Summary of the Proposed National Emissions Standard for Gold Mine Ore Processing and Production

> Webinar May 25, 2010

Presentation by Chuck French, U.S. EPA Metals and Minerals Group Office of Air Quality and Planning and Standards Email: <u>french.chuck@epa.gov</u> Phone: 919-541-7912

Outline

- Background
- Summary of the proposed regulation for mercury emissions
- Discussion of Non-mercury HAPs
- Schedule/next steps
- Questions?

Background

- 23 facilities in U.S. (15 in Nevada and 8 in other Western States)
- Gold Mines were identified in the 1999 National Emissions Inventory as a source of mercury emissions (estimated 11.5 tons per year)
 - Most emissions were from facilities located in Nevada
 - Initial Nevada Voluntary Program (2001-04) achieved some reductions
 - Targeted 5 large facilities
 - In 2006 Nevada DEP established a mandatory Mercury Control Program to achieve further reductions:
 - covers all gold and silver production operations in Nevada
 - requires best available control technology at facilities in Nevada
- In 2007, Gold Mines emitted an estimated 2.5 tons of mercury nationwide
- In 2008, EPA determined that mercury emissions from Gold Mines should be regulated under the National MACT program
 - Pursuant to Section 112(c)(6) of the Clean Air Act

Summary of Gold Mine Production Processes in U.S.A.

- All facilities:
 - mine, crush ores.....
 - conduct various other processes, depending on ore type, etc.
- 5 facilities use high temperature ore pre-treatment (roasters or autoclaves) before cyanide leaching.
- About 18 facilities process ores without pre-treatment (no roaster or autoclave), but have other thermal processes:
 - About 14 facilities add carbon to leaching, therefore have carbon kilns and 2-4 other processes (e.g., electrowinning, retorts, furnaces).
 - About 4 facilities use no carbon (therefore no kiln), but have other processes (e.g., furnaces, retorts).

Overview of Gold Mine Production Processes

Summary of Mercury Controls for Gold Production Facilities

- A number of facilities already have effective mercury controls on many units.
- Facilities apply various control technologies and pollution prevention measures to limit mercury emissions, including:
 - gas condensers
 - carbon adsorption units
 - wet scrubbers
 - fabric filters
 - mercurous chloride scrubbers (calomel scrubbers)
 - wet venturi scrubbers
 - chemical additives to improve mercury capture.

Summary of the Proposed National Emissions Standard

- Coordinated with Nevada DEP and other stakeholders in development of the proposal
 - We believe the proposed requirements are compatible with the Nevada Mercury Control Program
- Emissions limits are proposed for mercury, based on Maximum Achievable Control Technology (MACT), for the 3 types of affected processes:

	Ore-pretreatment Processes	Carbon Processes	Non-carbon Processes
Existing sources	149 lb/million tons of ore	2.6 lb/ton of concentrate	0.25 lb/ton of concentrate
New Sources	149 lb/million tons of ore	0.14 lb/ton of concentrate or 97% reduction	0.20 lb/ton of concentrate

Gold Ore Processing – 3 Process Groups -Proposed Approach for MACT limits

Proposed Compliance Testing and Monitoring Requirements

- For all thermal units, annual stack tests for mercury (using method 29, 30A, 30B, or the Ontario Hydro method).
- For carbon beds, facilities need to monitor temperatures and do one of the following to prevent breakthrough:
 - weekly test with method 30B, and as mercury concentrations approach an "operating limit" established during the performance test, facility must change carbon;
 - periodic sampling of carbon bed at specified depths, and when carbon reaches 90% capacity, carbon must be changed; or
 - replace carbon at specified frequency based on knowledge of bed life demonstrated by one of the above methods.
- Wet Scrubbers:
 - Monitor water flow rate and pressure drop.

Proposed Monitoring Requirements for Roasters

- Continuous emissions monitoring for mercury using either:
 - Hg CEMS (daily average), or
 - Method 30B (sorbent trap) with weekly sampling and analysis
- Concentrations would be compared to an "operating limit" established during the performance test to assure that controls are working, but not used to demonstrate compliance to the MACT emission limit.
- Any deviation must be reported to permitting authority and corrective action taken.
- We also propose that for roasters that are not monitored with a Hg CEMS that facilities must monitor various parameters of the calomel scrubbers including: scrubber liquid flow; pressure drop; inlet temperature; and chloride ion concentration or oxidation reduction potential and pH

Estimated Mercury Emissions Reductions

Affected Processes	Uncontrolled emissions (lb/yr)	2007 emissions (Ib/yr)	Reductions due to Federal MACT and Nevada Hg Program (Ib/yr)	% Reduction from 2007 emissions	% Reduction from uncontrolled emissions
Ore Pre- treatment processes	18,976	3,383	2,150	64%	94%
Carbon processes	14,465	1,537	1,397	91%	99%
Non-carbon processes	768	139	125	90%	98%
Total	34,209	5,059	3,672	73%	96%

Estimates of Costs and Cost Effectiveness

Case	Capital cost	Total annualized cost	MACT emission reduction (lb/yr)	Average cost effectiveness
Hg controls only	\$4.8 million	\$2.3 million/year	1,650	\$1,400/lb Hg
With monitoring	\$6.0 million	\$3.4 million/year	1,650	\$2,100/lb Hg

Non-Mercury HAP

- In 2009, we requested that industry conduct emissions tests for non-mercury HAPs, including cyanide and non-mercury metals
 - Cyanide is mainly emitted from large non-point sources (e.g., leach pads, tailings ponds), and non-mercury metals are mainly emitted from stacks
- Testing was completed, and all data submitted to EPA in early 2010
- Results indicate there are no major sources
 - The largest facility emits an estimated 5 to 9 tons of cyanide per year
 - All other HAPs are individually significantly lower than the 10 tons per year (tpy) threshold for a single HAP and the 25 tpy threshold for a combination of HAP.
- The proposed rule text has no requirements for non-mercury HAPs.
 - However, the preamble discusses cyanide and requests comments on possible management practices or other approaches to limit cyanide emissions.

Seeking comments on several specific topics, including:

- Title V:
 - About 6 of the 15 facilities currently have Title V permits
 - We are soliciting comment on whether an exemption is appropriate for any particular sources in this category.
- Hg CEMs:
 - Technology not yet demonstrated on these facilities.
 - We request comments on the viability of using mercury CEMs, specifically for monitoring mercury emissions from roasters.
- Carbon vs concentrate metric for "Carbon Group"
 - The proposed emissions limits for this group are in units of pounds of mercury per ton of concentrate.
 - We seek comment on whether "loaded carbon" might be another option worth further consideration as the denominator (e.g., pounds of mercury per ton of loaded carbon)
- Cyanide Emissions Management Practices?

Schedule

- April 15, 2010 Proposed rule was signed by EPA Administrator
- April 28, 2010 Proposed rule published in Federal Register
- May 20, 2010 Published Notice of extension of comment period to 6/28/2010
- June 28, 2010 Public Comment period ends
- December 16, 2010 Final rule deadline (court-ordered)