GVF: a computable standard for personal genomes data

Mark Yandell Dept. of Human Genetics Eccles institute of Human Genetics University of Utah & School of Medicine

Genomics enabled EHRs will need to*:

(1) integrate structured genotype and phenotypic information (for accurate clinical interpretation),

(2) insert genetic/genomic information into the clinical workflow (for streamlined processes)

(3) enable secondary use of the data

* Emerging Landscape of Genomics in the Electronic Health Record for Personalized Medicine Mollie H. Ullman-Cullere and Jomol P. Mathew. Human mutation 2011

This means that:

 EHR systems need to be adapted for the personalization of medicine enabled through genetics/genomics data.

 As a first step, structured genetic/genomic data must be available within the EHR in a *computable* and *consistent* format.

* Emerging Landscape of Genomics in the Electronic Health Record for Personalized Medicine Mollie H. Ullman-Cullere and Jomol P. Mathew. Human mutation 2011

Outline

- GVF a computable, consistent & clinically orientated data standard for personal genome sequences
- GVF can be used to describe a single variant, a gene's variants, or an entire genome's
- Proof-of-principle whole-genome comparative analyses enable by GVF
- GVF enabled software tools for clinical decision support

Its all in the variant file

- Variant files have become the *de facto* 'standard' for personal genome sequences
- Each variant file contains about 3 million SNVs compared to the reference human genome

Variant files are not standardized This is a problem.

# Soap	SNP						
chr1	SoapSNP	SNP	4793	4793	25	+	
chr1	SoapSNP	SNP	6434	6434	48	+	
chr1	SoapSNP	SNP	93896	93896	51	+	

ID=YHSNP0128643; status=novel; ref=A; allele=A/G; support1=48; support2=26; ID=YHSNP0128644; status=novel; ref=G; allele=A/G; support1=10; support2=11; ID=rs4287120; status=dbSNP; ref=T; allele=C/T; support1=5; support2=4; location=MSTB1:LTR/MaLR;

# Watson Gend	ome SNP	ı									
BJW-1117373	chr1	41921	G	С		novel .	2	0	4	het	
BJW-1117523	chr1	42101	Т	G	Y	rs2691277.1		1	0	1	?
BJW-1119675	chr1	45408	С	Т	Y	rs28396308	•	3	0	3	•

# Venter	Genome	SNP
# venter	Genome	JINE

- 1 1103675000013 heterozygous_SNP 556001 556002 .
- 1 1103675000017 homozygous_SNP 652719 652720 . +
- + G/A;RMR=0;TR=1 Method1

+

- 1 1103675000019 homozygous_SNP 694229 694230 .
- T/C;RMR=1;TR=0 Method1

A/C;RMR=0;TR=0 Method1

Korean Genome SNP

chr10 56397	С	СТ	rs12262442 28	C/T	17	11
chr10 61776	Т	СТ	rs61838967 15	T/C	7	8
chr10 65803	Т	СТ	KOREFSNP1 27	T/C	19	8

Complete Genomics SNP 6,chr1,31843,31844,snp,snp,A,G,G,235 21,chr1,36532,36533,snp,snp,A,G,G,36 23,chr1,36970,36971,snp,snp,G,C,C,109

Badly needed : a standard format

 Currently every sequence provider uses their own idiomatic data format for variant files.

The first step towards enabling analyses of multiple personal genomes is a standardized data format to facilitate comparisons.

This is not the first time the genomics community has faced this problem.

This isn't a new problem for genomics

- 1998 onward the model organism community worked together to facilitate genome annotation The Generic Model Organism Database Community
 - Genomic browsers like Apollo and GBrowse
 - Data storage such as Chado relational Schema
 - Data exchange such as GFF3
 - Annotation pipelines such as MAKER

 One of the main take homes was that an ontology was needed to type fields in both files and databases; hence the Sequence Ontology

Home > Resources > GVF

SO: tool for the unification of genome Annotations.

Eilbeck K, Lewis SE, Mungall CJ, Yandell MD, Stein L, Durbin R, Ashburner M. Genome Biology 2005, 6:R44

GVF Pragmas

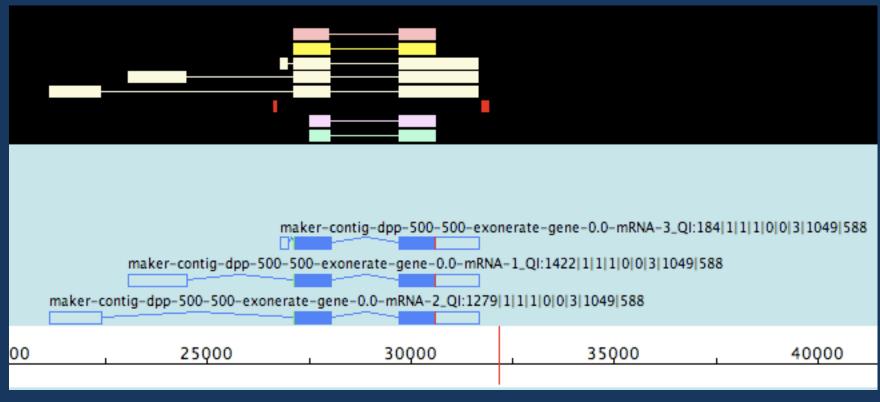
GFF3 allows for pragmas that define file-wide diretives to processing software. All pragmas from GFF3 are included and GVF adds the following pragmas and defines a set of tag-value pairs for use with these pragmas.

News

- 2009 December Release
 2.4.1 available.
- 2009 October Release 2.4 available.
- 2009 July SO presented at the International Conference of Biomedical Ontology.
- 2009 June Chris Conley -Undergrad from BYU joins SO for the summer
- 2009 May Graduate student, John Naylor joins SO.

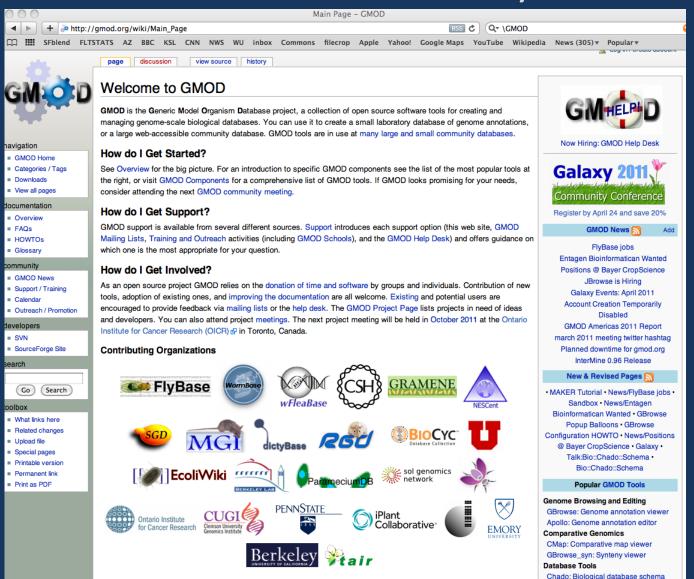
This is what a gene annotation looks like naked

GFF3 representation of a gene annotation


##gff-version3							
ID source	feature	start	stop	score	strand	phase	attributes
chr17 UCSC	mRNA	62467934	62469545		-	•	ID=A00469;
chr17 UCSC	three_prime_UTR`	62467934	62468038		-		Parent=A00469
chr17 UCSC	CDS	62468039	62468236		-	1	Parent=A00469
Chr17 UCSC	CDS	62468490	62468654		-	2	Parent=A00469
Chr17 UCSC	CDS	62468747	62468866		-	1	Parent=A00469
chr17 UCSC	CDS	62469076	62469236		-	1	Parent=A00469
chr17 UCSC	CDS	62469497	62469506		-	0	Parent=A00469
chr17 UCSC	five_prime_UTR	62469507	62469545		-		Parent=A00469
chr9 UCSC	mRNA	90517946	90527968		-		
ID=Al	B000114;Ontology_term=GO	:0007155,GO:0005194,GO	O:0005578;Dbxref	=AFFX-U9	5:41031_a	ıt,Genbar	nk-protein:BAA19055,;
chr9 UCSC	three_prime_UTR	90517946	90518841		-		Parent=AB000114
chr9 UCSC	CDS	90518842	90519167		-	1	Parent=AB000114
chr9 UCSC	CDS	90520309	90521248		-	0	Parent=AB000114
chr9 UCSC	five_prime_UTR	0521249	90521264		-		Parent=AB000114
chr9 UCSC	five_prime_UTR	90527892	90527968		-		Parent=AB000114

SO terms

SO relations


Standardized file formats enable downstream software applications for analysis

A GFF3 genome annotation visualized in the Apollo Genome Browser

Data standards have great power to unify and enable the community

GVF: a standardized file format for variation files

Home > Resources > GVF

GENOME VARIATION FORMAT

A standard variation file format for human genome sequences

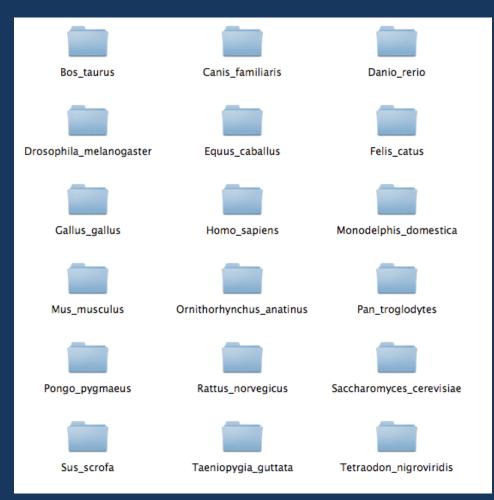
Martin G. Reese¹⁺⁺, Barry Moore², Colin Batchelor³, Fidel Salas¹, Fiona Cunningham⁶, Gabor Marth⁵, Lincoln Stein⁵, Paul Flicek⁶, Mark Yandell², and Karen Eilbeck²⁺⁺. *Genome Biology 2010.*

GVF Pragmas

GFF3 allows for pragmas that define file-wide diretives to processing software. All pragmas from GFF3 are included and GVF adds the following pragmas and defines a set of tag-value pairs for use with these pragmas. Omicia Inc. U of Utah Royal Society of Chemistry Boston College 1000 genomes project Ontario Institute for Cancer Research EBI/Ensembl Sequence Ontology project

Advantages of GVF

- Describe a personal genome, a population or collection of variants.
- Descriptive terms are Ontology typed. Therefore file can be reasoned over computationally
- Library of existing software for analysis and visualization
- Multiple technologies can be represented
- Permits detailed annotation of physical manifestation of variant



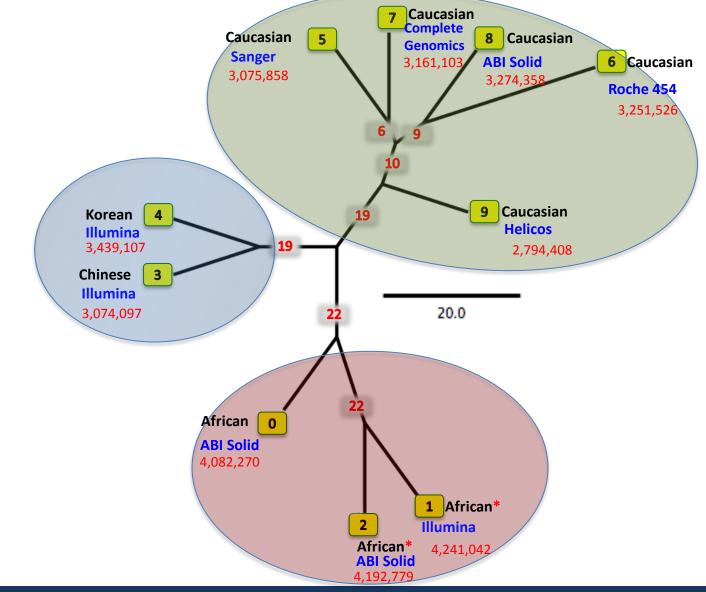
How is GVF different from VCF?

- Descriptive terms typed via the Sequence Ontology.
- Library of existing software for analysis and visualization (GMOD tools)
- Focus is on clinical annotation and functional consequence of variant; e.g. splice junction variant causing exon skipping in DMD.

GVF is now the output of EBI variant annotation pipeline

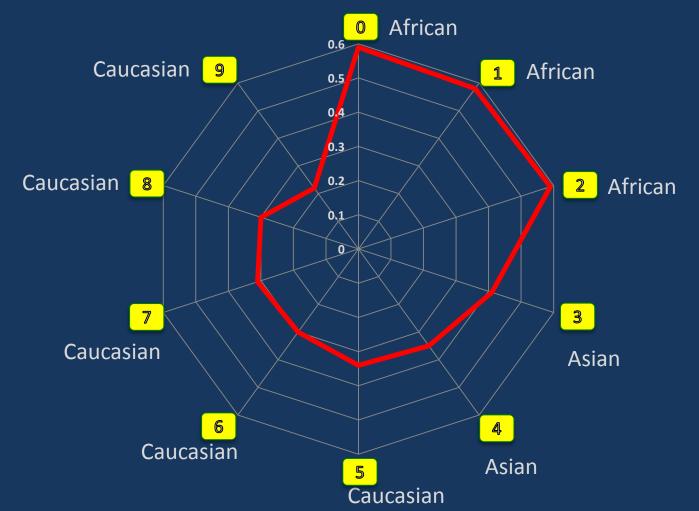
ftp://ftp.ensembl.org/pub/current/variation/

10Gen Dataset


http://www.sequenceontology.org/resources/10Gen.html

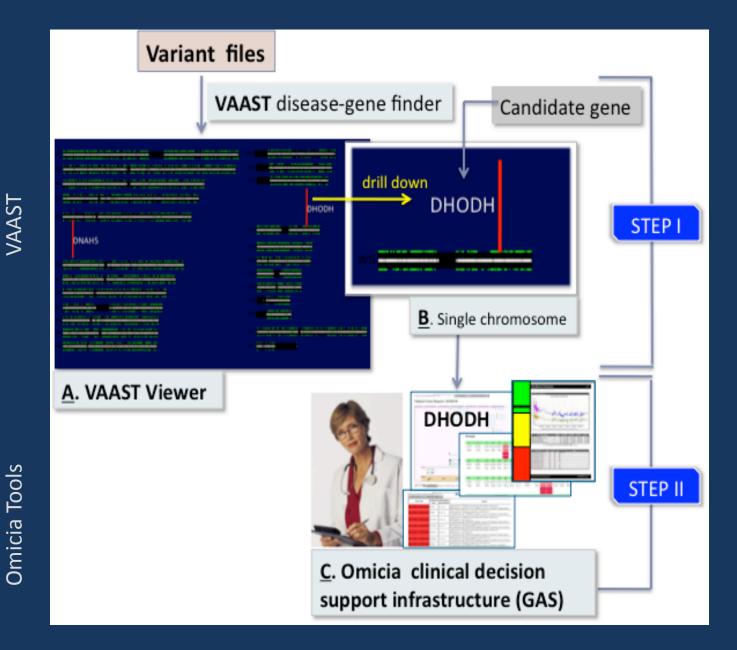
Genome	Individual	Ethnicity	Platform	Reference		
0	NA19240	African	ABI SOLID	De la Vega, et al. 2009		
1	NA18507	African	African Illumina			
2	NA18507	African	ABI SOLID	McKernan, et al. 2009		
3	Chinese	Asian	Illumina	Wang et al. 2008		
4	Korean	Asian	Illumina	Ahn et al. 2009		
5	Venter	Caucasian	Sanger	Levy et al. 2007		
6	Watson	Caucasian	Roche 454	Wheeler et al. 2007		
7	NA07022	Caucasian	CGenomics	Drmanac, et al. 2009		
8	NA12878	Caucasian	ABI SOLID	De la Vega, et al. 2009		
9	Quake	Caucasian	Helicos	Pushkarev et al. 2009		

A standard variation file format for human genome sequences Martin G. Reese¹⁺⁺, Barry Moore², Colin Batchelor³, Fidel Salas¹, Fiona Cunningham⁶, Gabor Marth⁵, Lincoln Stein⁵, Paul Flicek⁶, Mark Yandell², and Karen Eilbeck²⁺⁺. *Genome Biology 2010*.



Standards enable comparative genomics of people, platforms and variant calling methods

Global analysis of disease-related DNA sequence variation in 10 healthy individuals: Implications for whole-genome-based clinical diagnostics. Barry Moore, Hao Hu, Marc Singleton, Martin G. Reese, and Mark Yandell. Genetics in Medicine 2011


African Genomes Are Generally Homozygous For More OMIM Alleles*

*Ratio homozygous/heterozygous positions

Global analysis of disease-related DNA sequence variation in 10 healthy individuals: Implications for whole-genome-based clinical diagnostics Barry Moore, Hao Hu, Marc Singleton, Martin G. Reese, and Mark Yandell. Genetics in Medicine 2011

Standards enable tools for clinical decision support

GVF is input to the Omicia Inc. Genome Annotation Station

Omicia Annot	ation St	ation								X
Gene Symbol	Export					ekiruluta	a@omicia.com	Home Settir	ngs Report a bug Help Sig	n ou
٩	Variant ID Rs #	Chrom Position	Change	Gene	Zygosity	Consequence	Phred Score Reads	Frequency	Disease Evidence	
Disease Category All Aging	18 (<u>rs1061170</u>)	chr1 194925860	C→T,T	<u>CFH</u>	homozygous	non-synon	NA 19(0:19)	44.04%	pgkb: <u>Macular</u> Degeneration	4
Cardiovascular Dental 17 more ▼	19 (<u>rs1065489</u>)	chr1 194976397	G→T,T	<u>CFH</u>	homozygous	non-synon	NA 24(0:24)	19.72%	hgmd: Haemolytic uraemic syndrome, association with (pubmed, omim)	
Omicia Gene Sets Cardiology	20	chr1 205010882	C→C,T	<u>IL10</u>	heterozygous	non-synon	NA 22(12:10)	0.23%	(
Cancer Neurological - Parkinsons Neurological - Alzheimers Neurological - Epilepsies Respiratory Systems 2 Psychiatric Aging Aging (b)	21 (<u>rs1051740</u>)	chr1 224086256	T→C,T	EPHX1	heterozygous	non-synon	NA 37(17:20)	27.75%	omim: Lymphoproliferative Disorders, Susceptibility To Preeclampsia, Susceptibility To, Included, Emphysema, Susceptibility To,	
My Gene Sets Drug Target									Included, Pulmonary Disease, Chronic Obstructive, Susceptibility To, Include	l
Pathway Filter by									hgmd: Epoxide hydrolase deficiency, association with (pubmed, omim)	
Variant Quality									pgkb: <u>Craniofacial</u> Abnormalities	
0 200 Frequency 0 45.90	22 (<u>rs2234922</u>)	chr1 224093029	A→A,G	EPHX1	heterozygous	non-synon	NA 15(7:8)	19.27%	omim: <u>Epoxide</u> <u>Hydrolase Polymorphism</u> <i>hgmd</i> : Preeclampsia, association with (<u>pubmed</u> , <u>omim</u>)	
Disease Evidence	23 (<u>rs1937</u>)	chr10 59815348	G→C,G	<u>TFAM</u>	heterozygous	non-synon	NA 10(2:8)	8.72%	hgmd: Alzheimer disease, late-onset, reduced risk, association with (pubmed, omim)	

Disease categories

Known disease genes

Support

Kind of alteration

Done

THE UNIVERSITY OF UTAH

GVF is the input for VAAST*

- A Probabilistic disease-gene finder for personal genomes
- Rapidly search personal genome sequences for genes having significant differences in variant frequencies vs. controls
- Identify novel disease-causing genes & their variants
- Can be used to hunt for both rare and common disease genes and their causative alleles
- Determine the statistical significance of candidate genes

*A probabilistic disease-gene finder for personal genomes Mark Yandell, Chad Huff, Hao Hu, Marc Singleton, Barry Moore, Jinchuan Xing, Lynn Jorde and Martin G. Reese. Manuscript under review.

VAAST rhymed with BLAST

<u>BLAST</u>	<u>VAAST</u>
query	target genomes
database	background genomes
hits	hits
Expect	P-value
Fast	Fast

BLAST searches for statistically significant *similarity* between sequences.

VAAST searches for statistically significant *dissimilarity* between sequences.

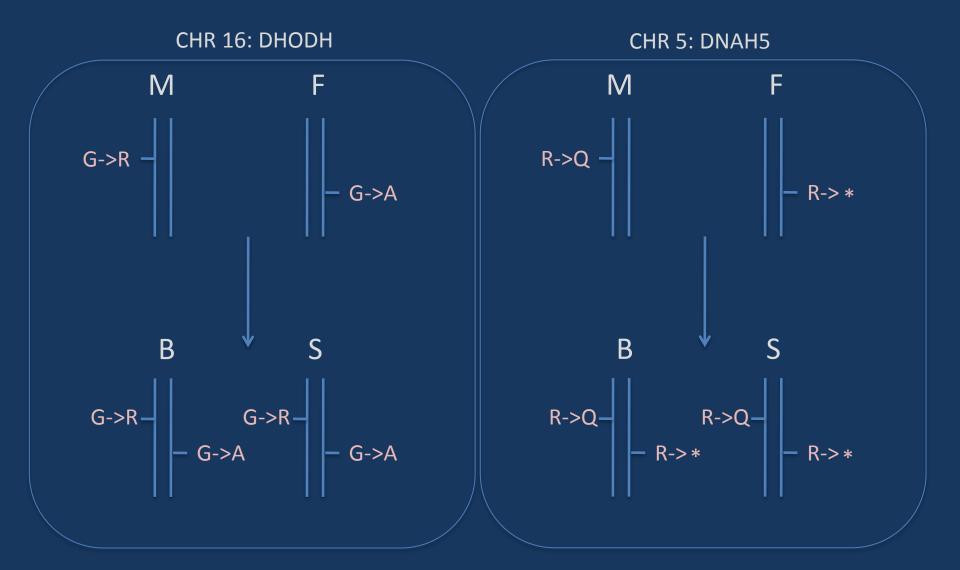
A Test Case: MILLER SYNDROME

Figure 1 Clinical characteristics of an individual with Miller syndrome and an individual with methotrexate embryopathy. (a,b) A 9-year-old boy with Miller syndrome caused by mutations in *DHODH*. Facial anomalies (a) include cupped ears, coloborna of the lower eyelids, prominent nose, micrognathia and absence of the fifth digits of the feet (b). (c,d) A 26-year-old man with methotrexate embryopathy. Note the cupped ears, hypertelorism, sparse eyebrows and prominent nose (c) accompanied by absence of the fourth and fifth digits of the feet (d). c and d are reprinted with permission from ref. 30.

ARTICLES

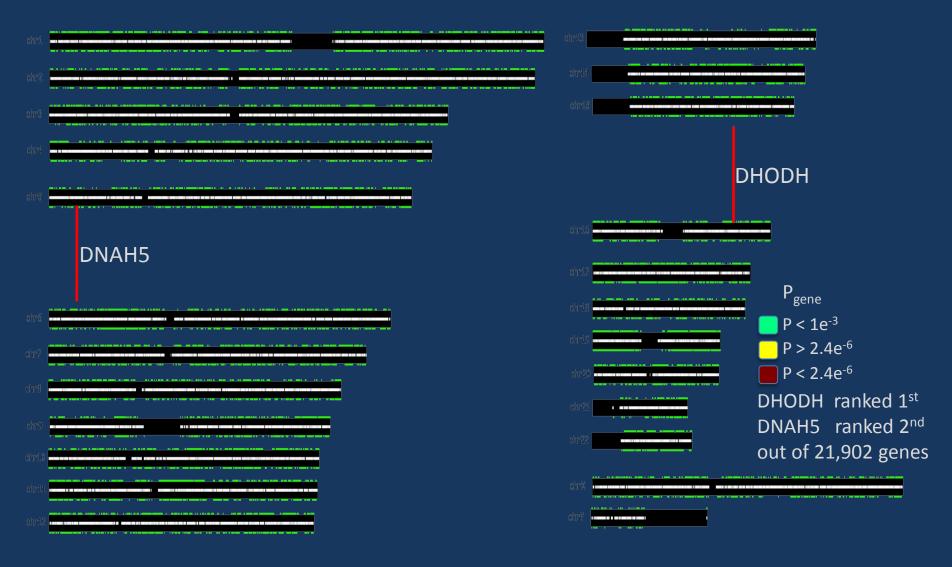
Exome sequencing identifies the cause of a mendelian disorder

Sarah B Ng^{1,10}, Kati J Buckingham^{2,10}, Choli Lee¹, Abigail W Bigham², Holly K Tabor^{2,3}, Karin M Dent⁴, Chad D Huff⁵, Paul T Shannon⁶, Ethylin Wang Jabs^{7,8}, Deborah A Nickerson¹, Jay Shendure¹ & Michael J Bamshad^{1,2,9}

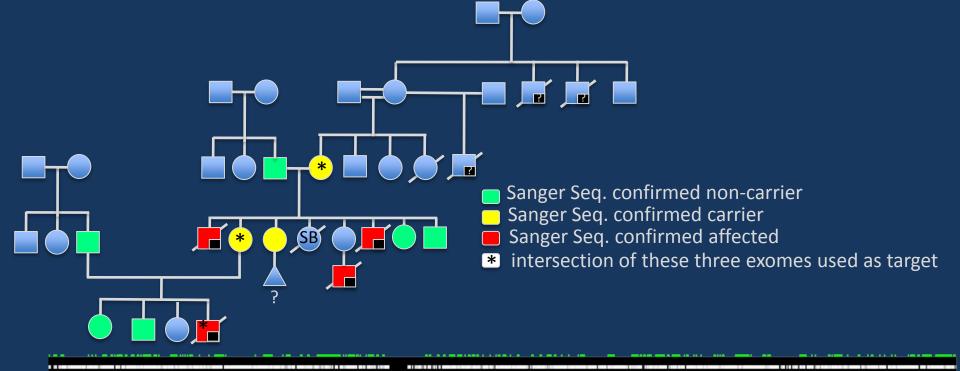

Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing Jared C. Roach, *et al. Science* **328**, 636 (2010); DOI: 10.1126/science.1186802

Analysis of Genetic Inheritance in a Family Quartet by Whole-Genome Sequencing

Jared C. Roach,¹* Gustavo Glusman,¹* Arian F. A. Smit,¹* Chad D. Huff,^{1,2}* Robert Hubley,¹ Paul T. Shannon,¹ Lee Rowen,¹ Krishna P. Pant,³ Nathan Goodman,¹ Michael Bamshad,⁴ Jay Shendure,⁵ Radoje Drmanac,³ Lynn B. Jorde,² Leroy Hood,¹† David J. Galas¹†


Alleles Responsible for MILLER SYNDROME in Utah Kindred*

Ng et al, Nature Genetics 42, 30–35 (2010) doi:10.1038/ng.499
Roach, et al, Science, 328 636, 2101



Schematic of VAAST Analysis of MILLER Kindred 1 using a single quartet : *only two candidate genes*

10/20/2010: VAAST identifies its first new human genetic disease

High-throughput sequencing identifies an infantile lethal disorder caused by protein N-terminal acetyltransferase deficiency

Alan F. Rope, Kai Wang, Rune Evjenth, Jinchuan Xing, Jennifer J. Johnston Jeffrey J Swensen, W. Evan Johnson, Barry Moore, Chad D. Huff, Lynne M. Bird, John C. Carey, John M. Opitz, Catherine A. Stevens, Christa Schank, Heidi Deborah Fain, Reid Robison, Brian Dalley, Steven Chin, Sarah T. South, Theodore J. Pysher, Lynn Jorde, Hakon Hakonarson, Johan R. Lillehaug, Leslie G. Biesecker, Mark Yandell, Thomas Arnesen, Gholson J. Lyon; submitted

 $N-\alpha$ -acetyltransferase 10

 $P < 1X10^{-8}$

Next Steps for GVF

• Expand support for phenotype and clinical annotation

• Flesh out representation of single gene diagnostic descriptions (Collaboration with K. Voelkerding, ARUP)

 Develop HL7 compliant XML DTD for embedding GVF in EHRs

Acknowledgements (SO)

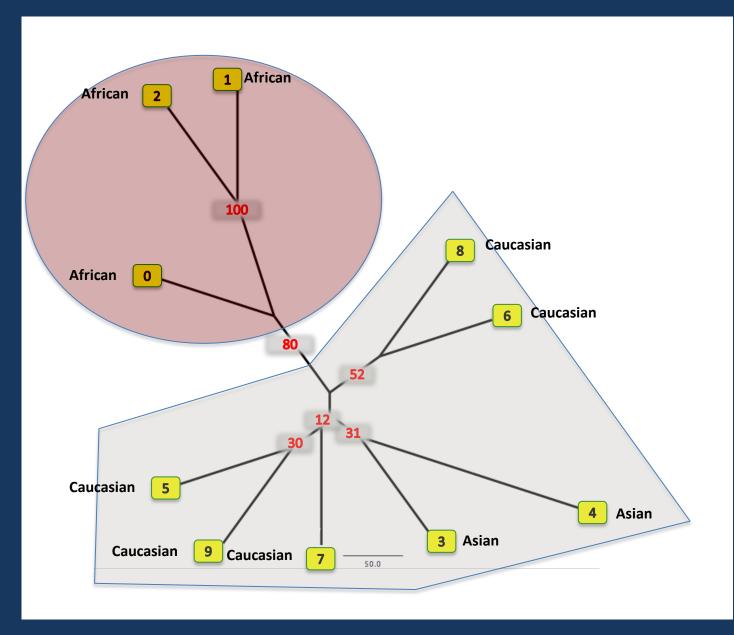
- P41 NHGRI (PI Blake)
 - Supports the development of The Sequence Ontology & The Gene Ontology
- **R01** NHGRI (PI Eilbeck)
 - Supports the development of ontology enabled software
- SBIR NLM (multi PI Reese & Eilbeck)
 Supports variant/disease annotation

Acknowledgements (VAAST project)

Leppert Lab Jorde Lab

Marth Lab Gabor Marth

Fidel Salas Edward S. Kiruluta Steve Chervitz Archie Russell George Miklos Paul Billings Erwin Frise Martin Reese



Francisco de la Vega Kevin McKernan

This work was supported by NIH SBIR grants 1R4HG003667 to Omicia/Yandell, SBIR 1R44HG002991 to Omicia and an NIH ARRA GO grant 1RC2HG005619-01 to Yandell/Omicia all administered by the National Human Genome Research Institute (NHGRI).

OMIM Alleles Are Distributed Along Ethnic Lines

