

Overview

- Week 2
- Similarity vs. Homology
- Global vs. Local Alignments
- Scoring Matrices
- BLAST
- BLAT
- Week 3
- Profiles, Patterns, Motifs, and Domains
- Structures: VAST, Cn3D, and de novo Prediction
- Multiple Sequence Alignment

Why do sequence alignments?

- Provide a measure of relatedness between nucleotide or amino acid sequences
- Determining relatedness allows one to draw biological inferences regarding
- structural relationships
- functional relationships
- evolutionary relationships
\rightarrow importance of using correct terminology

Defining the Terms

- The quantitative measure: Similarity
- Always based on an observable
- Usually expressed as percent identity
- Quantify changes that occur as two sequences diverge
- substitutions
- insertions
- deletions
- Identify residues crucial for maintaining a protein's structure or function
- High degrees of sequence similarity might imply
- a common evolutionary history
- possible commonality in biological function

Defining the Terms

- The conclusion: Homology
- Genes are or are not homologous (not measured in degrees)
- Homology implies an evolutionary relationship
- The term "homolog" may apply to the relationship
- between genes separated by the event of speciation (orthology)
- between genes separated by the event of genetic duplication (paralogy)

Defining the Terms

- Orthologs
- Sequences are direct descendants of a sequence in a common ancestor
- Most likely have similar domain structure, threedimensional structure, and biological function
- Paralogs
- Related through a gene duplication event
- Provides insight into "evolutionary innovation" (adapting a pre-existing gene product for a new function)

Defining the Terms

- Genes 1-3 are orthologous
- Genes 4-6 are orthologous
- Any pair of α and β genes are paralogous (genes related through a gene duplication event)

Global Sequence Alignments

- Sequence comparison along the entire length of the two sequences being aligned
- Best for highly-similar sequences of similar length
- As the degree of sequence similarity declines, global alignment methods tend to miss important biological relationships

Local Sequence Alignments

- Sequence comparison intended to find the most similar regions in the two sequences being aligned ("paired subsequences")
- Regions outside the area of local alignment are excluded
- More than one local alignment could be generated for any two sequences being compared
- Best for sequences that share some similarity, or for sequences of different lengths

Scoring Matrices

- Empirical weighting scheme representing physicochemical and biological characteristics of nucleotides and amino acids
- Side chain structure and chemistry
- Side chain function
- Amino acid-based examples:
- Cys/Pro important for structure and function
- Trp has bulky side chain
- Lys/Arg have positively-charged side chains

Scoring Matrices

- Conservation: What residues can substitute for another residue and not adversely affect the function of the protein?
- Ile/Val - both small and hydrophobic
- Ser/Thr - both polar
- Conserve charge, size, hydrophobicity, other physicochemical factors
- Frequency: How often does a particular residue occur amongst the entire constellation of proteins?

Scoring Matrices

- Why is understanding scoring matrices important?
- Appear in all analyses involving sequence comparison
- Implicitly represent particular evolutionary patterns
- Choice of matrix can strongly influence outcomes of analyses

Matrix Structure: Nucleotides

	\mathbf{A}	\mathbf{T}	\mathbf{G}	\mathbf{C}	\mathbf{S}	\mathbf{W}	\mathbf{R}	\mathbf{Y}	\mathbf{K}	\mathbf{M}	\mathbf{B}	\mathbf{V}	\mathbf{H}	\mathbf{D}	\mathbf{N}
\mathbf{A}	$\mathbf{5}$	-4	-4	-4	-4	1	1	-4	-4	1	-4	-1	-1	-1	-2
\mathbf{T}	-4	$\mathbf{5}$	-4	-4	-4	1	-4	1	1	-4	-1	-4	-1	-1	-2
\mathbf{G}	-4	-4	$\mathbf{5}$	-4	1	-4	1	-4	1	-4	-1	-1	-4	-1	-2
\mathbf{C}	-4	-4	-4	$\mathbf{5}$	1	-4	-4	1	-4	1	-1	-1	-1	-4	-2
\mathbf{S}	-4	-4	1	1	-1	-4	-2	-2	-2	-2	-1	-1	-3	-3	-1
\mathbf{W}	1	1	-4	-4	-4	-1	-2	-2	-2	-2	-3	-3	-1	-1	-1
\mathbf{R}	1	-4	1	-4	-2	-2	-1	-4	-2	-2	-3	-1	-3	-1	-1
\mathbf{Y}	-4	1	-4	1	-2	-2	-4	-1	-2	-2	-1	-3	-1	-3	-1
\mathbf{K}	-4	1	1	-4	-2	-2	-2	-2	-1	-4	-1	-3	-3	-1	-1
\mathbf{M}	1	-4	-4	1	-2	-2	-2	-2	-4	-1	-3	-1	-1	-3	-1
\mathbf{B}	-4	-1	-1	-1	-1	-3	-3	-1	-1	-3	-1	-2	-2	-2	-1
\mathbf{V}	-1	-4	-1	-1	-1	-3	-1	-3	-3	-1	-2	-1	-2	-2	-1
\mathbf{H}	-1	-1	-4	-1	-3	-1	-3	-1	-3	-1	-2	-2	-1	-2	-1
\mathbf{D}	-1	-1	-1	-4	-3	-1	-1	-3	-1	-3	-2	-2	-2	-1	-1
\mathbf{N}	-2	-2	-2	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

- Simple match/mismatch scoring scheme:

$$
\begin{array}{ll}
\text { Match } & +5 \\
\text { Mismatch } & -4
\end{array}
$$

- Assumes each nucleotide occurs 25% of the time

Matrix Structure: Proteins

BLOSUM62

BLOSUM Matrices

- Henikoff and Henikoff, 1992
- Blocks Substitution Matrix
- Look only for differences in conserved, ungapped regions of a protein family ("blocks")
- Directly calculated, using no extrapolations
- More sensitive to detecting structural or functional substitutions
- Generally perform better than PAM matrices for local similarity searches (Henikoff and Henikoff, 1993)

BLOSUM n

- Calculated from sequences sharing no more than $n \%$ identity
- Contribution of sequences $>n \%$ identical clustered and weighted to 1

A+T Hook Domain (Block IPB000637B)

2,000 blocks representing >500 groups of related proteins

BLOSUM n

- Clustering reduces contribution of closelyrelated sequences (less bias towards substitutions that occur in the most closely-related members of a family)
- Substitution frequencies are more heavilyinfluenced by sequences that are more divergent than this cutoff
- Reducing n yields more distantly-related sequences

So many matrices...

BLOSUM		\% Similarity
90	Short alignments, highly similar	$70-90$
80	Best for detecting known members of a protein family Most effective in finding all potential similarities	$50-60$
62	Longer, weaker local alignments	$<30-40$
30		

So many matrices...

> No single matrix is the complete answer for all sequence comparisons

Gaps

- Compensate for insertions and deletions
- Used to improve alignments between two sequences
- Must be kept to a reasonable number, to not reflect a biological implausible scenario (~ 1 gap per 20 residues good rule-of-thumb)
- Cannot be scored simply as a "match" or a "mismatch"

Affine Gap Penalty

Fixed deduction for introducing a gap plus
an additional deduction proportional to the length of the gap

$$
\text { Deduction for a gap }=G+L n
$$

```
where }\quadG=\mathrm{ gap-opening penalty
L = gap-extension penalty 
n = length of the gap
and }\quadG>
```

[^0]
BLAST

- Basic Local Alignment Search Tool
- Seeks high-scoring segment pairs (HSP)
- pair of sequences that can be aligned with one another
- when aligned, have maximal aggregate score (score cannot be improved by extension or trimming)
- score must be above score threshhold S
- gapped or ungapped
- Results not limited to the "best HSP" for any given sequence pair
$\left.\begin{array}{cll}\text { BLAST Algorithms } & \\ \hline \text { Program } & \text { Query Sequence } & \text { Target Sequence } \\ \text { BLASTN } & \text { Nucleotide } & \text { Nucleotide } \\ \text { BLASTP } & \text { Protein } & \text { Protein } \\ \text { BLASTX } & \begin{array}{l}\text { Nucleotide, } \\ \text { six-frame translation }\end{array} & \text { Protein } \\ \text { TBLASTN } & \begin{array}{l}\text { Protein } \\ \text { TBLASTX }\end{array} & \begin{array}{l}\text { Nucleotide, } \\ \text { six-frame translation } \\ \text { six-frame translation }\end{array} \\ \text { Nucleotide, } \\ \text { six-frame translation }\end{array}\right]$

Neighborhood Words

High-Scoring Segment Pairs

Extension

Scores and Probabilities

Scores and Probabilities

Scores and Probabilities

Low-Complexity Regions

Defined as regions of biased composition

- Homopolymeric runs
- Short-period repeats
- Subtle over-representation of several residues
>gi|20455478|sp|P50553|ASC1_HUMAN Achaete-scute homolog 1 (HASH1) MISSAKMESGGAGQQPQPQPQQPFLPPAACFEA AAAAAAAAAAAAAAAAQSAQQQQQOQQQOQQAPQLRPAA DGQPSGGGHKSAPKQVKRQRSSSPELMRCKRRLNESGEGYSLPQQQ ${ }^{\text {AAAVARRNERERNRVKLLVNLGFAT }}$ LREHVPNGAANKKKMSKVETLRSAVEYIRALQQLLDEFHDAVSAAAFQAC VLSPTISPNYSNDLINSMA GSPVS SYSSDEGSYDPLSPEEQELLDETINWE

Homopolymeric

alanine-glutamine tract

Identifying Low-Complexity Regions

- Biological origins and role not well-understood
- DNA replication errors (polymerase slippage)?
- Unequal crossing-over?
- May confound sequence analysis
- BLAST relies on uniformly-distributed amino acid frequencies
- Often lead to false positives
- Filtering is advised (but not enabled by default)

Suggested BLAST Cutoffs

$$
\begin{array}{lr}
& \text { Sequence } \\
E \text {-value } & \text { Identity }
\end{array}
$$

Nucleotide

$$
\leq 10^{-6}
$$

$$
\geq 70 \%
$$

Protein

$$
\leq 10^{-3}
$$

$$
\geq 25 \%
$$

- Do not use these cutoffs blindly!
- Pay attention to alignments on either side of the dividing line
- Do not ignore biology!

Database Searching Artifacts

- Low-complexity regions
- Repetitive elements
- LINEs, SINEs, retroviral repeats
- Choose "Filter: Species-Specific Repeats" when using BLASTN
- RepeatMasker
http://www.repeatmasker.org
- Low-quality sequence hits
- Expressed sequence tags (ESTs)
- Single-pass sequence reads from large-scale sequencing (possibly with vector contaminants)

BLAST 2 Sequences

- Finds local alignments between two protein or nucleotide sequences of interest
- All BLAST programs available
- Select BLOSUM and PAM matrices available for protein comparisons
- Same affine gap costs (adjustable)
- Input sequences can be masked

MegaBLAST

- Optimized for aligning very long and/or highly-similar sequences
- Good for batch nucleotide searches
- Search targets include
- Entire eukaryotic genomes
- Complete chromosomes and contigs from RefSeq
- Run speeds approximately 10 times faster than BLASTN
- Adjusted word size
- Different gap scoring scheme

BLASTN vs. MegaBLAST

- Word size
- BLASTN default $=11$
- MegaBLAST default $=28$
- Non-affine gap penalties

Deduction for a gap $=r / 2-q$
where
$r=$ match reward
$($ default $=1)$
$q=$ mismatch penalty
(default $=-2$)
and
no penalty for opening the gap

BLAT

- "BLAST-Like Alignment Tool"
- Designed to rapidly-align longer nucleotide sequences ($L \geq 40$) having $>95 \%$ sequence similarity
- Can find exact matches reliably down to $L=33$
- Method of choice when looking for exact matches in nucleotide databases
- 500 times faster for mRNA/DNA searches
- May miss divergent or shorter sequence alignments
- Can be used on protein sequences

When to Use BLAT

- To characterize an unknown gene or sequence fragment
- Find its genomic coordinates
- Determine gene structure (the presence and position of exons)
- Identify markers of interest in the vicinity of a sequence
- To find highly-similar sequences
- Identify gene family members
- Identify putative homologs
- To display a specific sequence as a separate track

$\theta \theta \theta$ User Sequence vs Cenomic		
Alignment ofCB312815	Side by Side Alignment	

FASTA

- Identifies regions of local alignment
- Employs an approximation of the Smith-Waterman algorithm to determine the best alignment between two sequences
- Method is significantly different from that used by BLAST
- Online implementations at
http://fasta.bioch.virginia.edu
http://www.ebi.ac.uk/fasta33

[^0]: Can adjust scores to make gap insertion more or less permissive, but most programs will use values of G and L most appropriate for the scoring matrix selected

