.

Let us illustrate this through a specific class of structural models. Let ϕP (z) = U(z) = 1 + z +

· · ·+ z11, and ϕT (z) = (1− z)d with d = 1, 2. Also set ΘP (z) and ΘT (z) equal to unity by fiat, so

that the only parameters are ψ = (σ2
b , σ

2
c , σ

2
I , ρ, τ, ξ)′. This corresponds to the Local Level Model

(LLM) or Smooth Trend Model (STM), as well as the basic seasonal model, popularized in Harvey

(1989) and utilized in the software STAMP. Here we add the novel facet of there being nonzero

correlation between the three innovations.

Then with Wt = δ(B)Yt, the differenced observed process’ spectral density is given by

fW (λ) = σ2
b |1− z|2d + σ2

c |U(z)|2 + σ2
I |1− z|2d|U(z)|2 (12)

+ τσbσI (U(z) + U(z)) |1− z|2d + ξσcσI

(
(1− z)d + (1− z)d

)
|U(z)|2

+ ρσbσc

(
(1− z)dU(z) + (1− z)dU(z)

)
.

Estimation is now straightforward in principle because the exact Gaussian likelihood for the dif-

ferenced data can be easily computed from the above expression. However, the model with d = 1

is actually not identified, whereas the d = 2 case is indeed identifiable; details are provided in the

Appendix. Henceforth we restrict attention to the d = 2 case. With the differenced data vector

denoted by W with covariance matrix Σ, our scale log likelihood is

W ′Σ−1W + log |Σ|.

This uses the assumption – common in signal extraction problems in time series analysis – that the

initial d + 11 values of the sample are uncorrelated with {Wt}.
We henceforth refer to this model (12) – with d = 2 – as the Basic Hysteric Structural Model

(BHSM). The maximum likelihood estimates (MLEs) for the parameter vector ψ will be denoted

by ψ̂. Details on the computation of MLEs of the BHSM are given in the Appendix. The next

section examines the BHSM on time series data.
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5 Data Applications

Our objective is not to decide the question of the extent to which hysteresis exist in economic time

series, but rather to show how model estimation and signal extraction may be done when hysteresis

is present. To that end we examine the fitting of the BHSM to multiple economic time series. We

begin our data analysis with 89 U.S. Census Bureau monthly time series for which the Box-Jenkins

airline model was selected by the automdl procedure of X-12-ARIMA. We then fit the BHSM to

each of these series, looking for cases where the hysteresis model’s performance rivals that of the

airline model. There were six cases where this occurred, and we focus our analysis on two of these

six for which the likelihoods were better.

The initial 89 series were selected from a broader class of 146 time series, consisting of 39

foreign trade, 10 retail, 10 housing, and 87 manufacturing time series. Most of these exhibit

trading day effects, about half have significant Easter effects, and many have additive and/or level

shift outliers. Running the automdl option of X-12-ARIMA, accounting for transformations and

fixed effects, produced a subset of 89 series6 for which the Box-Jenkins airline model was selected,

most of which required a log transformation. Therefore, in fitting the BHSM to these models, we

are in essence comparing the hysteresis model against the best SARIMA models obtained for these

series.

Series m42110 and x42100 – both of them Foreign Trade series – had BHSM models with

likelihoods superior to the airline model. Table 1 summarizes the fits, with standard errors in

parentheses. It is clear that for m42110 the BHSM is only marginally superior to the airline model,

and from the perspective of Akaike Information Criterion (AIC) is not better at all (note that

we cannot use the χ2 Gaussian Likelihood Ratio (GLR) test since the models are not nested).

For x42100 the AIC of the BHSM is better than that of the airline model. Both BHSMs have

some full correlations, indicating redundancies among the innovation sequences7. All the estimated

coefficients are at least two standard errors away from zero, excepting the ρ and ξ correlations in

the BHSM fit of x42100.

For these series, we can assess model goodness-of-fit via computing the model residuals. One

only needs the covariance matrix of the differenced data evaluated at the MLEs, which will be

denoted Σ̂. Then the time series residuals are

ε = Σ̂−1/2W,

634 foreign trade, 4 retail, 6 housing, and 44 manufacturing.
7This phenomenon was quite common for the BHSM fitted to other series; redundancy in the parameter vector

ψ manifested numerically through a final Hessian with some eigenvalues equal to zero, or even a negative number.

The latter case indicates a saddle point in the likelihood, where routines such as Nelder-Mead, BFGS, and simulated

annealing typically fail. However, m42110 and x42100 did not have this problem, their Hessians being positive

definite.
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where we can use a matrix square root or a Cholesky factor to define Σ̂1/2. Note that the χ2

distribution theory for the Box-Pierce statistic does not apply for the BHSM, since it is not an

ARIMA process. The acf plots of the residuals are given in Figure 5. Note that some remaining

cyclical structure seems to be present in the residuals of the BHSM for x42100, although not many

of the correlations are significantly different from zero.

This analysis gives some evidence that the BHSM is a viable contender for the SARIMA class,

and the airline model in particular, for these particular series8. We reiterate that we are not

primarily concerned with empirical validation of the hysteresis hypothesis (see Jäger and Parkinson

(1994)), but in how to estimate signals of interest when hysteresis is deemed to be present. We

next compute estimates of seasonal, trend, nonseasonal, and irregular for these series, along with

their standard errors. Figure 6 displays some of these results, showing the trend, nonseasonal

(i.e., seasonal adjustment), and seasonal components, along with time-varying MSEs and one of

the filters. The optimal signal extraction matrix F for hysteresis processes need not be centro-

symmetric, as is the case with orthogonal components (McElroy, 2008), with the result that the

time-varying MSEs need not be symmetric with respect to the center point of the sample – this is

seen in the bottom left panel of Figure 6.

6 Conclusion

This paper sets out much of the mathematical and statistical theory for hysteresis time series, taking

for granted that such processes are of interest to the statistical and econometric community. Indeed,

analysis of economic data utilizing hysteresis models has already been going on for several years,

primarily via a state space formulation – see Ghysels (1987) and Proietti (2006). In this context,

our paper presents several novel contributions: (i) exact MSE optimal signal extraction formulas

for both the bi-infinite and finite sample contexts; (ii) linkages of hysteresis filters to more well-

known BN and WK filters in the context of component ARMA processes; (iii) frequency domain

analysis of the bi-infinite filters, examined for simple trend-cycle processes; (iv) introduction of the

BHSM, a straightforward generalization of the classical BSM to trend-seasonal-irregular processes

having hysteresis; (v) demonstration of the BHSM performance on a Foreign Trade series of the

U.S. Census Bureau and an Industrial Production series of the Federal Reserve Board.

We have not undertaken a justification of the use of hysteresis models in econometrics, or an

extensive vetting of the BHSM for empirical analysis. This is beyond the goals of the paper,

which are more humble and properly methodological: given that a time series analyst wishes to

consider using a hysteresis model for his data, the material in this paper will be crucially important
8There is an issue of data-snooping here. Starting with 89 series, we refined the list of examples until we found

two series for which BHSM was superior. It is possible that 2 out of 89 series were bound to prefer BHSM to the

airline model just by chance.

13



for understanding: (a) how to model it, (b) how to estimate it (both model parameters and the

actual signal extraction estimates), and (c) how to think about the properties of hysteresis filters.

Whereas some previous literature, alluded to in the introduction, does consider the first point (a),

we provide additional material from a fairly broad and general perspective. Hysteric models may

be appropriate for some data, in which case the tools of this paper should prove quite useful for

modeling and analysis.

Acknowledgements The first author thanks Tara Sinclair for alerting him to the identifiability

issue, and David Findley for comments on the paper.

Appendix

A.1 Derivation of the BN Filter

The original BN filter of Beveridge and Nelson (1981) was applied to nonseasonal time series, yield-

ing a decomposition into permanent and transitory components. This was achieved by supposing

the innovations of signal and noise to be identical (rather than orthogonal). We extend this notion

of the BN filter to the general scenario outlined in Section 3 (and following) by taking at = bt = ct

in (5). Then the MSE optimal filters have zero error, and are given by de-correlating the data (via

the filter ϕ(B)/θ(B)) followed by re-correlating according to the signal’s pattern, namely by the

filter θS(B)/ϕS(B). Multiplying these filters yields θS(B)ϕN (B)/θ(B). The formula we provide

in Section 3 generalizes this treatment slightly to the case of a filter derived under the assumption

that the innovations are fully (positively) correlated (i.e., they may have different variances). This

leads to the insertion of the factor σb/σa in the formula for ΨBN .

By definition, this filter will produce optimal estimates under the full positive correlation hy-

pothesis, and of course the signal and noise estimates aggregate back to the original data. This

defines the filter; of course it may be applied to data that does not satisfy the hypotheses under

which the filter was derived. It is in this sense that we may speak of the hysteresis filter as being a

convex combination of WK and BN filters – it is an algebraic fact, involving statistical quantities

derived under incompatible stochastic assumptions.

We are not aware of prior references to this generalized BN filter, but are not comfortable

claiming that our derivation is novel. This sort of idea, and construction, has close precedents in

Morley, Nelson, and Zivot (2003) and Proietti (2006).
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A.2 Proofs

Proof of Theorem 1. Following the same technique as McElroy (2008), it suffices to show that

the error process ε = Ŝ − S is uncorrelated with Y . So the error process is

ε = FN − (1− F )S

= M−1
[
∆′

NΓ−1
V + PΓ−1

W ∆S

]
V

−M−1
[
∆′

SΓ−1
U − PΓ−1

W ∆N

]
U.

From Assumption A, it follows that ε is uncorrelated with Y ∗. Since Y can be expressed as a linear

combination of Y ∗ and W , as discussed in McElroy (2008), it suffices to show that ε is uncorrelated

with W . Hence

E[εW ′] = M−1
[
∆′

NΓ−1
V + PΓ−1

W ∆S

] (
ΓV ∆′

S + ΓV U∆′
N

)

−M−1
[
∆′

SΓ−1
U − PΓ−1

W ∆N

] (
ΓU∆′

N + ΓUV ∆′
S

)

= M−1
[
∆′ + ∆′

NΓ−1
V ΓV U∆′

N + PΣ−1
W

(
∆SΓV ∆′

S + ∆SΓV U∆′
N

)]

−M−1
[
∆′ + ∆′

SΓ−1
U ΓUV ∆′

S − PΣ−1
W

(
∆NΓU∆′

N + ∆NΓUV ∆′
S

)]

= M−1(−P + P ) = 0,

using (3). This establishes MSE linear optimality. For the error covariance matrix, we obtain the

formula by expanding E[εε′] and simplifying the algebra. 2

Proof of Theorem 2. Our strategy is to demonstrate that the filter defined by Ψ(z) produces

a signal extraction error process that is orthogonal to the data process, implying MSE linear

optimality (cf. Bell (1984)). As usual, the filter coefficients of Ψ(z) are obtained by integrating

against zj , and we represent the filter formally via Ψ(B). It is clear from the given formula that

δN (B) can be factored out, leaving Ψ(B) = Ω(B)δN (B) with

Ω(z) =
fU (λ)δN (z) + fUV (λ)δS(z)

fW (λ)
.

Similarly, it is easily verified that 1−Ψ(B) = Φ(B)δS(B) with

Φ(z) =
fV (λ)δS(z) + fV U (λ)δN (z)

fW (λ)
.

Then εt = Ψ(B)Yt − St = Ω(B)Vt − Φ(B)Ut. The data process {Yt} can be written in terms of a

linear combination of d initial values summed with a linear function of the differenced process {Wt}
– see Bell (1984). Hence by Assumption A, it is sufficient to demonstrate that εt is orthogonal to

Wt+h for any t and h. Now Wt+h = δN (B)Ut+h + δS(B)Vt+h, so that

E[εtWt+h] = Ω(B)
[
δS(F )γV (h) + δN (F )γV U (h)

]− Φ(B)
[
δN (F )γU (h) + δS(F )γUV (h)

]
,
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which is independent of t, but holds for all h. Thus we can take the discrete Fourier transform

of this relation by summing against zh for h ∈ Z. This translates the equation into the frequency

domain, so that we can substitute z for B and z for F , and the spectra for the autocovariances and

cross-covariances. Then simple algebra, along with the above formulas for Ω(z) and Φ(z), produces

E[εtWt+h] = 0. A second calculation produces

E[εtεt+h] = Ω(B)Ω(F )γV (h)− Ω(B)Φ(F )γV U (h)− Φ(B)Ω(F )γUV (h) + Φ(B)Φ(F )γU (h),

from which the stated error spectrum follows after some tedious algebra. 2

A.3 Implementation of the Hysteric Model

We give some details on the calculation of the log likelihood for the structural Hysteric model

of Section 4. First, the autocovariance sequences for each of the six terms in (12) are given as

follows. We denote the cross-covariance functions for differenced components as γPT , γPI , etc. (the

sequences are symmetric in the index in the case of a BHSM), and we write the values at lags zero,

one, two, etc.:

γTT : 2,−1, 0, · · ·
γPP : 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, · · ·
γII : 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, · · ·
γPI : − 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0 · · ·
γTI : 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, · · ·
γPT : 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, · · ·

when d = 1. Note that γII and γTI are identical, essentially because |1− z|2 = (1 − z) + (1 − z).

This means that ξ is not identified. For d = 2 the cross-covariances are given by

γTT : 6,−4, 1, 0, · · ·
γPP : 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, · · ·
γII : 4,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,−2, 1, 0, · · ·
γPI : 6,−4, 1, 0, 0, 0, 0, 0, 0, 0,−1, 3,−3, 1, 0 · · ·
γTI : 0,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 · · ·
γPT : 0,−1, 1, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, · · ·

These row vectors only need to be multiplied by the parameters, summed, and put into a Toeplitz

covariance matrix Σ. Actually, due to the simple way in which parameters enter these models,

identifiability is equivalent to linear independence of the six vectors in each case. When d = 1

the six vectors, viewed as column vectors, form a matrix of rank 4, and hence the model is not
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identifiable. But when d = 2 the rank is six; also when the correlations are all set to zero, the rank

is three for the remaining three column vectors for d = 1, 2 (a known result). See Morley, Nelson,

and Zivot (2003) for more discussion on identifiability.

Now, one interesting facet is guaranteeing that the three innovations have a positive definite

correlation matrix. Our approach follows that of Pinheiro and Bates (1996). Define a sequence of

“pre-parameters” ϑ = (ϑ1, · · · , ϑ6)
′ that are unconstrained (i.e., can be any real number) and are

mapped into the constrained vector ψ as described below. The mapping guarantees that variances

are positive and the joint covariance matrix is positive-definite. We preserve the notation of Pinheiro

and Bates (1996) for convenience. The idea is to decompose the joint covariance matrix of the three

innovation sequences into its Cholesky factors, and then do a spherical coordinates transform on

the six free variables of the Cholesky factor.

`11 = expϑ1 `21 = expϑ2 `31 = expϑ3

`22 = π
expϑ4

1 + expϑ4
`32 = π

expϑ5

1 + expϑ5
`33 = π

expϑ6

1 + exp ϑ6

These six new variables are derived through simple exponential and logistic transforms. Of course

an arc-tangent function could be utilized for the latter three variables, but the logistic is convenient

for differential calculations later. Next, the Cholesky factor L is upper triangular with entries



`11 `21 cos(`22) `31 cos(`32)

0 `21 sin(`22) `31 sin(`32) cos(`33)

0 0 `31 sin(`32) sin(`33).




Finally, the covariance matrix of the innovations is L′L. After some algebra, we discover that

ψ1 = exp{2ϑ1} ψ2 = exp{2ϑ2} ψ3 = exp{2ϑ3}
ψ4 = cos(`22) ψ5 = cos(`32) ψ6 = cos(`22) cos(`32) + sin(`22) sin(`32) cos(`33).

One can easily check that the determinant – with ρ = ψ4, τ = ψ5, ξ = ψ6 – equals sin2(`22) sin2(`32) cos2(`33)

times ψ1ψ2ψ3, and hence is always non-negative.

One can initialize a maximum likelihood estimation routine with ϑj = 0 for all j. This, in a

sense, puts you at the center of the six-dimensional manifold that the parameter vector belongs

to. It is easy to obtain the standard errors for the original parametrization. If the MLE for ϑ is

asymptotically normal at rate
√

n and variance matrix V , approximated by the numerical Hessian,

then the MLE for ψ has asymptotic variance DV D′ with Djk = ∂
∂ϑk

ψj(ϑ), expressed as a function

of ϑ and with the MLE ϑ̂ plugged in. The matrix D follows from calculus. The first five rows make
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up a diagonal matrix with entries

D11 = 2 exp{2ϑ1}
D22 = 2 exp{2ϑ2}
D33 = 2 exp{2ϑ3}

D44 = − sin
(

π expϑ4

1 + expϑ4

)
π expϑ4

(1 + expϑ4)
2

D55 = − sin
(

π expϑ5

1 + expϑ5

)
π expϑ5

(1 + expϑ5)
2 .

The last row of D has nonzero entries in its last three columns:

D64 = − sin
(

π expϑ4

1 + expϑ4

)
π expϑ4

(1 + expϑ4)
2 · cos

(
π expϑ5

1 + exp ϑ5

)

+ cos
(

π expϑ4

1 + expϑ4

)
π expϑ4

(1 + expϑ4)
2 · sin

(
π expϑ5

1 + expϑ5

)
· cos

(
π expϑ6

1 + expϑ6

)

D65 = − cos
(

π expϑ4

1 + exp ϑ4

)
· sin

(
π expϑ5

1 + expϑ5

)
π expϑ5

(1 + expϑ5)
2

+ sin
(

π expϑ4

1 + expϑ4

)
· cos

(
π expϑ5

1 + expϑ5

)
π expϑ5

(1 + expϑ5)
2 · cos

(
π expϑ6

1 + expϑ6

)

D66 = sin
(

π expϑ4

1 + expϑ4

)
· sin

(
π expϑ5

1 + expϑ5

)
· sin

(
π expϑ6

1 + expϑ6

)
π expϑ6

(1 + expϑ6)
2

Suppose now that we wish to estimate a constrained structural hysteresis model, where some of

the ρ, τ, ξ parameters are forced to be zero. Clearly these generate nested models, and conveniently

the nested model is not on the boundary of the parameter space of the nesting model. Then the

GLR theory of Taniguchi and Kakizawa (2000) can be applied: we take the difference of the log

likelihoods, and the asymptotic distribution is χ2
r where r is the number of correlations set to zero.

Now if one correlation is zero, the determinant of the covariance matrix has the form 1− (x2 + y2)

times the product of the innovation variances, and hence we can utilize a simple circular coordinate

transform. Letting ψ4 and ψ5 denote the two non-zero correlations, we have

ψ4 =
expϑ4

1 + expϑ4
cos

(
π expϑ5

1 + exp ϑ5

)

ψ5 =
expϑ4

1 + expϑ4
sin

(
π expϑ5

1 + expϑ5

)
.

But if two correlations are fixed at zero, then just let

ψ4 =
exp{ϑ4} − 1
1 + expϑ4

.

In this manner the implementation of the BHSM is achieved. R code is available from the first

author upon request.
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[10] Harvey, A. and Jäger, A. (1993) Detrending, stylized facts and the business cycle. Journal of

Applied Econometrics 8, 231–247.

[11] Harvey, A. and Trimbur, T. (2007) Trend estimation, signal-noise ratios, and the frequency of

observations. In Growth and Cycle in the Eurozone. Basingstoke, United Kingdom: Palgrave.

[12] Hyndman, R., Koehler, A., Snyder, R., and Grose, S. (2002) A state space framework for auto-

matic forecasting using exponential smoothing methods. International Journal of Forecasting

18, 439–454.
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Airline Model m42110 x42100

Lik 287.60 238.16

AIC -569.20 -470.31

θ .65 (.046) .65 (.1198)

Θ .56 (.053) .65 (.1510)

σ2 .0062 (.00052) .012 (.0033)

BHSM m42110 x42100

Lik 288.35 241.49

AIC -564.69 -470.97

σ2
b .00028 (.00008) .00066 (.000196)

σ2
c .0000066 (.0000027) .000022 (.0000081)

σ2
I .0020 (.00031) .0088 (.000887)

ρ -.993 (.099) -.519 (.363)

τ .995 (.111) -1.000 (.0000033)

ξ -1.000 (.0149) .519 (.362)

Table 1: MLEs and likelihoods for series m42110 and x42100, for both the airline model and the
BHSM.
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Figure 1: Frequency response functions for hysteresis trends and cycles. Left panels are for the
case ρ = .5, right panels for the case ρ = −.5. Bottom panels are for cycle filtering, top panels are
for trend filtering. Within each panel, the plotted functions are real part frf, imaginary part frf,
squared gain, and phase delay, moving from top to bottom.
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Figure 2: Frequency response functions for BN trends and cycles. Left panels are for the case
ρ = .5, right panels for the case ρ = −.5. Bottom panels are for cycle filtering, top panels are
for trend filtering. Within each panel, the plotted functions are real part frf, imaginary part frf,
squared gain, and phase delay, moving from top to bottom.
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Figure 3: Frequency response functions for WK trends and cycles. Left panels are for the case
ρ = .5, right panels for the case ρ = −.5. Bottom panels are for cycle filtering, top panels are
for trend filtering. Within each panel, the plotted functions are real part frf, imaginary part frf,
squared gain, and phase delay, moving from top to bottom.
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Figure 4: Real part of frequency response functions for trend and cycle filters, for hysteresis, BN,
and WK approaches. Left panels are for the case ρ = .5, right panels for the case ρ = −.5. Bottom
panels are for cycle filtering, top panels are for trend filtering.
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Figure 5: Sample autocorrelation plots for time series residuals. The upper panels correspond to
series m42110, while the lower panels correspond to series x42100. The left panels are for the fitted
airline model, whereas the right panels are for the fitted BHSM.
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Figure 6: Signal extraction output for x42100, from the BHSM. The top left panel displays logged
data along with the trend estimate and the seasonal adjustment. The bottom left panel displays
time-varying MSEs for both trend and seasonal adjustment. The upper right panel displays the
estimated seasonal, and the lower right panel displays the concurrent trend extraction filter weights.


