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Abstract

This paper considers benchmarking issues in the context of small area estimation. We find

optimal estimators within the class of benchmarked linear estimators under either external

or internal benchmark constraints. This extends existing results for both external and in-

ternal benchmarking, and also provides some links between the two. In addition, necessary

and sufficient conditions for self-benchmarking are found for an augmented model. Most

results of this paper are found using ideas of orthogonal projection.
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1 Introduction

Small area estimation has become a topic of growing importance in recent years. Model-

based small area estimates, when aggregated, need not correspond to the direct survey

estimate for a larger area, e.g., national. This may be a cause for concern if (i) the sample

size for the larger area is sufficiently large that the direct estimate is regarded as reliable,

and (ii) the direct estimate for the larger area has any sort of official status. Substantial

deviation of an aggregation of model-based small area estimates from the corresponding

direct estimate for a large area may also suggest model failure. These considerations

motivate benchmarking, which is some form of calibration that adjusts individual area

level estimates so they aggregate to a direct estimate for a large area.

We can distinguish two general approaches to benchmarking depending on the source of

the benchmark estimates. In external benchmarking the benchmark estimates come from

an additional data source, typically, another survey or a census. In internal benchmarking

the benchmark estimates come from the same survey data that produced the estimates we

wish to benchmark.

External benchmarking has a long history in time series obtained from repeated eco-

nomic surveys. The standard economic time series benchmarking problem is that a statisti-

cal agency has a monthly or quarterly economic survey whose estimates do not agree with

corresponding estimates from an annual survey or economic census. The benchmarking

task is to modify the monthly or quarterly estimates to force agreement with the annual

survey or census estimates, which are the benchmarks. To force agreement with these

benchmarks is to satisfy the benchmark constraints. For a detailed discussion of this topic,

see Dagum and Cholette (2006).

While time series benchmarking is often done using ad-hoc optimization criteria, Hillmer

and Trabelsi (1987) and Trabelsi and Hillmer (1990) showed how time series benchmarking

could be accomplished using statistical time series models. Although Hillmer and Trabelsi
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dealt with time series benchmarking, their basic theoretical results were stated in a general

way, so that they would apply in other contexts such as small area estimation. Durbin

and Quenneville (1997) provided further developments to model-based time series bench-

marking, including showing how one can deal with the nonlinear benchmark constraints

that result when logs are taken of the data as part of the modeling, while the benchmark

constraints reflect aggregation on the original scale.

Model-based external time series benchmarking can improve the monthly or quarterly

economic survey estimates in two ways. First, the use of the additional data will, if used

in the optimal predictor under the assumed model, lower the variance of the estimates.

Second, the benchmarking can reduce nonsampling error in the estimates. This is because

respondents to economic surveys generally have available annual figures that they can re-

port in an annual survey or census, whereas some businesses, particularly small businesses,

may not have monthly or quarterly figures readily available. This includes those businesses

that keep their financial records on some basis other than calendar months. The expected

reduction in nonsampling error provides a justification for forcing exact agreement with

benchmark values from an annual sample survey, as in Trabelsi and Hillmer (1990), even

though standard best linear prediction results, as in Hillmer and Trabelsi (1987), shrink

estimates toward the benchmark values but do not force exact agreement if the benchmarks

are themselves survey estimates and not census values.

Recent interest in benchmarking in small area estimation has focused on internal bench-

marking, as can be seen in papers by Pfeffermann and Barnard (1991), You and Rao (2000),

Wang et al. (2008), Datta et al. (2011), and Pfeffermann and Tiller (2006). One common

thread in all these small area benchmarking papers is that one begins with best linear

unbiased predictors of small area means, and then modifies these estimators to achieve the

desired higher level agreement. The motivations for internal benchmarking are thus differ-

ent from those for external time series benchmarking, since enforcing internal benchmark

constraints pushes estimates away from the best linear unbiased predictors, thus leading
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to increased variances under the model. This can be seen in results of Pfeffermann and

Barnard (1991), Wang et al. (2008), Datta et al. (2011), and in our results in Sections 3

and 4. Internal benchmarking also cannot be expected to reduce nonsampling error in the

estimates since the benchmarks are subject to the same sources of nonsampling error as the

small area data used for the modeling. Rather, the motivations for internal benchmarking

are the practical considerations noted in the first paragraph, including the provision of

some protection against possible model failure.

While the cited references cover several cases, the approaches used, which vary, all tend

to have some limitations such as assuming means are known, assuming covariance matrices

are diagonal, or allowing only a single benchmark constraint. Also, some of the approaches

seem somewhat ad-hoc, so their rationale is not completely clear. In the present paper,

we attempt to provide a more comprehensive treatment of benchmarking that extends

existing results for both external and internal benchmarking, and clarifies the rationale in

some cases.

2 EXTERNAL BENCHMARKING

The usual random effects area level model is

y = θ + e, θ = Xβ + u, (1)

where y is the vector of direct survey estimates for m small areas, θ is the vector of

corresponding population quantities being estimated, and e is the vector of sampling errors

in the estimates y. We assume that E(e) = E(u) = 0. Let var(e) = Σe, var(u) = Σu, and

cov(u, e) = 0. The population quantities θ follow the regression model given in (1) with

covariates given by the columns of X, and with β the p×1 vector of regression parameters.

We assume that rank(X) = p < m. In the small area context, Fay and Herriot (1979), see

also Pfeffermann and Nathan (1981), considered the special case when Σe is diagonal and

Σu = σ2
uIm.
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For the results given here and in Sections 3 and 4, we treat Σe and Σu as known. In

practice, Σe will be estimated using survey microdata, incorporating any known indepen-

dence restrictions. If samples are independently selected in the different areas, then Σe

is diagonal. The matrix Σu will generally depend on some set of unknown parameters ψ

estimated in fitting the model given by (1). If, as is common, Σu = σ2
uIm, then ψ is just

the single variance σ2
u.

Under the model (1), the best linear unbiased predictor of θ, and its mean squared

error, are (Rao, 2003, pp. 96, 99)

θ̃ = y − ΣeQ
−1(I − PX)y, (2)

V (θ̃) ≡ var(θ − θ̃) = Σe − ΣeQ
−1(I − PX)Σe, (3)

where var(y) = Q ≡ Σe + Σu and PX ≡ X(XTQ−1X)−1XTQ−1.

In this section we consider, in addition to (1), an external source of data t modeled as

t = W T θ + η, E(η) = 0, var(η) = Ση, cov(e, η) = C, cov(u, η) = 0. (4)

Here t is a vector of external estimates of the q < m values W T θ, with sampling errors η.

If t comes from a census, then Ση and C would both be zero, while if t and y come from

independent sample surveys, then C = 0 while Ση would be nonzero. In the latter case,

Ση could have some zero elements, e.g., it could be diagonal. As with Σe, when Ση and C

are nonzero, we assume they have been estimated using survey microdata.

The model defined by (1) and (4) generalizes that of Hillmer and Trabelsi (1987), who

assumed that E(θ) was known in (1) and that C = 0. The first generalization, E(θ) = Xβ

with β to be estimated, is relevant since models of economic time series often use regression

mean functions to account for such things as calendar variation (Bell and Hillmer, 1983).

The second generalization, C 6= 0, occurs when the samples producing y and t are not

independent. This can arise when benchmarking economic time series, since often the

sample for the monthly or quarterly survey that provides y is a subsample of the sample

used for the annual survey that provides t.
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For the model given by (1) and (4), Theorem 1 below gives expressions for the best

linear unbiased predictor of θ based on both y and t, which we denote as θ̃y,t, and its mean

squared error. An alternative approach to doing this would be to set up a joint model for

[yT , tT ]T and apply the formulas analogous to (2) and (3). Instead, Theorem 1 shows how

the best linear unbiased predictor based on just y can be adjusted to produce the best

linear unbiased predictor based on y and t, and how a corresponding expression for its

mean squared error can be obtained. We start with the following simple lemma. Proofs of

this lemma and other results are provided in the Appendix.

Lemma 1. Let x, y, z be zero mean random vectors with (xT , yT , zT )T having a finite and

positive definite covariance matrix. Let P ( | ) be general notation for linear projection so

that, e.g., P (x | y) is the linear projection of x on y. Let r = z − P (z | y). Then

P (x | y, z) = P (x | y, r) = P (x | y) + P (x | r),

var{x− P (x | y, z)} = var{x− P (x | y)} − var{P (x | r)}.

Durbin and Koopman (2001, p. 37) prove an equivalent result for the Gaussian case using

standard expressions for Gaussian conditional expectations and variances.

To use Lemma 1 to obtain θ̃y,t, we assume normality in (1) and (4), and use a Bayesian

argument with the prior β ∼ N(0, σ2
βI) with σ2

β → ∞. This is convenient since it is well-

known (Robinson, 1991, Sec. 4.2) that the best linear unbiased predictor of θ is the same

as the posterior mean of θ under a uniform prior on β. The prediction mean squared error

is then the same as the posterior variance of θ. Notice that with β ∼ N(0, σ2
βI), we now

have var(y) ≡ Σy = X(σ2
βI)XT +Q and, using a matrix inversion result (Rao, 1973, p. 33),

Σ−1
y = Q−1 −Q−1X(σ−2

β I +XTQ−1X)−1XTQ−1 → Q−1(I − PX) (5)

as σ2
β →∞. Thus, E(θ | y) = y−E(e | y) = y−ΣeΣ

−1
y y → y−ΣeQ

−1(I −PX)y = θ̃, and

var(θ | y) = Σe − ΣeΣ
−1
y Σe → Σe − ΣeQ

−1(I − PX)Σe = V (θ̃), the best linear unbiased
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predictor and its mean squared error given by (2) and (3). We note that V (θ̃) is positive

definite.

Using this device, we can apply Lemma 1 to prove our main theorem.

Theorem 1. Under the model given by (1) and (4),

θ̃y,t = θ̃ + cov(θ − θ̃, t− t̃)V (t̃)−1(t− t̃),

mse(θ̃y,t) = var(θ − θ̃y,t) = V (θ̃)− cov(θ − θ̃, t− t̃)V (t̃)−1cov(θ − θ̃, t− t̃)T ,

where

t̃ = W T θ̃ + CTQ−1(I − PX)y,

cov(θ − θ̃, t− t̃) = V (θ̃)W − {I − ΣeQ
−1(I − PX)}C,

V (t̃) = W TV (θ̃)W + V (η̃)−W T {I − ΣeQ
−1(I − PX)}C

− CT {I − ΣeQ
−1(I − PX)}TW,

V (η̃) = Ση − CTQ−1(I − PX)C.

We now obtain the externally benchmarked predictor, θ̂ext, and its mean squared error,

via two corollaries to Theorem 1.

Corollary 1. For C = 0,

θ̃y,t = θ̃ + V (θ̃)W{W TV (θ̃)W + Ση}−1{t−W T θ̃}, (6)

mse(θ̃y,t) = V (θ̃)− V (θ̃)W{W TV (θ̃)W + Ση}−1W TV (θ̃). (7)

Hillmer and Trabelsi (1987, eqs. (2.16)–(2.17) and (2.9)) and Durbin and Quenneville

(1997, p. 28) obtained results analogous to (6) and (7) for the case where the means,

E(θ) = µ, are known. The difference is that, in their expressions, θ̃ and V (θ̃) are replaced

by θ̄ = y−ΣeQ
−1(y−µ) and V (θ̄) = Σe−ΣeQ

−1Σe, respectively. Rao (2003, p. 98) terms
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θ̄ the best linear predictor based on y; it is also the best predictor, i.e., the conditional

expectation given y, under normality. Corollary 1 thus shows that expressions of the same

general form as those previously given for adjusting the best linear predictor based on y to

get the best linear predictor based on (y, t), also hold for adjusting the best linear unbiased

predictor based on y to get the best linear unbiased predictor based on (y, t). Thus, (6) and

(7) accommodate the generalized least squares estimation of the regression parameters β

by implicitly updating the generalized least squares estimation of β based on just y to the

generalized least squares estimation of β based on (y, t). If the known means µ in Hillmer

and Trabelsi’s result were replaced by Xβ̂, where β̂ is obtained by generalized least squares

based on (y, t), this would indeed yield θ̃y,t. Hillmer and Trabelsi’s expression (2.9) for the

mean squared error, however, would need an additional term to account for the error in

estimating β.

Hillmer and Trabelsi’s result would not produce the best linear unbiased predictor based

on (y, t) if µ were replaced by Xβ̂ with β̂ obtained by generalized least squares based on

just y. This relates to a point made by Durbin and Quenneville (1997, p. 24) about the

desirability of using both the original and benchmark data in model fitting. Durbin and

Quenneville thus provided another approach in which they merged the benchmark data t

with the original time series data y, and then developed a modified state-space model for

this merged series whose treatment by the Kalman filter and smoother would produce the

best linear unbiased predictor. This is the time series version of setting up a joint model

for y and t.

Corollary 2. As Ση → 0, which implies also C → 0,

θ̃y,t → θ̂ext ≡ θ̃ + V (θ̃)W{W TV (θ̃)W}−1{t−W T θ̃}, (8)

mse(θ̃y,t) → mse(θ̂ext)→ V (θ̃)− V (θ̃)W{W TV (θ̃)W}−1W TV (θ̃). (9)

It is easy to check that W T θ̂ext = t. Trabelsi and Hillmer (1990, eqs. (2.3)–(2.5)) gave the
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analogous result to (8) for the case where means are known.

The expression (9) gives the mean squared error of θ̂ext only in the limit as Ση → 0,

i.e., only when θ̂ext actually is the best linear unbiased predictor. If θ̂ext is used when

Ση > 0, then θ̂ext 6= θ̃y,t and its mean squared error will be larger. From standard results,

mse(θ̂ext) = mse(θ̃y,t)+var(θ̂ext− θ̃y,t), the term var(θ̂ext− θ̃y,t) being the increase in mean

squared error due to benchmarking.

It is of interest to consider how the mean squared error of θ̂ext compares to that of θ̃,

the best linear unbiased predictor using only the data y, when Ση > 0 so that θ̂ext is not

optimal. For the case of C = 0, it can be shown that

mse(θ̂ext)− V (θ̃) = V (θ̃)W{W TV (θ̃)W}−1 ×

{Ση −W TV (θ̃)W}{W TV (θ̃)W}−1W TV (θ̃). (10)

Consider the term, Ση −W TV (θ̃)W. Notice that Ση is the error variance in predicting the

benchmark targets by the benchmark data, i.e., var(W T θ − t) = var(η). The subtracted

term, W TV (θ̃)W , is the variance of the error in predicting the benchmark targets using the

best linear unbiased predictor based on y, i.e., var(W T θ −W T θ̃). Whether benchmarking

using the data t provides an improvement thus depends on whether t is a better predictor

of W T θ than is W T θ̃. With one benchmark constraint W is a vector, and benchmarking

provides an improvement if var(η) < var(W T θ−W T θ̃); if the reverse is true, benchmarking

does worse. Since the rank of (10) is at most q, there are m − q independent linear com-

binations of θ whose prediction mean squared errors are unaffected by the benchmarking,

because benchmarking does not alter their best linear unbiased predictors. Of course, these

statements assume that the model given by (1) and (4) is true. In reality, as noted in the

Introduction, the sub-optimal θ̂ext may be used to reduce nonsampling error in the data y,

or to protect against possible model failure.
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3 INTERNAL BENCHMARKING

Often in small area estimation problems, additional data t are not available, and internal

benchmarking is done based on linear functions of y. We write the internal benchmark

constraints for an estimator θ̂ as W T θ̂ = W T y. We will see now how a modification of θ̃

given in (2) can lead to a benchmarked estimator that satisfies multiple internal benchmark

constraints. This generalizes the work of Pfeffermann and Barnard (1991) and Wang et al.

(2008) who considered a single internal benchmark constraint. Pfeffermann and Barnard

showed that, under their model, there is no overall best linear unbiased predictor among

the set of predictors that satisfy the benchmark constraint. To deal with this non-existence

of an overall best linear unbiased predictor, Wang, et al. found optimal linear unbiased

benchmarked estimators that solve a quadratic optimization problem with a single linear

constraint. Here we generalize this approach to allow for multiple benchmark constraints,

also using a more general quadratic loss function than did Wang, et al.

Consider the general quadratic loss LΩ(θ, θ̂) = (θ̂− θ)TΩ(θ̂− θ) for estimating θ by any

linear predictor θ̂ of θ, where the weight matrix Ω is assumed to be known and positive

definite. We have the following theorem giving the predictor that minimizes the expected

loss subject to the benchmark constraints W T θ̂ = W T y. We denote this predictor as θ̂QL.

Theorem 2. Consider the class of linear unbiased predictors θ̂ = Ky of θ which satisfy,

in addition, W TKy = W T y with probability 1, i.e., W TK = W T . Then, under the

quadratic loss LΩ(θ,Ky), E{LΩ(θ,Ky)} ≥ E{LΩ(θ, θ̂QL)}, with equality holding if and

only if Ky = θ̂QL with probability 1, where

θ̂QL ≡ θ̃ + Ω−1W (W TΩ−1W )−1W T (y − θ̃). (11)

Remark 1. For a vector W and diagonal Ω, θ̂QL reduces to the predictor obtained in Wang

et al. (2008).

9



We now provide expressions for the overall mean squared error of θ̂QL and for its risk,

E{LΩ(θ, θ̂QL)}. Let PΩ,W = W (W TΩ−1W )−1W TΩ−1. One can show that

mse(θ̂QL) = V (θ̃) + P TΩ,WΣeQ
−1(I − PX)ΣePΩ,W . (12)

The term P TΩ,WΣeQ
−1(I − PX)ΣePΩ,W represents the increase in mean squared error due

to benchmarking. The quadratic risk of θ̂QL is then, after some simplification,

E{LΩ(θ, θ̂QL)} = tr[Ω{mse(θ̂QL)}]

= tr{ΩV (θ̃)}+ tr{W (W TΩ−1W )−1W TΣeQ
−1(I − PX)Σe}.

Remark 2 (Using external benchmarking results for internal benchmarking). As an alterna-

tive to the quadratic loss approach, we can formally use the external benchmark predictor

of Section 2 for internal benchmarking by setting t = W T y in (8). We denote this predictor

by θ̂int; it is given explicitly by

θ̂int = θ̃ + V (θ̃)W{W TV (θ̃)W}−1W T (y − θ̃). (13)

Comparing equations (13) and (11) shows that

θ̂int = θ̂QL if Ω−1 ∝ V (θ̃). (14)

Wang et al. (2008) note that Battese et al. (1988) implicitly used weights corresponding to

Ω = [diag{V (θ̃)}]−1 in benchmarking, where diag{V (θ̃)} denotes the diagonal matrix with

entries given by the diagonal elements of V (θ̃). From (3), this will generally satisfy (14)

only if Σu and Σe are diagonal, and if the model contains no regression variables so that

PX disappears from V (θ̃).

While the condition in (14) is not mathematically necessary for equality of the respec-

tive benchmarked estimators, special circumstances would be needed for the benchmarked

estimators to agree without this condition holding. For example, if Ω and V (θ̃) are di-

agonal and there is just one benchmark constraint defined by W = (w1, . . . , wm)T , the

10



most obvious special circumstance would be to have some of the wi be zero, so that the

estimators of the corresponding θi would be unconstrained.

When (14) holds, the reported mean squared errors of θ̂int and θ̂QL will also be the

same if they are computed using the same model, namely, model (1). There is no obvious

alternative for θ̂QL, whose mean squared error is given by (12) with Ω−1 = V (θ̃), since any

proportionality constant in Ω drops out of PΩ,W . For θ̂int, setting t = W T y in (8) means

that we implicitly assume that var(W T e)→ 0 to get the point predictor, but we then avoid

this assumption when computing its mean squared error under model (1). This approach

to computing the mean squared error of an internally benchmarked predictor was suggested

by Pfeffermann and Tiller (2006). It also leads to (12) with Ω−1 = V (θ̃). Comparing this

with (9), the mean squared error of the predictor θ̂ext with external benchmarks equal to

the truth, one can show that

mse(θ̂int) = mse(θ̂ext) + V (θ̃)W{W TV (θ̃)W}−1W TΣeW{W TV (θ̃)W}−1W TV (θ̃).

The addition to mse(θ̂ext) is thus the cost of using internal benchmarks, rather than an

externally provided truth.

Pfeffermann and Barnard (1991) obtained the predictor (13) for the case of a single

benchmark constraint and a unit level model, but they reached it in an entirely different

way. They derived unconstrained best linear unbiased predictors for their model through a

generalized least squares calculation (Pfeffermann, 1984), and then added the benchmark

constraint to produce predictors via generalized least squares regression with a linear re-

striction. This yields (13). Although Pfeffermann and Barnard applied this approach to

internal benchmarking, the actual calculations could also be applied to external bench-

marking to obtain θ̂ext in (8) in this alternative way.
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4 INTERNAL BENCHMARKING VIA AN AUGMENTED

MODEL/DIFFUSE PRIOR

Consider now the model (1) augmented with additional regression variables as follows:

y = θ + e, θ = Xβ +Gδ + u, (15)

where G is an m × q matrix of full rank q with associated regression parameters δ, and

where [X | G] is of full rank p+ q < m. We later discuss how to construct G. Analogous to

equations (2) and (3), the best linear unbiased predictor of θ and its mean squared error

for model (15) are

θ̂G = y − ΣeQ
−1(I − P[X|G])y, (16)

mse(θ̂G) ≡ var(θ − θ̂G) = Σe − ΣeQ
−1(I − P[X|G])Σe, (17)

where

P[X|G] = [X | G]
(
[X | G]TQ−1[X | G]

)−1
[X | G]TQ−1 (18)

projects onto L[X | G], the vector space spanned by the columns of [X | G], under the

inner product < a, b >= aTQ−1b. We now ask if there exists a G such that the best linear

unbiased predictor (16) satisfies the internal benchmark constraints, W T θ̂G = W T y. The

answer turns out to be yes, as is established by the following theorem.

Theorem 3. In model (15) assume that [X | G] and [X | ΣeW ] both have full rank.

Then θ̂G given by (16) satisfies the internal benchmark constraints, W T θ̂G = W T y, if and

only if G = ΣeWR1 + XR2 for some q × q nonsingular matrix R1 and p × q matrix R2.

Furthermore, for such a G, θ̂G is invariant to alternative choices of R1 and R2.

Model (15) with G = ΣeW generalizes the augmented model of Wang et al. (2008,

Section 3), who considered (15) for the particular case of a single benchmark constraint
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and diagonal Σe. Wang, et al. note that such a model is self-calibrated, in that the resulting

best predictor automatically satisfies the benchmark constraint. You et al. (2012) further

consider this predictor and compare it to a different self-benchmarked predictor of You and

Rao (2002) that was originally developed for a unit level model. Theorem 3 both extends

Wang, et al.’s self-calibration result to the case of multiple benchmark constraints, and

generalizes it to necessary and sufficient conditions for the model to be self-calibrated.

It can be shown that Q−1(I − P[X|G]) = Q−1(I − PX − P(G−G̃)) where G̃ = PXG and

P(G−G̃) projects onto L[G − G̃], the vector space spanned by the columns of G − G̃ =

(I − PX)G. The mean squared error of θ̂G from (17) can then be written as

mse(θ̂G) = Σe − ΣeQ
−1(I − PX − P(G−G̃))Σe

= V (θ̃) + ΣeQ
−1P(G−G̃)Σe. (19)

It can also be shown that P(G−G̃) is invariant to the choice of R1 and R2 in G = ΣeWR1 +

XR2. The increase in mean squared error from benchmarking, given by the second term in

(19), can thus be written as ΣeQ
−1M(MTQ−1M)−1MTQ−1Σe by setting G = ΣeW and

M = G− G̃ = (I − PX)ΣeW .

Remark 3. Since θ̂G is invariant to alternative choices of G = ΣeWR1 + XR2, to sat-

isfy the benchmark constraints we might make the simplest choice of setting R1 = I

and R2 = 0 so that G = ΣeW . Alternatively, we could choose R1 = I and R2 =

−(XTQ−1X)−1XTQ−1ΣeW , so that G = (I −PX)ΣeW , in which case X and G would be

orthogonal. In the case of a single benchmark constraint, ΣeW and G are just vectors, and

the alternative choices of G amount to multiplying ΣeW by a nonzero scalar and adding

to this a linear combination of the columns of X. Clearly these actions will not affect the

regression predictions, nor the best linear unbiased predictions, from model (15).

Remark 4. While θ̂G is invariant to alternative choices of G, the generalized least squares
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estimates of β and of δ are generally affected by the choice of G in (15). The Appendix

discusses this point further.

Remark 5. It is worth considering how [X | ΣeW ] might fail to have full rank, and what

we could do in response. Consider the simplest possible example. Suppose that Σe = σ2
eI

with σ2
e > 0, and that the lone benchmark constraint is that the estimate of the total over

all areas equals the direct estimate, so that W = (1, . . . , 1)T . If X also contains a column of

ones to include an intercept term in the regression, then [X | ΣeW ] will not have full rank.

In this case, there is a redundancy between the benchmark constraint and the regression

intercept term. There is thus no need to impose this particular benchmark constraint; it

will be satisfied automatically by having the intercept term in the regression. In general,

if [X | ΣeW ] does not have full rank, we can drop from ΣeW any columns contained in

L[X].

We can alter the interpretation of the augmented model (15) by assuming that δ is a

vector of random effects with zero mean, with var(δ) = τ2I, and with cov(δ, u) = cov(δ, e) =

0. Then, as for results (2) and (3) of Section 2, the best linear unbiased predictor and its

mean squared error for this model are

θ̂τ = y − êτ = y − ΣeΣ
−1
τ (I − PX,τ )y, (20)

var(θ − θ̂τ ) = Σe − ΣeΣ
−1
τ (I − PX,τ )Σe, (21)

where Στ ≡ var(y) = Q+ τ2GGT and PX,τ = I −X(XTΣ−1
τ X)−1XTΣ−1

τ . The Appendix

shows that Σ−1
τ (I−PX,τ )→ Q−1(I−P[X|G]) as τ2 →∞, implying that (20) and (21) then

converge to (16) and (17). With an appropriate choice of G from Theorem 3, we thus have

another model whose best linear unbiased predictors automatically satisfy, in the limit as

τ2 →∞, the benchmark constraints. This provides the diffuse prior interpretation of (15).
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Remark 6. For the case where the regression parameters β are known, the predictor θ̂∞ =

limτ→∞ θ̂τ can also be shown to be that of the transformation approach proposed by Ansley

and Kohn (1985) to deal with initial conditions for nonstationary time series models. For

model (15) with var(δ) = τ2I, this provides the best predictor among linear predictors

whose errors depend only on u and e, not on δ. See the Appendix for further discussion.

Remark 7. We can compare θ̂ΣeW to our other two benchmarked predictors by writing it

as follows:

θ̂ΣeW = θ̃ + ΣeQ
−1(I − PX)ΣeW{W TΣeQ

−1(I − PX)ΣeW}−1W T (y − θ̃). (22)

Since I − PX has rank m − p < m, ΣeQ
−1(I − PX)Σe is singular. Comparing (22) with

(13) and (11) then shows that, as long as there are regression variables in the model,

θ̂ΣeW 6= θ̂QL, in general, because we cannot set Ω ∝ {ΣeQ
−1(I − PX)Σe}−1. Analo-

gous considerations show that also θ̂ΣeW 6= θ̂int, in general. For the case of no regression

variables, or for known β, we drop (I − PX) from (22), in which case θ̂int = θ̂ΣeW if

V (θ̃) ≡ ΣeQ
−1Σu ∝ ΣeQ

−1Σe, and θ̂QL = θ̂ΣeW if Ω ∝ {ΣeQ
−1Σe}−1. The latter condi-

tion can be chosen to hold, but the former condition is unlikely to hold. If Σe is nonsingular,

it requires Σe ∝ Σu, something that would generally hold in practice only when Σe and Σu

are both proportional to the identity matrix.

5 ON ESTIMATING THE MEAN SQUARED ERROR OF

BENCHMARKED PREDICTORS

The results we have presented on the mean squared errors of the various benchmarked

predictors have assumed that the covariance matrices Σe, Ση, and C of the sampling errors

e and η, and Σu of the model errors u, are known. As noted in Section 2, Σe, Ση, and

C will generally be estimated using survey microdata, while unknown parameters ψ that
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determine Σu will be estimated in fitting the model. Wang and Fuller (2003) and Rivest

and Vandal (2003) provide results on accounting for error in estimating sampling variances

when estimating the mean squared error of small area predictors. Considerably more

attention has been given to accounting for the estimation error in the variance parameters

ψ. Rao (2003, pp. 103-110) discusses this for models of a fairly general form, drawing on

results of Prasad and Rao (1990) and Datta and Lahiri (2000).

The results of Rao (2003) just cited cover our predictors θ̃y,t and θ̂ΣeW , as these are

best linear unbiased under their respective models. In addition, Steorts and Ghosh, in a

2012 University of Florida technical report, consider the benchmarked predictor θ̂QL for

the Fay-Herriot model when Ω = I, providing results on the mean squared prediction error

accounting for the estimation of ψ. Analogous results have not, to our knowledge, been

developed for either the benchmarked predictor θ̂ext in the case when it is not optimal, i.e.,

when Ση 6= 0, or for the benchmarked predictor θ̂int.

Our results can be used for developing predictors and their measures of uncertainty

under a Bayesian approach. From standard results, the unbenchmarked Bayes estimator

under model (1) is E(θ | y) = Eψ|y(θ̃), and its measure of uncertainty is the posterior

variance

var(θ | y) = Eψ|y{var(θ | y, ψ)}+ varψ|y{E(θ | y, ψ)} (23)

where var(θ | y, ψ) = V (θ̃) and E(θ | y, ψ) = θ̃. Given simulations of ψ from its posterior

distribution, the conditional expectation and variance on the right hand side of (23) can

be obtained by appropriately averaging over these simulations. If ψ is just σ2
u, numerical

integration can readily be used to approximate these terms. In the same way then, Bayes

estimators and posterior variances can be developed for the model given by (1) and (4),

and for the augmented model (15), whose posterior mean is the Bayesian self-benchmarked

predictor, Eψ|y(θ̂ΣeW ). While our other benchmarked predictors do not lead to posterior

means in a Bayesian treatment, e.g., Eψ|y(θ̂int) 6= E(θ | y), the corresponding posterior
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mean squared error matrix provides an uncertainty measure. For any such predictor θ̂ of

θ based on y, including θ̂int and θ̂QL obtained using an estimated value of ψ, the mean

squared error matrix is

E{(θ − θ̂)(θ − θ̂)T | y} = var(θ | y) + {θ̂ − E(θ | y)}{θ̂ − E(θ | y)}T .

The posterior mean squared error matrix of θ̂ext would follow similarly using results from

Theorem 1 or, when C = 0, from Corollary 1.

6 EXAMPLE

To illustrate the results of this paper, we present an example using a model and data from

the U.S. Census Bureau’s Small Area Income and Poverty Estimates program. We use the

model for poverty rates of school-age children for states of the U.S. for the year 1998. For

this year, data for the direct survey estimates yi came from the U.S. Current Population

Survey’s Annual Social and Economic Supplement. The model is of the form of (1) with Σe

diagonal and with Σu = σ2
uI. In addition to an intercept term, regressors in X include two

variables obtained from tabulations of U.S. federal income tax data: a tax data analog to

state child poverty rates, and a measure of state tax nonfiler rates. A final regressor is the

residuals obtained from regressing Census 2000 long-form state age 5–17 poverty rates on

the other regressors just mentioned, but with the latter defined for 1999, the reference year

for Census 2000 long form income questions. Estimation of the var(ei) is via a sampling

error model with a generalized variance function. The model for yi is then given a Bayesian

treatment, with flat priors for σ2
u and β. Modeling details, as well as additional informa-

tion on the data sources, can be found on the Small Area Income and Poverty Estimates

program web site at www.census.gov/did/www/saipe/index.html. General information on

the Current Population Survey poverty estimates, including information on sampling and

nonsampling errors in the data, is available at www.census.gov/cps/.
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We consider here the estimators θ̂QL, θ̂int, and θ̂ΣeW as given by (11), (13), and (22),

replacing σ2
u by its posterior mean when calculating θ̃ and V (θ̃) from (2) and (3). For θ̂QL,

we examine results for three choices of the weighting matrix Ω: the 51×51 identity matrix;

the diagonal matrix whose entries are the 5–17 state populations, denoted as diag(Popi);

and Ω = diag(Pop2
i ). With Ω = I, the quadratic loss function LΩ(θ, θ̂) = (θ̂− θ)TΩ(θ̂− θ)

becomes the sum of squared errors in the estimated state 5–17 poverty rates, while with

Ω = diag(Pop2
i ), it becomes, to a very good approximation, the sum of squared errors in

the estimated state numbers of persons age 5–17 in poverty. The choice Ω = diag(Popi)

provides an alternative in between these two.

For purposes of illustration, we examine results from benchmarking estimates so they

reproduce the direct Current Population Survey estimates of the 5–17 poverty rates for

the four regions of the U.S.: Northeast, Midwest, South, and West. A map showing which

states belong to which regions is available on the Census Bureau web site at

www.census.gov/geo/www/us regdiv.pdf. In this case, W is a 51 × 4 matrix, with the

four columns corresponding to the four regions, and with the 51 rows corresponding to the

50 states and the city of Washington, D.C., which is treated here like a state for the pur-

poses of the model. Each column contains the state shares of that region’s 5–17 population.

For the states not in a given region, their population share is zero.

In comparing results from the different benchmarked predictors, we shall examine not

the predictors themselves, but the adjustments they make to the best linear unbiased

predictor, θ̃, as are shown in equations (11), (13), and (22). These adjustments depend on

the term W T (y−θ̃), which contains the discrepancies between the benchmark targets W T y,

which here are the direct Current Population Survey estimates of the regional 5–17 poverty

rates, and the corresponding model-based best linear unbiased predictions, W T θ̃. For our

data and model, these discrepancies, expressed as percentages as are the poverty rates,

are W T (y − θ̃) = (0·74,−0·73,−0·55,0·17)T for the Northeast, Midwest, South, and West

regions. Given the form of W , it can be shown that the adjustments to θ̃ from each θ̂QL will
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allocate each regional discrepancy among the states of that region. The adjustments will

thus be positive for all states in the Northeast and West, and negative for all states in the

Midwest and South. It can further be shown that: (i) when Ω = I, the adjustments vary

in size proportional to Popi; (ii) when Ω = diag(Popi), the adjustments are all constant

at their regional discrepancies; and (iii) when Ω = diag(Pop2
i ), the adjustments vary in

size proportional to 1/Popi. The first and third results can be seen in Fig. 1, which plots

adjustments to θ̃ from the various benchmarked predictors for the states of the South

region. In Fig. 1 and later in Fig. 2, we use θ̂QL1, θ̂QL2, and θ̂QL3 to identify the cases with

Ω = I, Ω = diag(Popi), and Ω = diag(Pop2
i ), respectively. Notice that the adjustments

from θ̂QL3 for the smallest states of the South region are quite large in magnitude, much

larger than any of the adjustments from θ̂QL1. Figure 1 omits the plot for θ̂QL2 due to the

constancy of its benchmark adjustments across the states of the South region.

The benchmark adjustments from θ̂int also depend on the regional discrepancies

W T (y − θ̃), but are not simply allocations of the discrepancies among states within the

regions since the matrix V (θ̃) in (13) is not diagonal. A similar remark applies to θ̂ΣeW .

As a result, Fig. 1 shows that the adjustments from θ̂int and θ̂ΣeW for the states of the

South are not all negative.

We also examined results from benchmarking to the direct Current Population Survey

estimate of the national 5–17 poverty rate, for which W is a vector containing the 51

state shares of the national 5–17 population. For θ̂int and the θ̂QL, we found that the

adjustments from regional benchmarking tended to be larger than those made from national

benchmarking. This is because there are far fewer states within each region over which to

accumulate the required regional adjustments which are, apart from the West, substantially

larger in magnitude than the national discrepancy, which turns out to be −0·195 percent.

However, this was not generally the case for the adjustments from θ̂ΣeW , which in some

cases were larger in magnitude for the national benchmarking.
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Figure 1: Estimated state child poverty rates in percent, 1998, South region of the U.S. The

graphs plot the changes to the estimated poverty rates in going from the model-based best

linear unbiased predictors, θ̃i, to the various small area predictors that are benchmarked

in alternative ways to the direct Current Population Survey estimate for the South region.

The changes in the estimated child poverty rates are plotted against the state age 5–17

populations.
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We now compare mean squared errors for the various regional benchmarking predictors,

examining the multiplicative percentage increases of these mean squared errors relative to

those of the best linear unbiased predictor, which are the diagonal elements of V (θ̃). For

the θ̂QL, the mean squared error increases are computed from (12) with the three versions

of Ω. The mean squared errors for θ̂int are also computed from (12) by setting Ω−1 = V (θ̃);

see Remark 2. These computations all assume that model (1) is true and σ2
u is known.

Mean squared errors for θ̂ΣeW are computed from (19) assuming that G = ΣeW in the

augmented model (15). From Remark 6, the prediction error, θ − θ̂ΣeW , depends on just

u and e, not on δ. Hence, the mean squared error of θ̂ΣeW is the same whether computed

under model (1) or model (15), and so is comparable to the mean squared errors of θ̂int

and θ̂QL assuming model (1) is true.

The mean squared error percent increases vary widely across the different predictors,

as can be seen from the plots for the states of the South region in Fig. 2. By far the

largest increases occur for small states for θ̂QL3. The single largest increase is 804 percent

for Washington, D.C., though some small states in the other regions also show increases

of several hundred percent. This shows the cost to mean squared errors for small states

of emphasizing large states in the loss function to keep their mean squared error percent

increases tiny. For some small states, the mean squared errors of θ̂QL3 exceed the sampling

variances of the direct survey estimates, yi. Mean squared error percent increases for θ̂QL2

are quite modest, with the largest two of these only somewhat exceeding 10 percent. Mean

squared error percent increases for θ̂QL1 are tiny for small states, but substantial for some

large states, the largest exceeding 50 percent.

Mean squared error percent increases for θ̂int are variable, tending to be largest for

large states. Those for θ̂ΣeW are also variable, though not in any clearly size-dependent

way, and while a few are somewhat large, they are not nearly as large as are the largest

for θ̂QL3.
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Figure 2: Mean squared errors of estimated state child poverty rates, 1998, South region

of the U.S. The first graph plots the multiplicative percentage differences in mean squared

errors between the direct Current Population Survey estimates, yi, and the best linear

unbiased predictors, θ̃i. The other graphs plot the multiplicative percentage differences in

mean squared errors between the various benchmarked predictors and the θ̃i. The mean

squared error percentage differences are plotted against the state age 5–17 populations.
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APPENDIX: PROOFS OF RESULTS AND FURTHER DIS-

CUSSION

Proofs and derivations of the results of the paper are provided below, along with some

additional discussion. To make this material more self-contained, we restate results before

giving the proofs.

Material for Section 2, External Benchmarking

Lemma 1. Let x, y, z be zero mean random vectors with (xT , yT , zT )T having a finite and

positive definite covariance matrix. Let P ( | ) be general notation for linear projection

so that, e.g., P (x | y) is the linear projection of x on y. Let r = z − P (z | y). Then

P (x | y, z) = P (x | y, r) = P (x | y) + P (x | r),

var{x− P (x | y, z)} = var{x− P (x | y)} − var{P (x | r)}.

Proof. The first result is an immediate consequence of standard results on linear projections

since L(y, z) = L(y, r) and r is orthogonal to y. (We let L(y, z) denote the vector space

spanned by the elements of y and z.) For the variance result, write

x− P (x | y) = {x− P (x | y, z)}+ {P (x | y, z)− P (x | y)}.

The two terms on the right hand side are orthogonal, so that

var{x− P (x | y)} = var{x− P (x | y, z)}+ var{P (x | y, z)− P (x | y)}

⇒ var{x− P (x | y, z)} = var{x− P (x | y)} − var{P (x | r)}.

Theorem 1. Under the model given by (1) and (4),

θ̃y,t = θ̃ + cov(θ − θ̃, t− t̃)V (t̃)−1(t− t̃)

mse(θ̃y,t) ≡ E(θ − θ̃y,t)2 = V (θ̃)− cov(θ − θ̃, t− t̃)V (t̃)−1cov(θ − θ̃, t− t̃)T ,
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where

t̃ = W T θ̃ + CTQ−1(I − PX)y

cov(θ − θ̃, t− t̃) = V (θ̃)W − {I − ΣeQ
−1(I − PX)}C

V (t̃) = W TV (θ̃)W + V (η̃)−W T {I − ΣeQ
−1(I − PX)}C

− CT {I − ΣeQ
−1(I − PX)}TW

V (η̃) = Ση − CTQ−1(I − PX)C.

Proof. To apply Lemma 1, we identify θ with x, y with y, and t with z. Since linear

projections are conditional expectations given that normality is temporarily assumed, this

yields

E(θ | y, t) = E(θ | y) + E{θ | t− E(t | y)}

= E(θ | y) + cov(θ, t | y)var(t | y)−1{t− E(t | y)}, (24)

var(θ | y, t) = var(θ | y)− var [E{θ | t− E(t | y)}]

= var(θ | y)− cov(θ, t | y)var(t | y)−1cov(θ, t | y)T . (25)

In (24) and (25) we have used the fact that, for any (x, y, z) that are jointly normal,

cov(x, z | y) = cov{x−E(x | y), z−E(z | y)} = cov{x, z−E(z | y)}. Letting β ∼ N(0, σ2
βI),

we easily obtain the quantities needed for (24) and (25) as follows, taking their limits as

σ2
β → ∞. These results then hold without the normality assumption. Recall that, as

σ2
β →∞, Σ−1

y → Q−1(I − PX), E(θ | y)→ θ̃, and var(θ | y)→ V (θ̃) . Thus,

E(t | y) = W TE(θ | y) + E(η | y)→W T θ̃ + CTQ−1(I − PX)y ≡ t̃, (26)

cov(θ, t | y) = var(θ | y)W + cov(θ, η | y)

= var(θ | y)W + {cov(θ, η)− cov(θ, y)Σ−1
y cov(y, η)}

= var(θ | y)W + 0− (Σy − Σe)Σ
−1
y C

→ V (θ̃)W − {I − ΣeQ
−1(I − PX)}C, (27)
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and (27) equals cov(θ − θ̃, t− t̃). Then,

var(η | y) = Ση − CTΣ−1
y C → Ση − CTQ−1(I − PX)C ≡ V (η̃),

and we have

var(t | y) = W Tvar(θ | y)W + var(η | y) +W T cov(θ, η | y) + cov(η, θ | y)W

→ W TV (θ̃)W + V (η̃)−W T {I − ΣeQ
−1(I − PX)}C

− CT {I − ΣeQ
−1(I − PX)}TW (28)

≡ V (t̃) = var(t− t̃).

Substituting the expressions (26)–(28) into (24) and (25) proves the theorem.

Material for Section 3, Internal Benchmarking

Theorem 2 below provides the internally benchmarked predictor under the general quadratic

loss, LΩ(θ, θ̂) = (θ̂ − θ)TΩ(θ̂ − θ), where the weight matrix Ω is assumed to be known and

positive definite. Before proving the theorem, we state and prove a needed lemma.

Lemma 2. For any statistic Ly with E(Ly) = 0 for all β, E{(θ̃ − θ)(Ly)T } = 0.

Proof. E(Ly) = 0 for all β is equivalent to LX = 0. Note that PXX = X, PXQL
T =

X(XTQ−1X)−1XTLT = 0, and, from equation (2) of Section 2, θ̃−θ = e−ΣeQ
−1(I−PX)y.

Hence,

E{(θ̃ − θ)(Ly)T } = E
[
{e− ΣeQ

−1(I − PX)y}(y −Xβ)TLT
]

= ΣeL
T − ΣeQ

−1QLT + ΣeQ
−1PXQL

T

= 0.

Theorem 2. Consider the class of linear unbiased predictors θ̂ = Ky of θ which satisfy,

in addition, W TKy = W T y with probability 1, i.e., W TK = W T . Then, under the
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quadratic loss LΩ(θ,Ky), E{LΩ(θ,Ky)} ≥ E{LΩ(θ, θ̂QL)}, with equality holding if and

only if Ky = θ̂QL with probability 1, where

θ̂QL ≡ θ̃ + Ω−1W (W TΩ−1W )−1W T (y − θ̃). (29)

Proof. Note first that W TK0y = W T y. We now use the identity

E{(Ky − θ)TΩ(Ky − θ)} = E
[
tr{Ω(Ky − θ)(Ky − θ)T }

]
= tr

[
ΩE{(Ky − θ)(Ky − θ)T }

]
= tr

[
ΩE{(Ky − θ̃ + θ̃ − θ)(Ky − θ̃ + θ̃ − θ)T }

]
= tr

[
ΩE{(Ky − θ̃)(Ky − θ̃)T + (θ̃ − θ)(θ̃ − θ)T }

]
= E{(Ky − θ̃)TΩ(Ky − θ̃)}+ E{(θ̃ − θ)TΩ(θ̃ − θ)}, (30)

where the fourth equality is a consequence of Lemma 2, since E(Ky− θ̃) = 0. Next we use

the algebraic identity

(Ky − θ̃)TΩ(Ky − θ̃) = (Ky −K0y +K0y − θ̃)TΩ(Ky −K0y +K0y − θ̃)

= (K0y − θ̃)TΩ(K0y − θ̃) + (Ky −K0y)TΩ(Ky −K0y),

since the cross product terms, (Ky −K0y)TΩ(K0y − θ̃) and its transpose, are easily seen

to be zero by substituting Ω−1W (W TΩ−1W )−1W T (y − θ̃) for K0y − θ̃ and noting that

(Ky −K0y)TW = 0. Thus,

E{(Ky − θ)TΩ(Ky − θ)} = E{(θ̃ − θ)TΩ(θ̃ − θ)}+ E{(K0y − θ̃)TΩ(K0y − θ̃)}

+ E{(Ky −K0y)TΩ(Ky −K0y)}

= E{(K0y − θ)TΩ(K0y − θ)}

+ E{(Ky −K0y)TΩ(Ky −K0y)},

since (30) also holds when we set K = K0. This proves the result.
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On the similarity of θ̂QL to solutions to other, related problems

As θ̂QL given by (29) above and θ̂int given by equation (13) of Section 3 are of similar

form, so too are solutions to many other benchmarking and related problems that involve

minimizing some sort of quadratic objective function, typically a sum-of-squares criterion

or a variance, under linear constraints on the resulting estimators. Dagum and Cholette

(2006) and Knottnerus (2003) provide several examples. Despite these similar solutions,

differences in the problems being solved should be kept in mind. For example, many authors

assume that θ is a vector of fixed parameters being estimated, not a vector of stochastic

quantities being predicted.

To cite one specific example, H. J. Boonstra, in an unpublished 2004 Statistics Nether-

lands working paper, obtained an estimator of the same form as (29) for the problem of

minimum variance linear adjustment, or calibration, of estimators to satisfy general linear

constraints, such as when adjusting table entries to force agreement with specified margins.

Despite the similar forms of the results, the problem Boonstra considered differs from ours

in two respects. First, Boonstra minimized the variance of a linear function of his adjusted

estimators, whereas we minimized a mean squared error criterion. Second, he considered

only linear adjustments to the original estimators that, in the notation of our problem,

would be of the form θ̃ + FW T (y − θ̃), with F to be determined, whereas we considered

general linear estimators, Ky, in Theorem 2.

Material for Section 4, Internal Benchmarking via an Augmented

Model/Diffuse Prior

For reference, we first repeat equations (15)–(18) of 4 which give the augmented model,

the best linear unbiased predictor and its mean squared error under that model, and the
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expression for the projection matrix P[X|G]. These are

y = θ + e, θ = Xβ +Gδ + u, (31)

θ̂G = y − ΣeQ
−1(I − P[X|G])y, (32)

mse(θ̂G) ≡ var(θ − θ̂G) = Σe − ΣeQ
−1(I − P[X|G])Σe, (33)

P[X|G] = [X | G]
(
[X | G]TQ−1[X | G]

)−1
[X | G]TQ−1. (34)

We now restate and then prove Theorem 3.

Theorem 3. In model (31) assume that [X | G] and [X | ΣeW ] both have full rank.

Then θ̂G given by (32) satisfies the internal benchmark constraints, W T θ̂G = W T y, if and

only if G = ΣeWR1 + XR2 for some q × q nonsingular matrix R1 and p × q matrix R2.

Furthermore, for such a G, θ̂G is invariant to alternative choices of R1 and R2.

Proof. First, suppose that G = ΣeWR1 +XR2, in which case

[X | G] = [X | ΣeW ]

I R2

0 R1

 . (35)

Since [X | G] is assumed to be full rank, so must be both matrices on the right hand

side of (35), which implies that R1 must be nonsingular. Then, (35) also implies that

L[X | ΣeW ] = L[X | G], and so from (32)

W T θ̂G −W T y = −(ΣeW )TQ−1(I − P[X|G])y = −(ΣeW )TQ−1(I − P[X|ΣeW ])y (36)

where P[X|ΣeW ] is defined as in (34), substituting ΣeW for G. But the columns of

I −P[X|ΣeW ] are orthogonal to those of ΣeW , so the right hand side of (36) is zero and the

benchmark constraints are satisfied.

To prove the reverse implication, assume that the benchmark constraints hold so that,

from (32), (ΣeW )TQ−1(I − P[X|G])y = 0 for any y. Since y can be any vector in Rm,

(I − P[X|G])y can be any vector in L[X | G]⊥, the orthogonal complement of L[X | G].
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This shows that every column of ΣeW must be orthogonal to L[X | G]⊥. The columns

of ΣeW are thus all in L[X | G], which implies that ΣeW = XH1 + GH2 for some p × q

matrix H1 and q × q matrix H2. Thus,

[X | ΣeW ] = [X | G]

I H1

0 H2

 .
Since [X | ΣeW ] is assumed to have full rank, H2 must be nonsingular. Therefore, G =

ΣeWH−1
2 −XH1H

−1
2 , and setting R1 = H−1

2 and R2 = −H1H
−1
2 gives the desired result.

To prove the invariance of θ̂G to alternative choices of R1 and R2 for defining G, note

that since L[X | ΣeW ] = L[X | G] and P[X|ΣeW ] = P[X|G], from (32) we have that, for any

G satisfying our assumptions, θ̂G = y − ΣeQ
−1(I − P[X|G])y = y − ΣeQ

−1(I − P[X|ΣeW ])y,

and the last expression does not depend on R1 and R2.

On the dependence of β̂ and δ̂ on the choice of G

While θ̂G is invariant to alternative choices of G, this is not true of the generalized

least squares estimates of β and δ. To see this, we first define X̂ = (GTQ−1G)−1GTQ−1X

and X̃ = GX̂ = PGX, where PG = G(GTQ−1G)−1GTQ−1 is the projection matrix that

projects onto L(G), the vector space spanned by the columns of G, under the inner product

< a, b >= aTQ−1b. Thus, I − PG is the projection matrix that projects onto L(G)⊥, the

orthocomplement of L(G). The following results are easily verified:

Q−1(I − PG) = (I − PG)TQ−1 = (I − PG)TQ−1(I − PG). (37)

We now reparameterize Xβ+Gδ in (31) to (X−X̃)β+Gα, where α = X̂β+δ. As this

orthogonalizes [X | G] to [(X−X̃) | G] with respect to the inner product< a, b >= aTQ−1b,

it shows that, using (37),

β̂G = {(X − X̃)TQ−1(X − X̃)}−1(X − X̃)TQ−1y

= {XTQ−1(I − PG)X}−1XT (I − PG)TQ−1y, (38)
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var(β̂G) = {XTQ−1(I − PG)X}−1.

So β̂G and var(β̂G) depend on G through PG. We could get analogous expressions for δ̂G

and var(δ̂G).

Proof that Σ−1
τ (I−PX,τ )→ Q−1(I−P[X|G]) as τ2 →∞, so that (20) and (21) of Section 4

converge to (32) and (33).

Recall that Στ = Q+τ2GGT . Then, completely analogous to equation (5) of Section 2,

as τ2 →∞

Σ−1
τ = Q−1 −Q−1G(τ−2I +GTQ−1G)−1GTQ−1 → Σ−1

∞ ,

where

Σ−1
∞ = Q−1(I − PG), (39)

with alternative equivalent expressions for Σ−1
∞ given by equation (37). We now need to

show that Σ−1
∞ (I − PX,∞) = Q−1(I − P[X|G]), where PX,∞ = limτ→∞ PX,τ =

X(XTΣ−1
∞ X)−1XTΣ−1

∞ .

Since [(X − X̃) | G] and [X | G] are related by the nonsingular linear transformation,

[(X − X̃) | G] = [X | G]

 I 0

−X̂ I

 , (40)

and [X | G] has full rank, it follows that [(X − X̃) | G] has full rank, as does (X − X̃).

Thus, we define the matrix that projects onto L(X − X̃), again under the inner product

< a, b >= aTQ−1b, as

P(X−X̃) = (X − X̃){(X − X̃)TQ−1(X − X̃)}−1(X − X̃)TQ−1. (41)

We analogously define G̃ = PXG and

P(G−G̃) = (G− G̃){(G− G̃)TQ−1(G− G̃)}−1(G− G̃)TQ−1, (42)
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which projects onto L(G− G̃). We also defined in Section 4

P[X|G] = [X | G]
(
[X | G]TQ−1[X | G]

)−1
[X | G]TQ−1,

which projects onto L[X | G]. Since X − X̃ has full column rank, XTΣ−1
∞ X =

(X−X̃)TQ−1(X−X̃) is nonsingular. Also, (X−X̃)TQ−1G = 0, implying that P(X−X̃)PG =

0. Similarly, P(G−G̃)PX = 0. The result Σ−1
∞ (I − PX,∞) = Q−1(I − P[X|G]) is then estab-

lished by the following lemma.

Lemma 3. For model (31) with Σ−1
∞ given by (39), and assuming [X | G] has full rank,

we have

Σ−1
∞ {I −X(XTΣ−1

∞ X)−1XTΣ−1
∞ } = Q−1(I − P(X−X̃))(I − PG)

= Q−1(I − P(X−X̃) − PG)

= Q−1(I − P[X|G])

= Q−1(I − P(G−G̃))(I − PX)

= Q−1(I − P(G−G̃) − PX).

Proof. From (37), (39) (41), and (42), Σ−1
∞ {I −X(XTΣ−1

∞ X)−1XTΣ−1
∞ } can be written as

Q−1
[
(I − PG)− (X − X̃){(X − X̃)TQ−1(X − X̃)}−1(X − X̃)TQ−1(I − PG)

]
= Q−1(I − P(X−X̃))(I − PG).

From (40) we see that L[X | G] = L[(X − X̃) | G] so that P[(X−X̃)|G] = P[X|G]. Since

X − X̃ is the residual from projecting X on G, (X − X̃) and G are orthogonal, i.e.,

(X − X̃)TQ−1G = 0, which implies that P[(X−X̃)|G] = P(X−X̃) + PG. Hence,

I − P[X|G] = I − P(X−X̃) − PG = (I − P(X−X̃))(I − PG)

31



since P(X−X̃)PG = 0. The last two results of the lemma follow by symmetry since P[X|G] =

PX−X̃ + PG = PG−G̃ + PX .

Relation between the diffuse prior and transformation approach predictors

For the case where the regression parameters β are known, the predictor θ̂∞ ≡ limτ→∞ θ̂τ

can be shown to be that of the transformation approach proposed by Ansley and Kohn

(1985) to deal with initial conditions for nonstationary time series models. In the present

context, the vector δ takes the role of the initial conditions, and the transformation ap-

proach finds the optimal predictor of θ among the class of linear predictors θ̂ for which the

prediction error, θ − θ̂, does not depend on δ. This predictor can be obtained by making

the linear transformation z1

z2

 =

 W T

JT

 y =

 W T (Xβ +Gδ + u+ e)

JT (Xβ + u+ e)

 (43)

obtained by requiring that J be any m× (m− q) matrix of full rank satisfying JTG = 0.

To satisfy the benchmark constraints, we set G = ΣeW . We then define θ̂ = y − ê where

ê is the best linear predictor of e based on z2, i.e., ê = cov(e, z2)[var(z2)]−1(z2 − JTXβ).

Ansley and Kohn showed that this predictor is the same as the predictor obtained by

placing a diffuse prior on the nonstationary initial conditions, i.e., by letting var(δ) = τ2I

with τ2 →∞ in model (31).

To apply the transformation approach predictor when β is estimated, we would sub-

stitute β̂ for β in ê, β̂ being the estimator of β from the model for z2. This estima-

tor can be shown to be the limit as τ2 → ∞ of β̂τ = (XTΣ−1
τ X)−1XTΣ−1

τ y, which is

(XTΣ−1
∞ X)−1XTΣ−1

∞ y = {(X − X̃)TQ−1(X − X̃)}−1(X − X̃)TQ−1y = β̂G, given by (38).
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Derivation of equation (22) of Remark 7.

To obtain equation (22), we let G = ΣeW in equation (16) of Section 3, and proceed

as follows:

θ̂ΣeW = y − ΣeQ
−1(I − P[X|G])y

= y − ΣeQ
−1(I − PX − P(G−G̃))y

= θ̃ + ΣeQ
−1P(G−G̃)y

= θ̃ + ΣeQ
−1M(MTQ−1M)−1MTQ−1y

= θ̃ + ΣeQ
−1(I − PX)ΣeW{W TΣe(I − PX)TQ−1(I − PX)ΣeW}−1

× W TΣe(I − PX)TQ−1y

The second line above uses Lemma 3, the third line uses equation (2) of Section 2 for θ̃,

the fourth line uses P(G−G̃) = M(MTQ−1M)−1MTQ−1 where M = G− G̃ = (I −PX)G =

(I − PX)ΣeW , and in the fifth line we simply substitute for M . To get equation (22), we

use the easily verified results (I−PX)TQ−1(I−PX) = Q−1(I−PX) = (I−PX)TQ−1, and

then use the fact that W TΣe(I − PX)TQ−1y = W TΣeQ
−1(I − PX)y = W T (y − θ̃), using

equation (2) of Section 2 again.
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