Crohn's Disease Whole-genome Studies

Dan L. Nicolae

Departments of Medicine and Statistics The University of Chicago

GAIN Analysis Workshop II Bethesda, October 18, 2007

- type of inflammatory bowel disease (IBD); the other main form is ulcerative colitis (UC);
- causes inflammation of the digestive tract;
- can affect any area of the GI tract, from the mouth to the anus; most common - ileum.
- prevalence: 100-150 per 100,000 (European ancestry);
- Ashkenazi Jews increased risk of developing Crohn's;
- African Americans, Hispanics and Asians lower rates;

IBD

• forefront of genetic studies.

NOD2/CARD15

A frameshift mutation in *NOD2* associated with susceptibility to Crohn's disease

Yasunori Ogura*†, Denise K. Bonen‡†, Naohiro Inohara*, Dan L. Nicolae§, Felicia F. Chen*, Richard Ramos‡, Heidi Britton‡, Thomas Moran‡, Reda Karaliuskas‡, Richard H. Duerril, Jean-Paul Achkar5, Steven R. Brant#, Theodore M. Bayless#, Barbara S. Kirschner[©], Stephen B. Hanauer‡, Gabriel Nuñez*†† & Judy H. Choࠠ

Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease

Jean-Pierre Hugot*†‡, Mathias Chamaillard*†, Habib Zouali*, Suzanne Lesage*, Jean-Pierre Cézard‡, Jacques Belaiche§, Sven Almerl, Curt Tysk¶, Colm A. O'Morain#, Miquel Gassull*, Vibeke Binder**, Yigael Finkel††, Antoine Cortot‡‡, Robert Modigliani§§, Pierre Laurent-Puig†, Corine Gower-Rousseau‡‡, Jeanne MacryIII, Jean-Frédéric Colombel‡‡, Mourad Sahbatou* & Gilles Thomas*†§§

IBD

3

・ロン ・ 一 マン・ 日 マー・

Other loci

Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease

John D. Rioux¹, Mark J. Daly¹, Mark S. Silverberg^{2,3}, Kerstin Lindblad¹, Hillary Steinhart², Zane Cohen⁴, Terrye Delmonte¹, Kerry Kocher¹, Katie Miller¹, Sheila Guschwan¹, Edward J. Kulbokas¹, Sinead O'Leary¹, Ellen Winchester¹, Ken Dewar¹, Todd Green¹, Valerie Stone¹, Christine Chow¹, Albert Cohen⁷, Diane Langelier⁸, Gilles Lapointe⁹, Daniel Gaudet⁹, Janet Faith⁷, Nancy Branco⁷, Shelley B. Bull⁶, Robin S. McLeod⁴, Anne M. Griffiths⁵, Alain Bitton⁷, Gordon R. Greenberg², Eric S. Lander^{1,10,*}, Katherine A. Siminovitch^{2,3,*} & Thomas J. Hudson^{1,7,*}

*These authors co-directed the project.

Genetic variation in *DLG5* is associated with inflammatory bowel disease

Monika Stoll^{1,7}, Brit Corneliussen², Christine M Costello¹, Georg H Waetzig³, Bjorn Mellgard², W Andreas Koch¹, Philip Rosenstiel¹, Mario Albrecht⁴, Peter J P Croucher¹, Dirk Seegert³, Susanna Nikolaus¹, Jochen Hampe^{1,5}, Thomas Lengauer⁴, Stefan Pierrou², Ulrich R Foelsch¹, Christopher G Mathew⁶, Maria Lagerstrom-Fermer² & Stefan Schreiber^{1,5}

Genome-wide association scans

A Genome-Wide Association Study Identifies *IL23R* as an Inflammatory Bowel Disease Gene

Richard H. Duerr,^{3,2} Kent D. Taylor,^{3,4} Steven R. Brant,^{5,4} John D. Rioux,^{7,8} Mark S. Silverberg,⁹ Mark J. Daly,^{5,30} A. Hillary Steinhart,⁷ Clara Abraham,¹¹ Miguel Regueiro,³ Anne Griffiths,²¹ Themistocles Dassopoulos,⁷ Ailan Bitlon,³¹ Hulying Yang,³⁴ Stephan Targan,¹²⁴ Lisa Wu Data,⁵ Emily O. Kistner,³³ L. Philip Schumm,¹³ Annette T. Lee^{4,8} Peter K. Gregersen,³⁶ M. Michael Barmada,³ Jerome I. Rotter,⁵⁴ Dan J. Nicloae,^{11,21} July H. Cho^{45,4}

A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in *ATG16L1*

Jochen Hampe^{1,2,10}, Andre Franke^{1,10}, Philip Rosenstiel^{1,9}, Andreas Till¹, Markus Teuber¹, Klaus Huse³, Mario Albrecht⁴, Gabriele Mayr⁴, Francisco M De La Vega⁵, Jason Briggs⁵, Simone Gunthe³, Natalie J Prescott⁶, Clive M Onnie⁶, Robert Häsler¹, Bence Sipos⁷, Ulrich R Fölsch³, Thomas Lengauer⁴, Matthias Platzer³, Christopher G Mathew⁶, Michael Krawczak⁸ & Stefan Schreiber^{1,2}

OPEN CACCESS Freely available online

PLOS GENETICS

Novel Crohn Disease Locus Identified by Genome-Wide Association Maps to a Gene Desert on 5p13.1 and Modulates Expression of *PTGER4*

Cécile Libioulle^{*}, Edouard Louis^{*}, Sarah Hansoul[†], Cynthia Sandor[†], Frédéric Farnir[‡], Denis Franchimont^{*}, Séverine Vermeire^{*}, Olivier Dewit^{*}, Martine de Vos^{*}, Anna Dixon^{*}, Bruno Demarche^{*}, Ivo Gut^{*}, Simon Heath^{*}, Mario Foglio^{*}, Llimig Liang¹⁹, Debby Laukens^{*}, Myriam Mm¹, Diana Zelenika^{*}, André Van Gossum^{*}, Paul Rutgerts^{*}, Jacques Belaiche^{*}, Mark Lathrop^{*}, Michel Georges^{*}

Genome-wide association scans (more...)

Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis

[bohn D Rioux^{1,2}, Ramnik I, Navier³, Kent D Taylor⁴, Mark S Silverberg², Philippe Goyette³, Alan Huet¹, Todd Green³, Perick Kaballa³, M Michael Barmade⁴, Lisa Wu Datta², Nin Yao Shagart³, Anne M Griffiths⁹, § Stephan R Targan⁴, Andrew F Ipoplit¹, Edmond-Jean Bernard¹⁰, Ling Med⁴, Dan L Nicolae¹¹, ³Miguel Regueiro¹², I. Philip Schumm³, A Hillary Steinbart², Jenne I Rotter⁴, Richard H Duerr^{4,1}, ³Judy H Chu⁴Mark J Daly³Lish Steven R Bernar²M⁶

> Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility Miles Parkes133, Jeffrey C Barrett233, Natalie J Prescott333 Mark Tremelling1, Carl A Anderson2, Sheila A Fisher3, Roland G Roberts³, Elaine R Nimmo⁴, Fraser R Cummings⁵ Dianne Soars3, Hazel Drummond4, Charlie W Lees4, Saud A Khawaia3, Richard Bagnall3, Denis A Barke6, Catherine E Todhunter⁶, Tariq Ahmod⁵, Clive M Onnie³ Wendy McArdle7, David Strachan8, Graeme Bethel9 Claire Bryan⁹, Cathryn M Lewis⁵, Panos Deloukas⁹ Alastair Forbes¹⁰, Jeremy Sanderson¹¹, Derek P Jewell⁵, lack Satsanzi⁴, John C Mansfield⁶, the Wellcome Trust Case Control Consortium¹², Lon Cardon² & Christopher G Mathew³

Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci

John V. Rawloon¹¹, Randall D. Little¹, Andreas Routher¹, Hiëne Fournier¹, Bruno Paquin¹, Paul Van Eerdevegh¹, W. E. C. Bradley¹, Pascal Croteau¹, Qoynh Nguyen-Huu¹, Jonathan Segal¹, Sophia Debrus¹, René Allard¹, Philli Rosentid¹, André Franke¹, Gunnar Jacoba¹, Sasana Nikolau¹, Shawhichi Midh¹, Pietr Szegol, Nathalie Laplante¹, Hilar J. Clark¹, René J. Paulussen¹, John W. Hooper¹, Tim P. Keith¹, Abdemiajd Bebuch¹, and Stefan Schreibe¹⁴

OPEN O ACCESS Freely available online

イロト イロト イヨト イヨト

Systematic Association Mapping Identifies *NELL1* as a Novel IBD Disease Gene

Andre Franke¹, Jochen Hampe², Philip Rosenstell¹, Christian Becke³⁴, Florian Wagner⁴, Robert Histler¹, Rohall D. Little¹, Klass Huste⁴, Andreas Ruster¹, Tobias Balschun¹, Michael Witti², Andreas Welter¹, Tobias Balschun¹, Michael Witti², Andreas Use Barbary¹, Salar Garbare¹, Tim Keith¹, Uwe Redelof⁴, Matthias Platzer⁰, Christopher G. Mathew¹, Monika Stoll¹⁹, Michael Krawczak¹¹¹, Peter Nomber¹¹, Stefan Schleibe¹⁻²²¹.

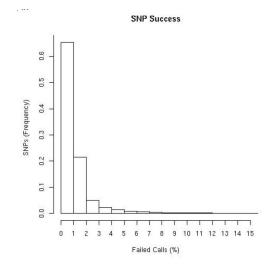
IBD

Dan L. Nicolae

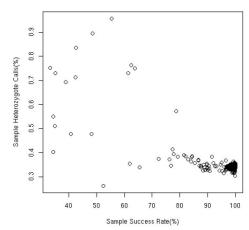
NIDDK IBD Genetics Consortium GWAS

- centers: University of Chicago (Yale), Cedars-Sinai, Johns Hopkins, University of Montreal, University of Pittsburgh, University of Toronto
- study design:
 - ileal Crohn's
 - non-Jewish: 547 cases and 548 controls
 - Jewish: 401 cases and 433 controls
- Illumina HumanHap300 BeadChip: 317,503 SNPs (308,332 autosomal)
- family-based cohort for replication (883 nuclear families); both CD and UC

Sample quality filtering

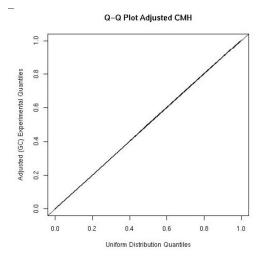

- relatedness check using genome-wide data (eight duplicate samples, ten related pairs);
- call rate threshold 93% (determined from heterozygosity)

SNP quality filtering (304,413 SNPs left; average call rate 99.35%)


- call rate threshold 95% (determined from HWE tests, genomic control)
- Hardy-Weinberg equilibrium test
- genomic control correction of 1.16

IBD

프 > 프


◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ○臣

Sample Heterozygosity Vs Call Rate

4

◆□ > ◆圖 > ◆臣 > ◆臣 >

Interim Results (Duerr et al, 2006, Science)

- three SNPs genome-wide significant in the NJ scan
 - rs2066843 (p=2.86×10⁻⁹) in NOD2
 - rs2076756 (p=5.12×10⁻¹⁰) in NOD2
 - rs1120902 (p=5.05×10⁻⁹) in IL23R
- IL23R
 - rs1120902 is a non-synonymous SNP (Arg381Gln)
 - multiple signals
 - IL23R protein extracellular domain, a single transmembrane domain, and acytoplasmic domain
 - mouse models involve IL-23 in murine colitis, experimental autoimmune encephalitis, collagen-induced arthritis
 - blockade of the IL-23 signaling pathway possible therapeutic strategy for IBD

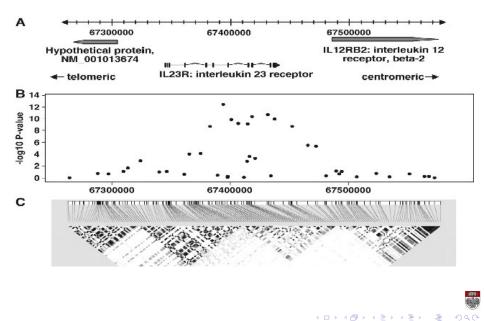


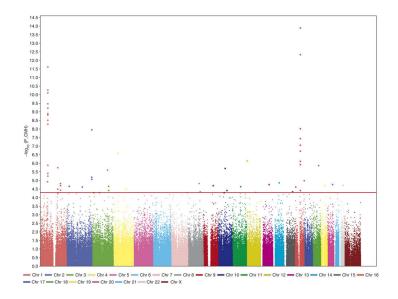
 Table 1.
 Non-Jewish and Jewish ileal Crohn's disease (CD) case-control association study results for IL23R region markers with P-values < 0.0001 in the non-Jewish cohort. Minor allele frequencies (MAF), allelic test P-values, and</th>

odds ratios (OR) with 95% confidence intervals (CI) are shown for each casecontrol cohort (β). The ORs shown are for the minor allele. Combined Cochran-Mantel-Haenszel *P*-values are also shown (β). UTR, untranslated region.

イロト イポト イヨト イヨト

	Location	Non-Jewish case-control cohort					Jewish case-control cohort				
Marker		CD (n = 547) MAF	Control (n = 548) MAF	<i>P</i> -value	OR [95% CI]	CD (n = 401) MAF	Control (n = 433) MAF	<i>P</i> -value	OR [95% CI]	Combined <i>P</i> -value	
rs1004819	Intron	0.374	0.280	3.79×10^{-6}	1.53 [1.27,1.84]	0.426	0.334	1.00×10^{-4}	1.48 [1.21,1.82]	1.54×10^{-9}	
rs7517847	Intron	0.331	0.443	1.09×10^{-7}	0.62 [0.52,0.74]	0.240	0.352	5.84×10^{-7}	0.58 [0.47,0.72]	3.36×10^{-13}	
rs10489629	Intron	0.378	0.475	4.27×10^{-6}	0.67 [0.56,0.80]	0.355	0.465	5.79×10^{-6}	0.63 [0.52,0.77]	1.14×10^{-10}	
rs2201841	Intron	0.385	0.291	4.57×10^{-6}	1.52 [1.27,1.83]	0.414	0.315	2.92×10^{-5}	1.53 [1.25,1.89]	5.46×10^{-10}	
rs11465804	Intron	0.020	0.063	7.52×10^{-7}	0.30 [0.18,0.51]	0.048	0.096	1.39×10^{-4}	0.47 [0.31,0.71]	5.97×10^{-10}	
rs11209026	Arg381Gln	0.019	0.070	5.05×10^{-9}	0.26 [0.15,0.43]	0.033	0.070	7.95×10^{-4}	0.45 [0.27,0.73]	3.55×10^{-11}	
rs1343151	Intron	0.275	0.370	2.26×10^{-6}	0.65 [0.54,0.78]	0.229	0.336	1.69×10^{-6}	0.59 [0.47,0.73]	1.64×10^{-11}	
rs10889677	Exon-3'UTR	0.385	0.288	1.82×10^{-6}	1.55 [1.29,1.86]	0.419	0.316	1.51×10^{-5}	1.56 [1.27,1.91]	9.58×10^{-11}	
rs11209032	Intergenic	0.393	0.293	1.03×10^{-6}	1.56 [1.30,1.87]	0.382	0.298	3.49×10^{-4}	1.45 [1.18,1.79]	1.60×10^{-9}	
rs1495965	Intergenic	0.498	0.412	2.93×10^{-5}	1.44 [1.21,1.71]	0.469	0.412	2.04×10^{-2}	1.26 [1.03,1.53]	2.55×10^{-6}	

Table 2. Family-based and combined (case-control and family-based) association results. Family-based association *P*-values were computed using the empirical variance estimator implemented in the FBAT software package (8). Combined Fisher P-values for all case-control (Table 1) and nuclear family cohorts are also shown (8). UTR, untranslated region.


< □ > < □ > < □ > < □ > < □ > .

Marker Location		Non-Jewish CD (518 families, 651 affected offspring)	Non-Jewish UC (215 families, 251 affected offspring)	Jewish CD (77 families, 99 affected offspring)	Jewish UC (80 families, 91 affected offspring)	All IBD (883 families, 1,119 affected offspring)	Combined (family-based and case-control) <i>P</i> -value	
		P-value	P-value	P-value	P-value	P-value		
rs1004819	Intron	3.60×10^{-5}	1.20×10^{-3}	1.24×10^{-2}	5.47×10^{-1}	6.06×10^{-8}	1.78×10^{-14}	
rs7517847	Intron	2.30×10^{-5}	2.71×10^{-1}	3.50×10^{-2}	5.00×10^{-1}	1.80×10^{-5}	9.99×10^{-16}	
rs10489629	Intron	1.87×10^{-3}	2.70×10^{-1}	4.33×10^{-1}	8.21×10^{-1}	1.27×10^{-3}	1.62×10^{-11}	
rs2201841	Intron	5.80×10^{-4}	3.21×10^{-4}	3.50×10^{-2}	5.69×10^{-1}	1.04×10^{-7}	1.10×10^{-14}	
rs11465804	Intron	1.32×10^{-4}	2.70×10^{-3}	8.90×10^{-5}	3.71×10^{-1}	3.46×10^{-9}	3.33×10^{-16}	
rs11209026	Arg381Gln	8.00×10^{-6}	2.97×10^{-4}	9.41×10^{-4}	4.91×10^{-1}	1.32×10^{-10}	6.62×10^{-19}	
rs1343151	Intron	9.63×10^{-2}	8.51×10^{-2}	3.30×10^{-2}	1.89×10^{-1}	1.24×10^{-3}	2.74×10^{-12}	
rs10889677	Exon-3'UTR	2.60×10^{-3}	3.35×10^{-4}	5.88×10^{-2}	7.32×10^{-1}	1.65×10^{-6}	3.40×10^{-14}	
rs11209032	Intergenic	2.68×10^{-3}	3.57×10^{-4}	3.48×10^{-2}	7.50×10^{-1}	2.41×10^{-6}	5.50×10^{-13}	
rs1495965	Intergenic	4.07×10^{-4}	1.74×10^{-2}	3.93×10^{-2}	9.21×10^{-1}	1.72×10^{-5}	3.55×10^{-9}	

4

Entire Dataset (Rioux et al., 2007, NG)

IBD

イロト イヨト イヨト イ

3

-2

Table 1 Summary of the GWA study and replication studies

Rank	Number of SNPs	Chr	RS number	GWA			Replication cohort 1		Replication cohort 2		Combined replication		
				MAF iCD	MAF CTL	P value	т	U	MAF iCD	MAF CTL	OR	P value	Gene
1	8	16	rs2076756	0.358	0.244	7.01 × 10 ⁻¹⁴	P.T.	P.T.	P.T.	P.T.	P.T.	P.T.	CARD15
2	13	1	rs7517847	0.295	0.403	3.06×10^{-12}	P.T.	P.T.	P.T.	P.T.	P.T.	P.T.	IL23R
3	3	2	rs2241880	0.364	0.453	6.38×10^{-8}	220	306	0.353	0.478	0.68	4.1×10^{-8}	ATG16L.
4	1	4	rs16853571	0.038	0.077	7.68×10^{-7}	39	75	0.057	0.047	0.69	0.0084	PHOX2E
5	1	12	rs886898	0.156	0.102	1.93×10^{-6}	121	136	N.D.	N.D.	N.D.	N.D.	-
6	2	1	rs2343331	0.279	0.212	2.49×10^{-6}	Failed	Failed	N.D.	N.D.	N.D.	N.D.	-
7	1	18	rs937815	0.054	0.094	3.25×10^{-6}	96	99	N.D.	N.D.	N.D.	N.D.	-
в	1	3	rs6439924	0.218	0.160	6.00×10^{-6}	166	140	N.D.	N.D.	N.D.	N.D.	-
9	1	10	rs224136	0.134	0.191	7.90×10^{-6}	94	149	0.140	0.230	0.60	2.9×10^{-7}	Intergeni
10	1	9	rs10821091	0.399	0.332	1.44×10^{-5}	274	252	N.D.	N.D.	N.D.	N.D.	_
11	1	14	rs1188157	0.487	0.417	1.58×10^{-5}	254	240	N.D.	N.D.	N.D.	N.D.	_
12	1	1	rs2819130	0.177	0.126	2.10×10^{-5}	130	144	N.D.	N.D.	N.D.	N.D.	-
13	1	11	rs2712800	0.373	0.441	2.38×10^{-5}	242	222	N.D.	N.D.	N.D.	N.D.	-
14	1	22	rs4821544	0.397	0.333	2.89×10^{-5}	267	221	0.374	0.339	1.19	0.0090	NCF4
15	1	2	rs6733000	0.081	0.124	3.03×10^{-5}	81	77	N.D.	N.D.	N.D.	N.D.	-
16	1	2	rs7603516	0.064	0.102	3.10×10^{-5}	73	62	N.D.	N.D.	N.D.	N.D.	
17	1	16	rs8050910	0.388	0.458	3.28×10^{-5}	221	271	0.400	0.430	0.84	0.0085	FAM92E
18	2	1	rs2490271	0.206	0.152	3.44×10^{-5}	175	166	N.D.	N.D.	N.D.	N.D.	-
19	1	20	rs4810663	0.236	0.180	3.45×10^{-5}	182	178	N.D.	N.D.	N.D.	N.D.	-
20	1	8	rs10505007	0.400	0.332	3.78×10^{-5}	221	248	N.D.	N.D.	N.D.	N.D.	
21	1	8	rs2044999	0.330	0.395	3.84×10^{-5}	NT	NT	N.D.	N.D.	N.D.	N.D.	-
22	1	9	rs4878061	0.418	0.485	4.64×10^{-5}	NT	NT	N.D.	N.D.	N.D.	N.D.	-
23	1	13	rs11617463	0.044	0.077	4.85×10^{-5}	59	80	Failed	Failed	N.D.	N.D.	-

IBD

- several replicated genes/regions;
- more studies planned; e.g. joint analysis of the NIDDK, WTCCC, Belgium/France Consortia datasets (Mark Daly presentation at ASHG);
- better understanding of risk variation in identified genes;
 e.g. for IL23R, genotype additional variation for complete coverage; sequencing projects;
- better understanding of phenotype-genotype association (age of onset, disease location, GxE);
- interactions (e.g. no obvious interaction between NOD2 and IL23R)

Acknowledgments

NIDDK Consortium

Yale University

Judy H. Cho

University of Toronto

Johns Hopkins University

University of Pittsburgh

University of Montreal

Mark S. Silverberg

Steven R. Brant

Richard H. Duerr

John D. Rioux Mark J. Daly (Broad)

Cedars-Sinai

University of Chicago

Kent D. Taylor

Philip Schumm Emily O. Kistner

2