

A Perspective on Using Genomic Information in Medicine

Clifford A. Reid, Ph.D. April 2011

© 2011 Complete Genomics, Inc.

Topic

• Challenges facing more widespread and effective use of genomic information in electronic health information technology systems

Discussion

- Models of Genome Data Interpretation
- Genome Data Challenges
- Conclusions

Two Co-existing Models of Genomic Medicine

- TGen, Scripps, HMS, ...
- Medical imaging model
- Certified expert (e.g. cancer pathologist) analyzes data
- Low volume
- Custom

- Myriad, Genomic Health, ...
- Lab diagnostic model
- Validated process (algorithm) analyzes data
- High volume
- Standard

Research Medicine Model

Clinical Diagnostics Model

Compete Human Genome Data

summary-XXX.tsv	Summary statistics for genome sequence	
var-XXX.tsv	Called sequence with respect to the reference genome, indicating variant and non-variant regions	
gene-XXX.tsv	Annotations of variations in known protein coding gene sequences	
geneVarSummary- XXX.tsv	Summary of variations in known protein coding gene sequences	
dbSNPAnnotated- XXX.tsv	Calls at dbSNP loci	
coverageRefScore- XXX.tsv	Base-level coverage and scores	
evidenceIntervals- XXX.tsv	Contains the assembled sequence for each variant allele	
evidenceDnbs-XXX.tsv	Contains the supporting reads for each assembled sequence	
correlation-XXX.tsv	Correlations between assemblies that share supporting reads, for example duplicated regions	
reads-XXX.tsv	Reads and base-level quality scores	
mapping-XXX.tsv	Initial (pre-assembly) mappings of reads	
lib_* _XXXX.tsv	Library file	

Table 1 – Reports and files provided, Green files only provided with ST001RM product

- 6B bases (mostly identical)
- 4M variants
 - 10% complex: indels, SVs, CNVs, ...
- Quality metrics
- Annotations from literature
- Supporting (raw) data
 - 400 Gb (compressed)
 - 800 Gb (BAM standard)

Research Medicine Information Systems

- Start with genome from EHR, or resequence it (update)
- Integrate with other data sources (expression, epigenomic, ...)
- Look up most recent (not curated) annotations
- Analyze (radiologist-physician paradigm)
- Expert writes custom report for the EHR (signed/dated)
- Physician takes action

EHR

- Lab creates validated mappings from genomic data to medical meaning (FDA needs to weigh in)
- Physician sends genome (data) and question, lab report goes into EHR, informs physician's decision
- New/updated mappings require revalidation (long process)

Genome Data Trends: Complexity and Size

- Complexity is growing
 - Broad Nature paper on 38 multiple myeloma genomes: half of key mutations are structural variations (not SNP/indel markers)
 - EHR needs to store all variants in standard representation (very tough to get right)
- Size is shrinking
 - Much of research community still stores raw data (reads)
 - Expect clinical community to use variants only
 - Size/cost comparison:

	Size	Cost (AWS)
Raw Data	400-800 Gb	\$600-1,200/yr
Finished Genome	20 Gb	\$30/yr
Variants Only	1 Gb	\$1.50/yr

- Need to support both models
 - Research medicine: leading edge, custom analysis
 - Clinical diagnostics: validated, standard analysis
- Shared requirements
 - EHR: basic genome data (variants) and signed/dated reports
- Research medicine unique requirements
 - Additional rich/flexible genome data, annotations, etc.
 - Tools for expert analysis
- Clinical diagnostics unique requirements
 - Validated systems (labs) for generating reports (data \rightarrow analysis)
 - Teach docs how to interpret reports, take actions (analysis \rightarrow action)

Questions

© 2011 Complete Genomics, Inc.